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Abstract. Fibonacci polynomials are generalizations of Fibonacci numbers, so it is natural
to consider polynomial versions of the various results for Fibonacci numbers. According to
Hong, Pongsriiam, and Bulawa and Lee, the generating function of the Fibonacci sequence
in the domain of rational numbers, f(t) = t/(1 − t − t2), takes an integer value if and
only if t = Fk/Fk+1 for some k ∈ N or t = −Fk+1/Fk for some k ∈ N+, where Fk is
the kth Fibonacci number. This study is built on their work by considering polynomial
sequences that satisfy the recurrence relation Fi+2(x) = axFi+1(x)+bFi(x) with initial values
(F0(x), F1(x)) = (0, 1), where a and b are positive integers such that b|a. As an application, for
a square-free natural number d ∈ N, we verify the results are of the same form as the above
for the generating function of the sequence satisfying the recurrence relation Fi+2(

√
d) =

a
√
dFi+1(

√
d) + bFi(

√
d) with initial values (F0(

√
d), F1(

√
d)) = (0, 1).

1. Introduction

Let a and b be positive integers. Bulawa and Lee [1] considered the sequence {Fi}i∈N defined
by the recurrence relation

Fi+2 = aFi+1 + bFi

and F0 = 0 and F1 = 1. The generating function is given as

f(t) =
t

1− at− bt2
.

They established the following necessary and sufficient conditions that should be applied when
the rational values in the interval of convergence for the generating function f(t) for the
sequence {Fi}i∈N are integers.

Theorem 1.1 (Bulawa and Lee [1]). Let q be a rational number. Let us assume that b divides
a and that q lies within the interval of convergence for the generating function f(t). Then,
f(q) ∈ Z if and only if

q ∈
{

F2i

F2i+1

}
i∈N

.

This result answers the conjecture developed by Hong [2].

Independent of Bulawa and Lee, Pongsriiam [3] obtained similar results under the conditions
of a = 1 and b = 1.

In this study, their work is expanded for applicability to polynomials.

Let us define a polynomial sequence {Fi(x)}i∈N given by the recurrence relation

Fi+2(x) = axFi+1(x) + bFi(x) (1)
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and F0(x) = 0 and F1(x) = 1. For example, F2(x) = ax and F3(x) = a2x2+ b. The generating
function is given by

f(x, t) =
∞∑
i=0

Fi(x)t
i =

t

1− axt− bt2
.

This equation holds within the radius of convergence, but in this paper, we define f(x, t) =
t/(1− axt− bt2). Let us also define a polynomial sequence {Li(x)}i∈N given by the recurrence
relations

Li+2(x) = axLi+1(x) + bLi(x) (2)

and L0(x) = 2 and L1(x) = ax. For example, L2(x) = a2x2 + 2b and L3(x) = a3x3 + 3abx.
The generating function is given by

l(x, t) =
∞∑
i=0

Li(x)t
i =

2− axt

1− axt− bt2
.

This equation holds within the radius of convergence, but in this paper, we define l(x, t) =
(2− axt)/(1− axt− bt2).

The main results are as follows.

Theorem 1.2. Suppose that b divides a, and let q(x) ∈ Q(x) be a rational function over Q.
For the generating function f(x, t), f(x, q(x)) ∈ Z[x] if and only if

q(x) ∈
{

Fi(x)

Fi+1(x)

}
i∈N

or q(x) ∈
{
−Fi+1(x)

bFi(x)

}
i∈N+

.

Theorem 1.3. Suppose that b divides a, and let q(x) ∈ Q(x) be a rational function over Q.
For the generating function l(x, t), l(x, q(x)) ∈ Z[x] if and only if

q(x) ∈
{

Fi(x)

Fi+1(x)
,

Li(x)

Li+1(x)
,−Li+1(x)

bLi(x)

}
i∈N

or q(x) ∈
{

−Fi+1(x)

bFi(x)

}
i∈N+

.

Here, we remark that

Q(x) =

{
p1(x)

p2(x)

∣∣ p1(x), p2(x) ∈ Q[x], p2(x) ̸= 0

}
is the field of rational functions over Q.

Let d ∈ N be a square-free natural number. We define a sequence {Fi(
√
d)}i∈N given by

recurrence relation
Fi+2(

√
d) = a

√
dFi+1(

√
d) + bFi(

√
d)

and F0(
√
d) = 0 and F1(

√
d) = 1. The generating function is given by

f(
√
d, t) =

t

1− a
√
dt− bt2

.

We define a sequence {Li(
√
d)}i∈N given by recurrence relations

Li+2(
√
d) = a

√
dLi+1(

√
d) + bLi(

√
d)

and L0(
√
d) = 2, L1(

√
d) = a

√
d. The generating function is given by

l(
√
d, t) =

2− a
√
dt

1− a
√
dt− bt2

.
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Furthermore, the convergence radii of these generating functions are all

2

a
√
d+

√
a2d+ 4b

.

