
KNIGHTS ARE 24/13 TIMES FASTER THAN THE KING

CHRISTIAN TÁFULA

Abstract. On an infinite chess board, how much faster can the knight reach a square
compared with the king, on average? More generally, for coprime b > a ∈ Z≥1 such that
a+ b is odd, define the (a, b)-knight and the king as

Na,b = {(a, b), (b, a), (−a, b), (−b, a), (−b,−a), (−a,−b), (a,−b), (b,−a)},
K = {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)} ⊆ Z2,

respectively. One way to formulate this question is by asking for the average ratio, for p ∈ Z2

in a box, between min{h ∈ Z≥1 | p ∈ hN} and min{h ∈ Z≥1 | p ∈ hK}, where hA =
{a1 + · · · + ah | a1, . . . ,ah ∈ A} is the h-fold sumset of A. We show that this ratio equals
2(a+ b)b2/(a2 + 3b2).

1. Introduction

Let A ⊆ Z2 be a finite set. For each p ∈ Z2, we are interested in determining the smallest
h ≥ 1 for which we can write p = a1 + · · ·+ ah, where ai ∈ A for 1 ≤ i ≤ h is not necessarily
distinct. Writing hA = {a1 + · · ·+ ah | a1, . . . ,ah ∈ A} for the h-fold sumset of A, we define
A(0, 0) := 0 and, for (x, y) ̸= (0, 0),

A(x, y) := min{h ≥ 1 | (x, y) ∈ hA}. (1.1)

The study of the size of hA goes back to Khovanskii [3], who showed that |hA| is given
by a polynomial in terms of h for h sufficiently large (cf. Nathanson–Ruzsa [4] for a more
combinatorial proof). In another direction, Granville–Shakan–Walker [1, 2] studied the
structure of hA, showing that, roughly speaking, for every large h, every element that “could
be” in hA is in hA.

In this note, we will study the behavior of A(x, y) for a particular class of sumsets. Thinking
of Z2 as an infinite chess board, a finite set A may be thought of as a piece placed at the origin,
being able to move only to a ∈ A. Then, in two moves, the piece is able to reach every point
in 2A, and so on. We say that A is

• Primitive, if A(x, y) is well-defined for every x, y ∈ Z;
• Symmetric, if (a, b) ∈ A implies (δ1a, δ2b), (δ1b, δ2a) ∈ A for every choice of δ1, δ2 ∈ {−1,+1}.
Notation: For real functions f, g : R>0 → R, we write f(x) = O(g(x)) if there is an M > 0
such that f(x) ≤ Mg(x) for every large x.

1.1. The King and the (a, b)-knight. The two pieces that will concern us in this note are
the following pieces.

a) The king K = {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)} is the smallest
symmetric piece with (1, 0), (1, 1) ∈ K. (see Figure 1)
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Figure 1. The king’s movements (left) and K(x, y) (right).

b) For a, b ∈ Z≥1, we define the (a, b)-knight Na,b by the set of moves

Na,b := { (b, a), (a, b), (−a, b), (−b, a),
(−b,−a), (−a,−b), (a,−b), (b,−a) };

in other words, Na,b is the smallest symmetric piece with (a, b) ∈ Na,b. The usual chess
knight is the (1, 2)-knight, which we call just knight and denote it by N. (see Figure 2)
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Figure 2. The knight’s movements (left) and N(x, y) (right).

Not all (a, b)-knights are primitive. For Na,b to be primitive, it is necessary and sufficient
that gcd(a, b) = 1 and a + b be odd. To see this, color Z2 like a chess board (i.e., paint
(x, y) white if 2 | x + y, and black otherwise). The necessary direction is then easy:
gcd(a, b) | gcd(x, y) for every point (x, y) accessible to Na,b, and if a + b is even, then
Na,b never accesses black points. For the sufficient direction, note that since Na,b changes
colors every move, it suffices to show that it can access all the white points, and by
symmetry, it suffices to show that it accesses (2, 0). Since (b, a) + (b,−a) = (2b, 0) and
(a, b)+ (a,−b) = (2a, 0), the (a, b)-knight can access every point of the form (2(ax+ by), 0)
for x, y ∈ Z; which, since gcd(a, b) = 1, implies that Na,b can access (2, 0).
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By the symmetries of Na,b, to understand the behavior of Na,b(x, y), it suffices to study
x ≥ y ∈ Z≥0, where K(x, y) = x. We will show the following theorem.

Theorem 1.1. Let b > a ≥ 1 be integers with gcd(a, b) = 1 and a+b odd, and let x ≥ y ∈ Z≥0.

(i) If y ≤ a

b
x, then Na,b(x, y) =

x

b
+O(b).

(ii) If y >
a

b
x, then Na,b(x, y) =

x+ y

a+ b
+O(b).

In Subsection 2.2, we describe the distribution of N/K.

1.2. Average Velocity in a Box. Each finite set A induces a metric dA(p,q) := A(q− p)
for p,q ∈ Z2. The king’s metric coincides with the one induced by the max norm

∥(x, y)∥∞ = max{|x|, |y|},

and thus, we equip Z2 with this metric. For h ≥ 1, write

Bh := {p ∈ Z2 | ∥p∥∞ ≤ h}, B∗
h := Bh \ {(0, 0)}

for the ball and punctured ball of radius h, respectively. Note that Bh =
⋃h

ℓ=1 ℓK and ∂Bh =

{p ∈ Z2 | ∥p∥∞ = h} = hK \
⋃ℓ−1

ℓ=0 ℓK. We have |∂Bh| = 8h and |B∗
h| = 4h(h+ 1).

What is the average value of A(x, y) in Bh? For instance, the king K is such that K(x, y) = ℓ
if and only if (x, y) ∈ ∂Bℓ; hence,

1

|B∗
h|
∑
p∈B∗

h

K(p) =
1

4h(h+ 1)

h∑
ℓ=1

ℓ · 8ℓ = 2h

3
+

1

3
.

Thus, we consider the following notion of velocity, which can be understood intuitively as how
fast the king K sees the piece A moving (see Remark 3.2).

Definition 1.2 (Velocity). For a finite primitive set A ⊆ Z2, the average velocity v = vK of
A is given by

v(A) := lim
h→+∞

2h

3

(
1

|Bh|
∑
p∈Bh

A(p)

)−1

.

The number v(A) may be thought of as controlling how fast A spreads through Bh.
Intuitively, from Theorem 1.1, one might conclude that the knight is almost, although not
quite, twice as fast as the king. Points of the type (x, 0), for example, can be accessed by the
knight in around x/2 moves, whereas points of the form (x, x) can be accessed in around 2x/3
moves. We will show that ∑

p∈Bh
K(p)∑

p∈Bh
N(p)

h→+∞−−−−→ 24

13
;

in other words, the “not quite” is quantified by 2/13. More generally, we have the following
theorem.

Theorem 1.3. Let b > a ≥ 1 be integers with gcd(a, b) = 1 and a+ b odd. Then

v(Na,b) =
2(a+ b)b2

a2 + 3b2
.

See Remark 3.3 for a consequence of Theorem 1.3 when one takes a, b to be consecutive
Fibonacci numbers — called Fiboknights.
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2. Knights in Z2

We start with a lemma estimating how long the (a, b)-knight takes to access a point in Ba+b.

Lemma 2.1. Let b > a ≥ 1 be integers with gcd(a, b) = 1 and a + b odd. For every (x, y) ∈
Ba+b, we have Na,b(x, y) = O(b) uniformly for a, b.

Proof. Since gcd(a, b) = 1, for every 1 ≤ k ≤ b, there are x, y ∈ Z with ax + by = k, and we
can select x, y such that |x| ≤ b, |y| ≤ a. Hence, since Na,b is symmetric,

(2k, 0) = x
(
(a, b) + (a,−b)

)
+ y
(
(b, a) + (b,−a)

)
is accessible in 2(|x| + |y|) ≤ 2(a + b) < 4b moves, and so are the points (−2k, 0), (0, 2k),
(0,−2k). This implies that every point in Ba+b with even coordinates is accessible in O(b)
moves. By symmetry, it then suffices to show Na,b(1, 0) = O(b).

Suppose that a is even (so b is odd). Then, the point (1−a,−b) ∈ Ba+b has even coordinates,
and so is accessible in O(b) moves. Therefore, so is (1, 0) = (1− a,−b)+ (a, b). The case when
a is odd (so b is even) is similar. □

2.1. Proof of Theorem 1.1. We prove the parts separately.

• Part (i): Let ℓ := ⌊x/b⌋, so that ℓb ≤ x < (ℓ+ 1)b and 0 ≤ y < (ℓ+ 1)a. Because x ≥ ℓb, we
have Na,b(x, y) ≥ ℓ. On the other hand, for each integer 0 ≤ k ≤ ℓ/2,(

ℓ− k
)
(b, a) + k(b,−a) = (ℓb, (ℓ− 2k)a),

so all the points in S(ℓb,ℓa) := {(ℓb, (ℓ− 2k)a) | 0 ≤ k ≤ ℓ/2} are accessible in ℓ moves or less.