If d ̸= 1, then in general we do not derive the same result as Theorem 1.2 and Theorem 1.3.
Indeed, assuming a = 2, b = 1, and d = 2, we obtain

f

(√
d,

1

2 +
√
d

)
= 2 +

√
d ∈ Z[

√
d].

However,

1

2 +
√
d

/∈

{
Fi(

√
d)

Fi+1(
√
d)

}
i∈N

and
1

2 +
√
d

/∈

{
−Fi+1(

√
d)

bFi(
√
d)

}
i∈N+

.

Moreover, 1/(2 +
√
d) is within the radius of convergence of the generating function f(

√
d, t).

In addition, assuming a = 1, b = 1, and d = 2, we obtain

l

(
√
d,

6− 5
√
d

7

)
= 16− 10

√
d ∈ Z[

√
d].

However,

6− 5
√
d

7
/∈

{
Fi(

√
d)

Fi+1(
√
d)

,
Li(

√
d)

Li+1(
√
d)

,−Li+1(
√
d)

bLi(
√
d)

}
i∈N

and
6− 5

√
d

7
/∈

{
−Fi+1(

√
d)

bFi(
√
d)

}
i∈N+

.

Moreover, (6− 5
√
d)/7 is within the radius of convergence of the generating function l(

√
d, t).

If d = 1, then we have the following theorems.

Theorem 1.4. Suppose that b divides a and d = 1. Let q ∈ Q. For the generating function
f(t), we have f(q) ∈ Z if and only if

q ∈
{

Fi

Fi+1

}
i∈N

or q ∈
{
−Fi+1

bFi

}
i∈N+

,

where f(t) = f(
√
d, t) and Fi = Fi(

√
d).

Theorem 1.5. Suppose that b divides a and d = 1, and let q ∈ Q be a rational number. For
the generating function l(t), l(q) ∈ Z if and only if

q ∈
{

Fi

Fi+1
,

Li

Li+1
,−Li+1

bLi

}
i∈N

or q ∈
{

−Fi+1

bFi

}
i∈N+

,

where f(t) = f(
√
d, t), Fi = Fi(

√
d) and Li = Li(

√
d).

Focusing on the radii of convergence of the generating functions, we have the following
results from Theorem 1.4 and Theorem 1.5.

Corollary 1.6 (= Theorem 1.1). Under the assumption of Theorem 1.4, let q ∈ Q. We
assume that q is in the interval of convergence of the generating function f(t). Then, we have
f(q) ∈ Z if and only if

q ∈
{

F2i

F2i+1

}
i∈N

.
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Corollary 1.7. Suppose that b divides a, d = 1, and a ̸= 1, let q ∈ Q be a rational number.
We assume that q is in the interval of convergence of the generating function l(t). For the
generating function l(t), l(q) ∈ Z if and only if

q ∈
{

F2i

F2i+1
,
L2i+1

L2i+2

}
i∈N

.

Corollary 1.8. Suppose that b divides a, d = 1, and a = 1. Let q ∈ Q be a rational number.
We assume that q is in the interval of convergence of the generating function l(t). For the
generating function l(t), l(q) ∈ Z if and only if

q ∈
{

F2i

F2i+1
,
L2i+1

L2i+2

}
i∈N

∪
{
−1
2

}
.

Remark 1.9. Corollary 1.6 and Corollary 1.8 are none other than those given by Bulawa and
Lee [1, Theorem 1.1 and Theorem 1.5].

2. Preliminaries

Before proceeding to the proof of the main results, the following equations and proposition
should be understood.

Let

α(x) =
ax+

√
a2x2 + 4b

2
,

β(x) =
ax−

√
a2x2 + 4b

2
.

Then, it follows that

Fn(x) =
α(x)n − β(x)n

α(x)− β(x)
(3)

and

Ln(x) = α(x)n + β(x)n. (4)

Using equations (3) and (4), the following equations are obtained.

Fn(x)
2 − Fn−1(x)Fn+1(x) = (−b)n−1, (5)

Ln(x)
2 − Ln−1(x)Ln+1(x) = −(−b)n−1(a2x2 + 4b), (6)

F2n+1(x) = Ln+1(x)Fn(x) + (−b)n, (7)

L2n+1(x) = Ln+1(x)Ln(x)− (−b)nax, (8)

L2n+1(x) = (a2x2 + 4b)Fn+1(x)Fn(x) + (−b)nax, (9)

Fn+1(x)Ln(x) = Fn(x)Ln+1(x) + 2(−b)n, (10)

Fn+1(x) =
axFn(x) + Ln(x)

2
, (11)

Fn(x) =
−axFn+1(x) + Ln+1(x)

2b
, (12)

Ln+1(x) =
axLn(x) + (a2x2 + 4b)Fn(x)

2
, and (13)

Ln(x) =
−axLn+1(x) + (a2x2 + 4b)Fn+1(x)

2b
. (14)
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The following proposition provides the most robust foundation for the proof of the main
results.

Proposition 2.1. Let P (x), Q(x) ∈ Q[x] be polynomials for which the highest-order coefficient
is nonnegative. If

P (x)2 − (a2x2 + 4b)Q(x)2 = 4(−b)r0 (∗)
for some r0 ∈ {0, 1}, then there exists a nonnegative integer n such that

b⌊
n
2
⌋P (x) = Ln(x), b⌊

n
2
⌋Q(x) = Fn(x),

and n ≡ r0 (mod 2).

Proof. First, we define a map of the set of polynomial pairs with rational coefficients satisfying
(∗) to itself by

Φ(P (x), Q(x)) = (P (x), Q(x)),

where

P (x) =
−ax(a2x2 + 4b)Q(x) + (a2x2 + 2b)P (x)

2b
and

Q(x) =
(a2x2 + 2b)Q(x)− axP (x)

2b
.

Also, (P (x), Q(x)) satisfying equation (∗) means P (x) and Q(x) satisfy

P (x)
2 − (a2x2 + 4b)Q(x)

2
= 4(−b)r0 .

This is well-defined because (P (x), Q(x)) satisfies equation (∗). Moreover, the inverse map
Φ−1 is given by

Φ−1(P (x), Q(x)) = (P (x), Q(x)),

where

P (x) =
ax(a2x2 + 4b)Q(x) + (a2x2 + 2b)P (x)

2b
and

Q(x) =
(a2x2 + 2b)Q(x) + axP (x)

2b
.

Moreover, we define Φ−1 ◦ Φ(P (x), Q(x)) = (P (x), Q(x)).

With the above preparation, we begin by considering the case degQ(x) ≤ 1.
If Q(x) = 0, we have P (x) = 2 and r0 = 0. Thus, we can obtain

b⌊
0
2
⌋P (x) = L0(x) and b⌊

0
2
⌋Q(x) = F0(x).

If Q(x) ̸= 0 and degQ(x) = 0, then we have P (x) = ax, Q(x) = 1, and r0 = 1 by matching
coefficients of terms with equal degree. Thus, we can obtain

b⌊
1
2
⌋P (x) = L1(x) and b⌊

1
2
⌋Q(x) = F1(x).

If degQ(x) = 1, the method of undetermined coefficients gives us

P (x) =
a2x2 + 2b

b
, Q(x) =

ax

b
, and r0 = 0.
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Thus, we can obtain the following results.

b⌊
2
2
⌋P (x) = L2(x) and b⌊

2
2
⌋Q(x) = F2(x).

Next, let us consider the case degQ(x) ≥ 2.
We have degP (x) = degQ(x) + 1 because equation (∗) is satisfied.
Let N = degP (x). Because equation (∗) is satisfied, the rational numbers c0, c1, . . . , cN ,

d0, d1, . . . , dN−1 exist such that P (x) = c0x
N + c1x

N−1 + · · · + cN and Q(x) = d0x
N−1 +

d1x
N−2 + · · ·+ dN−1.
Then, we can obtain

c0 = ad0, c1 = ad1, ac2 = a2d2 + 2bd0,

and

ac3 =

{
a2d3 + 2bd1, if degQ(x) > 2;

2bd1, if degQ(x) = 2.

Moreover, if degQ(x) > 2,

P (x) =
(a2c0 − a3d0)x

N+2

2b
+

(a2c1 − a3d1)x
N+1

2b
+

(a2c2 + 2bc0 − a3d2 − 4abd0)x
N

2b

+
(a2c3 + 2bc1 − a3d3 − 4abd1)x

N−1

2b
+ · · · .

If degQ(x) = 2,

P (x) =
(a2c0 − a3d0)x

5

2b
+

(a2c1 − a3d1)x
4

2b
+

(a2c2 + 2bc0 − a3d2 − 4abd0)x
3

2b

+
(a2c3 + 2bc1 − 4abd1)x

2

2b
+ (c2 − 2ad2)x+ c3.

Therefore, we have

degP (x) ≤ degP (x)− 2

from the relationship between the coefficients of P (x) and Q(x). Moreover, we have

degQ(x) ≤ degQ(x)− 2.

Indeed, if degP (x) = 0, then degQ(x) = 0 because (P (x), Q(x)) satisfies equation (∗).
If degP (x) > 0, we have

degP (x) = degQ(x) + 1.

Therefore,

degQ(x) = degP (x)− 1 ≤ degP (x)− 3 = degQ(x)− 2.

Moreover, we have

Φ−1(P (x), Q(x)) = (P (x), Q(x)) = (P (x), Q(x)).

Therefore, we see that the highest-order coefficient for P (x) (resp. Q(x)) is a nonnegative
rational number.