All the points (x, y) with ℓb ≤ x < (ℓ + 1)b and 0 ≤ y < (ℓ + 1)a are at a distance1 at most
a+b from S(ℓb,ℓa). By Lemma 2.1, Na,b accesses all the points of Ba+b in O(b) moves; it follows
that Na,b(x, y) ≤ ℓ+O(b).

• Part (ii): Let t, u ∈ R≥0 be such that (x, y) = t(a, b) + u(b, a), so that Na,b(x, y) ≥ t + u.
Since (

a b
b a

)(
t
u

)
=

(
x
y

)
⇐⇒ 1

b2 − a2

(
−a b
b −a

)(
x
y

)
=

(
t
u

)
,

we have t = (by − ax)/(b2 − a2), u = (bx − ay)/(b2 − a2) (both strictly positive, because
y/x > a/b), and hence,

Na,b(x, y) ≥
(b− a)(x+ y)

b2 − a2
=

x+ y

a+ b
.

On the other hand, ⌊t⌋(a, b) + ⌊u⌋(b, a) = (x, y) + r, where r ∈ Ba+b. By Lemma 2.1, Na,b

accesses all the points of Ba+b in O(b) moves; it follows that Na,b(x, y) ≤ ⌊t⌋ + ⌊u⌋ + O(b) =
x+y
a+b +O(b). □

2.2. Distribution of N/K. It follows from Theorem 1.1 that, for x ≥ y ∈ Z≥0, the ratio
Na,b(x,y)
K(x,y) lies essentially in between 1

b and 2
a+b :

Na,b(x, y)

K(x, y)
=


1

b
+O

(
b

x

)
, if

y

x
≤ a

b
;

1

a+ b

(
1 +

y

x

)
+O

(
b

x

)
, if

y

x
>

a

b
.

1with respect to the max norm.

AUGUST 2024 211



THE FIBONACCI QUARTERLY

Analyzing this ratio in the box Bh, one can study the distribution of Na,b/K via the real
function

Da,b(t) := lim
h→+∞

#{(x, y) ∈ Bh | Na,b(x,y)
K(x,y) ≤ t}

|Bh|
.

The sets Na,b and K are symmetric. Therefore, since 1
a+b(1 + y

x) ≤ t if and only if y
x ≤

(a + b)t − 1, and the proportion of points in Bh ∩ {(x, y) ∈ Z≥0 | x ≥ y} with y
x ≤ u equals

2
h(h+1)

∑h
x=1

∑⌊ux⌋
y=1 1 = u+O(1/h), we have

Da,b(t) =


0, if t < 1

b ;

(a+ b)t− 1, if 1
b ≤ t ≤ 2

a+b ;

1, if t > 2
a+b .

(2.1)

2.3. Proof of Theorem 1.3. By the symmetries of Na,b(x, y), we have

lim
h→+∞

3

2h

(
1

|Bh|
∑
p∈Bh

Na,b(p)

)
= lim

h→+∞

3

2h

(
2

h(h+ 1)

∑
x,y∈Z≥0

1≤ y≤x≤h

Na,b(x, y)

)
, (2.2)

so it suffices to prove the existence and calculate the right side.
By Theorem 1.1, we have∑

x,y∈Z≥0

1≤ y≤x≤h

Na,b(x, y) =

h∑
x=1

⌊
a

b
x

⌋
x

b
+

h∑
x=1

x∑
y=1

y/x>a/b

x+ y

a+ b
+O(bh2)

=
h∑

x=1

(
a

b2
+

1

a+ b

x∑
y=1

y/x>a/b

(
1 +

y

x

)
1

x

)
x2 +O(bh2).