To show this, we first consider the case degP (x) = 0. Then, we have P (x) = ±2 and Q(x) =

0 because (P (x), Q(x)) satisfies equation (∗). If P (x) = −2, the highest-order coefficient for

P (x) = P (x) is negative. This is a contradiction. Therefore, P (x) = 2.
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Next, we consider the case degP (x) ̸= 0. Let c0 (resp. d0) be the highest-order coefficient

for P (x) (resp. Q(x)). Then,

c0 = ±d0a

because (P (x), Q(x)) satisfies equation (∗). If c0 = −d0a, then

P (x) =
ax(a2x2 + 4b)Q(x) + (a2x2 + 2b)P (x)

2b

=
ax(a2x2 + 4b)(d0x

degP (x)−1 + . . . ) + (a2x2 + 2b)(−d0axdegP (x) + . . . )

2b
.

Therefore,

degP (x) + 2 > degP (x).

Hence,

degP (x) > degP (x)− 2 = degP (x)− 2.

This is a contradiction. Therefore, we have c0 = d0a. From this, the signs of the highest-order
coefficients of P (x) and Q(x) are equal. If the highest-order coefficient of P (x) is negative, then

the highest-order coefficient of P (x) = P (x) is negative. This is a contradiction. Therefore,

the highest-order coefficient for P (x) (resp. Q(x)) is a nonnegative rational number.

Moreover, if degQ(x) ≥ 2, we have

degP (x) = degP (x)− 2 = degP (x)− 2

and
degQ(x) = degQ(x)− 2 = degQ(x)− 2

because the highest-order coefficient for P (x) (resp. Q(x)) is nonnegative.
Writing

Φ ◦ · · · ◦ Φ︸ ︷︷ ︸
n

(P (x), Q(x)) = (
n

P (x),
n

Q(x)),

we see that

deg

⌊N−1
2

⌋

P (x) ≤ 2.

Finally, if there exists a nonnegative integer n such that

b⌊
n
2
⌋P (x) = Ln(x), b

⌊n
2
⌋Q(x) = Fn(x)

and n ≡ r0 (mod 2), then we have

b⌊
n+2
2

⌋P (x) = Ln+2(x), b
⌊n+2

2
⌋Q(x) = Fn+2(x)

and n+ 2 ≡ r0 (mod 2) because

Lm+2(x) =
ax(a2x2 + 4b)Fm(x) + (a2x2 + 2b)Lm(x)

2
and

Fm+2(x) =
(a2x2 + 2b)Fm(x) + axLm(x)

2
applies to any nonnegative integer m. If degP (x) ≤ 2, we have

b⌊
degP (x)

2
⌋P (x) = LdegP (x)(x), b

⌊degP (x)
2

⌋Q(x) = FdegP (x)(x).

Therefore, this completes the proof.
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□

The following proposition was obtained by Bulawa and Lee [1, Proposition 1.3], but we will
prove it by the same proof method as Proposition 2.1.

Proposition 2.2. Suppose that b divides a and b is square-free. Let P,Q ∈ N. If

P 2 − (a2 + 4b)Q2 = 4(−b), (∗∗)
then there exists a nonnegative integer n such that

bnP = L2n+1, b
nQ = F2n+1,

where L2n+1 = L2n+1(1) and F2n+1 = F2n+1(1).

Proof. First, we define a map of the set of integer pairs satisfying equation (∗∗) to itself by

Φ(P,Q) = (P ,Q),

where

P =
−a(a2 + 4b)Q+ (a2 + 2b)P

2b
and

Q =
(a2 + 2b)Q− aP

2b
.

Also, (P ,Q) satisfying equation (∗∗) means P and Q satisfy

P
2 − (a2 + 4b)Q

2
= 4(−b).

We have P 2 − (aQ)2 ∈ 4Z because (P,Q) satisfies equation (∗∗). From this, we obtain
P − aQ ∈ 2Z. Therefore, P ,Q ∈ Z. Hence, Φ is well-defined because (P ,Q) satisfies equation
(∗∗)

Moreover, the inverse map Φ−1 is given by

Φ−1(P,Q) = (P ,Q),

where

P =
a(a2 + 4b)Q+ (a2 + 2b)P

2b
and

Q =
(a2 + 2b)Q+ aP

2b
.

Furthermore, we prepare two maps.
Subsequently, we define a map of the set of integer pairs satisfying equation (∗∗) to the set

of integer pairs satisfying equation

P 2 − (a2 + 4b)Q2 = 4 (∗ ∗ ∗)
by

Φ̂(P,Q) = (P̂ , Q̂),

where

P̂ =
−aP + (a2 + 4b)Q

2b
and

Q̂ =
−aQ+ P

2b
.
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Also, (P̂ , Q̂) satisfying equation (∗ ∗ ∗) means P̂ and Q̂ satisfy

P̂ 2 − (a2 + 4b)Q̂2 = 4.

We have P 2 − a2Q2 ∈ 4bZ because (P,Q) satisfies equation (∗∗). From this, we obtain
P − aQ ∈ 2bZ. Indeed, we have P ∈ bZ because P 2 ∈ bZ and b is square-free. Therefore, we
obtain P−aQ, P+aQ ∈ bZ. Hence, there exist l1, l2 ∈ Z such that P−aQ = bl1 and P+aQ =
bl2. Moreover, there exists l3 ∈ Z such that bl1bl2 = (P − aQ)(P + aQ) = P 2 − a2Q2 = 4bl3.
If l3 = 0, we have that l1 = 0 or l2 = 0. Therefore, P − aQ ∈ 2bZ. If l3 ̸= 0, we have l1 ∈ 2Z
or l2 ∈ 2Z. Therefore, P − aQ ∈ 2bZ.

Therefore, P̂ , Q̂ ∈ Z. Hence, Φ̂ is well-defined because (P̂ , Q̂) satisfies equation (∗ ∗ ∗).
If P > 0, Q > 1, then

{(a2 + 4b)Q}2 − (aP )2 = 4a2bQ2 + 16b2Q2 + 4a2b > 0

and

P 2 − a2Q2 = 4bQ2 − 4b > 0

by P 2 = (a2 + 4b)Q2 − 4b because (P,Q) satisfies equation (∗∗).
Therefore,

P̂ =
−aP + (a2 + 4b)Q

2b
> 0 and Q̂ =

−aQ+ P

2b
> 0.

Hence, P̂ ≥ 1 and Q̂ ≥ 1 because P̂ , Q̂ ∈ Z.
Finally, we define a map of the set of integer pairs satisfying equation (∗ ∗ ∗) to the set of

integer pairs satisfying equation (∗∗) by

Φ̌(P,Q) = (P̌ , Q̌),

where

P̌ =
−aP + (a2 + 4b)Q

2
and Q̌ =

−aQ+ P

2
.

Also, (P̌ , Q̌) satisfying equation (∗∗) means (P̌ , Q̌) satisfies the equation (∗∗), where P̌ and
Q̌ are substituted for P and Q, respectively. We have P − aQ ∈ 2Z because (P,Q) satisfies
equation (∗ ∗ ∗). Therefore, P̌ , Q̌ ∈ Z. Hence, Φ̌ is well-defined as (P̌ , Q̌) satisfies equation
(∗∗).

If, P > 0, Q ≥ 1, then

{(a2 + 4b)Q}2 − (aP )2 = 4a2bQ2 + 16b2Q2 − 4a2 > 0

and

P 2 − (aQ)2 = 4bQ2 + 4 > 0

by P 2 = (a2 + 4b)Q2 + 4 because (P,Q) satisfies equation (∗ ∗ ∗).
Therefore,

P̌ =
−aP + (a2 + 4b)Q

2
> 0 and Q̌ =

−aQ+ P

2
> 0.

Hence, P̌ ≥ 1 and Q̌ ≥ 1 because P̌ , Q̌ ∈ Z.
Using the above preparation, let us consider the case Q ≤ 1. Then, we have

P = L1 and Q = F1.

Next, we consider the case Q > 1. (Hence, P > 0 because (P,Q) satisfies equation (∗∗).)
Taking the image Φ(P,Q) = (P ,Q) by Φ, we have P ,Q > 0 because P > 0 and Φ = Φ̌ ◦ Φ̂.
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Moreover, we obtain

Q−Q =
a
√
(a2 + 4b)Q2 − 4b− a2Q

2b
> 0.

In addition,
Q−Q ≥ 1

because Q,Q ∈ N. Writing

Φ ◦ · · · ◦ Φ︸ ︷︷ ︸
n

(P,Q) = (
n

P ,
n

Q),

we see that there exists a positive integer m such that
m

Q ≤ 1 Therefore, the proof is completed
in the same way as Proposition 2.1. □

We have the following proposition from Proposition 2.2.

Proposition 2.3. Suppose that b divides a. Let P,Q ∈ N. If

P 2 − (a2 + 4b)Q2 = 4(−b), (∗∗)
then there exists a nonnegative integer n such that

bnP = L2n+1 and bnQ = F2n+1,

where L2n+1 = L2n+1(1) and F2n+1 = F2n+1(1).

Proof. Let c be the largest positive integer such that b ∈ c2Z. Put b̃ = b/c2 and ã = a/c. We

define a sequence {F̃i}i∈N given by the recurrence relation

˜Fi+2 = ã ˜Fi+1 + b̃F̃i

and F̃0 = 0 and F̃1 = 1. Moreover, we define a sequence {L̃i}i∈N given by the recurrence
relation

˜Li+2 = ã ˜Li+1 + b̃L̃i

and L̃0 = 2 and L̃1 = ã.
By equations (3) and (4), it follows that

Fi = Fi(1) =
α(1)i − β(1)i

α(1)− β(1)

and
Li = Li(1) = α(1)i + β(1)i.

Moreover, we obtain

F̃i =
(α(1)/c)i − (β(1)/c)i

(α(1)− β(1))/c

and

L̃i =

(
α(1)

c

)i

+

(
β(1)

c

)i

.

Therefore,

Fi = ci−1F̃i (i ≥ 1)

and
Li = ciL̃i (i ≥ 1).
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On the other hand, P/c ∈ N and P/c and Q satisfy(
P

c

)2

− (ã2 + 4b̃)Q2 = −4b̃

Therefore, by Proposition 2.2, there exists a nonnegative integer n such that

b̃n
P

c
= ˜L2n+1, b̃

nQ = ˜F2n+1

Hence, we obtain

bnP = L2n+1, b
nQ = F2n+1.

□

The argument for obtaining Proposition 2.3 from Proposition 2.2 is similar to the argument
in [1, Proposition 1.4].

3. Resulting Proofs

Like [4], the main results are demonstrated by applying Proposition 2.1, Proposition 2.3,
and (1) to (14).

3.1. Proof of Theorem 1.2. First, we suppose that

q(x) =
Fi(x)

Fi+1(x)
(i ∈ N)

or

q(x) = −Fi+1(x)

bFi(x)
(i ∈ N+).

Then, we show that f(x, q(x)) ∈ Z[x]. If i = 0, the result is evident. However, if i > 0, by
using (1) and (5), we obtain

f

(
x,

Fi(x)

Fi+1(x)

)
=

Fi(x)Fi+1(x)

Fi+1(x)2 − (axFi+1(x) + bFi(x))Fi(x)

(1)
=

Fi(x)Fi+1(x)

Fi+1(x)2 − Fi+2(x)Fi(x)

(5)
=

Fi(x)Fi+1(x)

(−b)i

f

(
x,−Fi+1(x)

bFi(x)

)
=

−bFi(x)Fi+1(x)

bFi(x)(axFi+1(x) + bFi(x))− bFi+1(x)2

(1)
=

−bFi(x)Fi+1(x)

bFi(x)Fi+2(x)− bFi+1(x)2
(5)
=

Fi(x)Fi+1(x)

(−b)i
.

Moreover, we have Fi(x) ∈ b⌊
i
2
⌋Z[x] (i ∈ N) from the recurrence relation described by equation

(1). Indeed, F0(x) ∈ b⌊
0
2
⌋Z[x] and F1(x) ∈ b⌊

1
2
⌋Z[x]. If Fk(x) ∈ b⌊

k
2
⌋Z[x] and Fk+1(x) ∈

b⌊
k+1
2

⌋Z[x], then Fk+2(x) ∈ b⌊
k+2
2

⌋Z[x] by equation (1). Therefore, we have Fi(x) ∈ b⌊
i
2
⌋Z[x]

by mathematical induction. Hence, f(x, q(x)) ∈ Z[x].
Next, we suppose that f(x, q(x)) = k(x) (k(x) is a polynomial over Z) for some rational

function q(x) ∈ Q(x). We will show that

q(x) ∈
{

Fi(x)

Fi+1(x)

}
i∈N

or q(x) ∈
{

−Fi+1(x)

bFi(x)

}
i∈N+

.
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If k(x) = 0, then
q(x)

1− axq(x)− bq(x)2
= 0.

Hence,

q(x) = 0 =
F0(x)

F1(x)
.

If k(x) ̸= 0, then
q(x)

1− axq(x)− bq(x)2
= k(x).

Hence,
bk(x)q(x)2 + (axk(x) + 1)q(x)− k(x) = 0.

Furthermore,

q(x) =
−(axk(x) + 1)±

√
(axk(x) + 1)2 + 4bk(x)2

2bk(x)
.

Here, because q(x) is a rational function over Q, there exists a polynomial M(x) ∈ Z[x] for
which the highest-order coefficient is nonnegative such that

(axk(x) + 1)2 + 4bk(x)2 = M(x)2.

This allows us to obtain

{(a2x2 + 4b)k(x) + ax}2 − (a2x2 + 4b)M(x)2 = 4(−b).
Thus, according to Proposition 2.1, there exists a nonnegative integer n such that

M(x) =
F2n+1(x)

bn
, (a2x2 + 4b)k(x) + ax = ±L2n+1(x)

bn
.

From equation (9),

(a2x2 + 4b)k(x) + ax = ±(a2x2 + 4b)Fn+1(x)Fn(x) + (−b)nax
bn

.

Because k(x) ∈ Z[x] and Fn(x)Fn+1(x)
bn ∈ Z[x], this means that

(a2x2 + 4b)k(x) + ax =
L2n+1(x)

(−b)n

for each n ∈ N+ given that k(x) ̸= 0. Additionally, by using equation (9),

k(x) =
Fn(x)Fn+1(x)

(−b)n
.

Consequently, we obtain

q(x) =
−axFn(x)Fn+1(x)− (−b)n + (−1)nF2n+1(x)

2bFn(x)Fn+1(x)
(n ≥ 1) (A)

or

q(x) =
−axFn(x)Fn+1(x)− (−b)n − (−1)nF2n+1(x)

2bFn(x)Fn+1(x)
(n ≥ 1). (B)

Regarding (A) and (B), by using equations (7), (10), (11), and (12), we obtain

q(x) ∈
{

Fi(x)

Fi+1(x)

}
i∈N

or q(x) ∈
{

−Fi+1(x)

bFi(x)

}
i∈N+

.

If n is even, for (A),
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q(x) =
−axFn(x)Fn+1(x)− (−b)n + (−1)nF2n+1(x)

2bFn(x)Fn+1(x)

(7)
=

−axFn+1(x) + Ln+1(x)

2bFn+1(x)

(12)
=

Fn(x)

Fn+1(x)
.

If n is odd, for (A),

q(x) =
−axFn(x)Fn+1(x)− (−b)n + (−1)nF2n+1(x)

2bFn(x)Fn+1(x)

(7)(10)
=

−axFn(x)− Ln(x)

2bFn(x)

(11)
= −Fn+1(x)

bFn(x)
.

If n is even, for (B),

q(x) =
−axFn(x)Fn+1(x)− (−b)n − (−1)nF2n+1(x)

2bFn(x)Fn+1(x)

(7)(10)
=

−axFn(x)− Ln(x)

2bFn(x)

(11)
= −Fn+1(x)

bFn(x)
.

If n is odd, for (B),

q(x) =
−axFn(x)Fn+1(x)− (−b)n − (−1)nF2n+1(x)

2bFn(x)Fn+1(x)

(7)
=

−axFn+1(x) + Ln+1(x)

2bFn+1(x)

(12)
=

Fn(x)

Fn+1(x)
.

3.2. Proof of Theorem 1.3. First, we suppose that

q(x) =
Fi(x)

Fi+1(x)
,

Li(x)

Li+1(x)
,−Li+1(x)

bLi(x)
(i ∈ N) or q(x) = −Fi+1(x)

bFi(x)
(i ∈ N+).

Then, we show that l(x, q(x)) ∈ Z[x]
If i = 0, the result is evident. However, if i > 0, by using equations (1), (2), (5), (6), (13),

and (14), we obtain

l

(
x,

Fi(x)

Fi+1(x)

)
=

2Fi+1(x)
2 − axFi(x)Fi+1(x)

Fi+1(x)2 − Fi(x)(axFi+1(x) + bFi(x))

(1)
=

2Fi+1(x)
2 − axFi(x)Fi+1(x)

Fi+1(x)2 − Fi(x)Fi+2(x)

(5)
=

2Fi+1(x)
2 − axFi(x)Fi+1(x)

(−b)i

l

(
x,

Li(x)

Li+1(x)

)
=

2Li+1(x)
2 − axLi(x)Li+1(x)

Li+1(x)2 − Li(x)(axLi+1(x) + bLi(x))

(2)
=

2Li+1(x)
2 − axLi(x)Li+1(x)

Li+1(x)2 − Li(x)Li+2(x)

(6)
=

Li+1(x)(2Li+1(x)− axLi(x))

−(−b)i(a2x2 + 4b)

(13)
=

Li+1(x)Fi(x)

−(−b)i

l

(
x,−Li+1(x)

bLi(x)

)
=

Li(x)(2bLi(x) + axLi+1(x))

Li(x)(axLi+1(x) + bLi(x))− Li+1(x)2

(2)
=

Li(x)(2bLi(x) + axLi+1(x))

Li(x)Li+2(x)− Li+1(x)2
(6)(14)
=

Li(x)Fi+1(x)

(−b)i

l

(
x,−Fi+1(x)

bFi(x)

)
=

Fi(x)(2bFi(x) + axFi+1(x))

Fi(x)(bFi(x) + axFi+1(x))− Fi+1(x)2
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(1)(5)
=

Fi(x)(2bFi(x) + axFi+1(x))

Fi(x)Fi+2(x)− Fi+1(x)2
=

Fi(x)(2bFi(x) + axFi+1(x))

−(−b)i
.

Using an induction similar to the discussion in the proof of Theorem 1.2, we obtain that

Fi(x), Li(x) ∈ b⌊
i
2
⌋Z[x] from the recurrence relations described by equations (1) and (2),

l

(
x,

Fi(x)

Fi+1(x)

)
, l

(
x,

Li(x)

Li+1(x)

)
,

l

(
x,−Li+1(x)

bLi(x)

)
∈ Z[x] (i ∈ N), and l

(
x,−Fi+1(x)

bFi(x)

)
∈ Z[x] (i ∈ N+).

Next, we suppose that l(x, q(x)) = k(x) (k(x) is a polynomial over Z) for some rational
function q(x) ∈ Q(x). Then, we show that

q(x) ∈
{

Fi(x)

Fi+1(x)
,

Li(x)

Li+1(x)
,−Li+1(x)

bLi(x)

}
i∈N

or q(x) ∈
{

−Fi+1(x)

bFi(x)

}
i∈N+

.

If k(x) = 0, then

2− axq(x)

1− axq(x)− bq(x)2
= 0.

Therefore,

q(x) =
2

ax
=

L0(x)

L1(x)
.

Alternatively, if k(x) ̸= 0, then

2− axq(x)

1− axq(x)− bq(x)2
= k(x).

Hence,
bk(x)q(x)2 + ax(k(x)− 1)q(x) + 2− k(x) = 0.

Therefore,

q(x) =
−ax(k(x)− 1)±

√
a2x2(k(x)− 1)2 − 4bk(x)(2− k(x))

2bk(x)
.

Here, because q(x) is a rational function over Q, there exists a polynomial M(x) ∈ Q[x] for
which the highest-order coefficient is nonnegative such that

a2x2(k(x)− 1)2 − 4bk(x)(2− k(x)) = M(x)2.

Then, we obtain
M(x)2 − (a2x2 + 4b)(k(x)− 1)2 = 4(−b).

Thus, according to Proposition 2.1, there exists a nonnegative integer n such that

M(x) =
L2n+1(x)

bn
and k(x)− 1 = ±F2n+1(x)

bn
.

Hence, we obtain

q(x) =
−axF2n+1(x) + L2n+1(x)

2b(F2n+1(x) + bn)
(n ≥ 0), (C)

q(x) =
−axF2n+1(x)− L2n+1(x)

2b(F2n+1(x) + bn)
(n ≥ 0), (D)

q(x) =
axF2n+1(x) + L2n+1(x)

2b(−F2n+1(x) + bn)
(n ≥ 1), (E)
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or

q(x) =
axF2n+1(x)− L2n+1(x)

2b(−F2n+1(x) + bn)
(n ≥ 1). (F )

In cases (C) to (F), using equations (7), (9), (10), (13), and (14) gives us

q(x) ∈
{

Fi(x)

Fi+1(x)
,

Li(x)

Li+1(x)
,−Li+1(x)

bLi(x)

}
i∈N

or q(x) ∈
{

−Fi+1(x)

bFi(x)

}
i∈N+

.

Then, if n is even, for (C),

q(x) =
−axF2n+1(x) + L2n+1(x)

2b(F2n+1(x) + bn)

(7)(9)(10)
=

−axLn+1(x)Fn(x) + (a2x2 + 4b)Fn+1(x)Fn(x)

2bFn+1(x)Ln(x)

(14)
=

Fn(x)

Fn+1(x)
.

If n is odd, for (C),

q(x) =
−axF2n+1(x) + L2n+1(x)

2b(F2n+1(x) + bn)

(7)(9)
=

−axLn+1(x)Fn(x) + (a2x2 + 4b)Fn+1(x)Fn(x)

2bLn+1(x)Fn(x)

(14)
=

Ln(x)

Ln+1(x)
.

If n is even, for (D),

q(x) =
−axF2n+1(x)− L2n+1(x)

2b(F2n+1(x) + bn)

(7)(9)(10)
=

−axLn(x)− (a2x2 + 4b)Fn(x)

2bLn(x)

(13)
= −Ln+1(x)

bLn(x)
.

If n is odd, for (D),

q(x) =
−axF2n+1(x)− L2n+1(x)

2b(F2n+1(x) + bn)

(7)(9)(10)
=

−axFn+1(x)Ln(x)− (a2x2 + 4b)Fn+1(x)Fn(x)

2bLn+1(x)Fn(x)

(13)
= −Fn+1(x)

bFn(x)
.

If n is even, for (E),

q(x) =
axF2n+1(x) + L2n+1(x)

2b(−F2n+1(x) + bn)

(7)(9)(10)
=

axFn+1(x)Ln(x) + (a2x2 + 4b)Fn+1(x)Fn(x)

−2bLn+1(x)Fn(x)

(13)
= −Fn+1(x)

bFn(x)
.

If n is odd, for (E),

q(x) =
axF2n+1(x) + L2n+1(x)

2b(−F2n+1(x) + bn)

(7)(9)(10)
=

axFn+1(x)Ln(x) + (a2x2 + 4b)Fn+1(x)Fn(x)

−2bFn+1(x)Ln(x)

(13)
= −Ln+1(x)

bLn(x)
.
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If n is even, for (F),

q(x) =
axF2n+1(x)− L2n+1(x)

2b(−F2n+1(x) + bn)

(7)(9)
=

axLn+1(x)Fn(x)− (a2x2 + 4b)Fn+1(x)Fn(x)

−2bLn+1(x)Fn(x)

(14)
=

Ln(x)

Ln+1(x)
.

If n is odd, for (F),

q(x) =
axF2n+1(x)− L2n+1(x)

2b(−F2n+1(x) + bn)

(7)(9)(10)
=

axLn+1(x)Fn(x)− (a2x2 + 4b)Fn+1(x)Fn(x)

−2bFn+1(x)Ln(x)

(14)
=

Fn(x)

Fn+1(x)
.

3.3. Proof of Theorem 1.4. In the proof of Theorem 1.2, we apply Proposition 2.3 instead
of applying Proposition 2.1 and set x = 1 to complete the proof.

3.4. Proof of Theorem 1.5. In the proof of Theorem 1.3, we apply Proposition 2.3 instead
of applying Proposition 2.1 and set x = 1 to complete the proof.
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