Since
x∑

y=1
y/x>a/b

(
1 +

y

x

)
1

x
=

1

x

(
x∑

y=1
y/x>a/b

1

)
+

1

x2

(
x∑

y=1
y/x>a/b

y

)

=

(
1− a

b

)
+

1

2

(
1− a2

b2

)
+O

(
1

x

)
,

it follows that∑
x,y∈Z≥0

1≤ y≤x≤h

Na,b(x, y) =

(
a

b2
+

1

a+ b

((
1− a

b

)
+

1

2

(
1− a2

b2

)))
h(h+ 1)(2h+ 1)

6

+O(bh2).

Plugging this into the limit v(Na,b), we obtain

v(Na,b) = lim
h→+∞

2h

3

(
2

h(h+ 1)

∑
x,y∈Z≥0

1≤ y≤x≤h

Na,b(x, y)

)−1
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=

(
a

b2
+

1

a+ b

((
1− a

b

)
+

1

2

(
1− a2

b2

)))−1

=
2

3

(
2a2 + 2ab

3b2
+

(
1− a

b

)(
1 +

a

3b

))−1

(a+ b)

=
2

3

(
1 +

1

3

a2

b2

)−1

(a+ b) =
2(a+ b)b2

a2 + 3b2
,

concluding the proof. □

3. Remarks

Remark 3.1. One checks that calculating the average using (2.1) agrees with (the inverse of)
Theorem 1.3:

E
(
Na,b

K

)
:=

∫ +∞

0
(1−Da,b(t)) dt =

1

b
+

∫ 2/(a+b)

1/b
(2− (a+ b)t) dt

=
1

b
+

2(b− a)

(b+ a)b
− (b− a)(a+ 3b)

2(a+ b)b2
=

a2 + 3b2

2(a+ b)b2
.

Remark 3.2 (On generality). The choice of the box Bh in Definition 1.2 is not generic, and
different expanding regimes will give different answers for the ratio. In general, let d ≥ 2
and A ⊆ Z2 be primitive set, and suppose that the origin 0 lies inside the convex hull H(A)
of A. Write A0 = A ∪ {0}. By Khovanskii’s theorem [3, Corollary 1], we have |hA0| =
vol(H(A))hd +O(hd−1) and

|hA0 \ (h− 1)A0| = d vol(H(A))hd−1 +O(hd−2),

where vol(H(A)) denotes the d-volume of the convex hull of A. Thus,

1

|hA0|
∑

p∈hA0

A(p) =
1

|hA0|

h∑
ℓ=1

∑
p∈ℓA0\(ℓ−1)A0

A(p) =
dh

d+ 1
+O(1).

Given a finite primitive set B ⊆ Zd, we define the velocity of B relative to A as

vA(B) := lim
h→+∞

(
1 +

1

d

)
h

(
1

|hA0|
∑

p∈hA0

B(p)

)−1

.

It would be interesting to calculate the velocity of generalized knights with respect to the
generalized king Kd = {p ∈ Zd | ∥p∥∞ = 1}, or velocities with respect to other pieces such as
the taxicab T := {p = (x, y) ∈ Z2 | ∥p∥1 := |x|+ |y| = 1} = {(1, 0), (0, 1), (−1, 0), (0,−1)}.

Remark 3.3 (Fiboknights). Fibonacci numbers F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2 (for n ≥ 2)
satisfy the property that F3n is even, F3n+1, F3n+2 are odd, and gcd(Fn, Fn+1) = 1. Define
the nth Fiboknight as

FNn = NFn+1,Fn+2 ,

so that the usual knight is the first Fiboknight. By the properties of Fibonacci numbers, FNn

is only primitive for n such that 3 ∤ n.
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Let k ≥ 1, and let n → ∞ through n ∈ Z≥1 for which FNn, FNn+k are primitive. Then, by

Theorem 1.3, writing ϕ = 1+
√
5

2 for the golden ratio, we have

lim
n→∞

3∤n, n+k

v(FNn+k)

v(FNn)
= lim

n→∞
3∤n, n+k

2(Fn+k+1 + Fn+k+2)F
2
n+k+2

F 2
n+k+1 + 3F 2

n+k+2

2(Fn+1 + Fn+2)F
2
n+2

F 2
n+1 + 3F 2

n+2

= lim
n→∞

3∤n, n+k

Fn+k+3

Fn+3

F 2
n+k+2

F 2
n+2

(F 2
n+1 + 3F 2

n+2)

(F 2
n+k+1 + 3F 2

n+k+2)

= ϕk ϕ2k 1 + 3ϕ2

ϕ2k + 3ϕ2k+2

= ϕk.

In particular, the ratio of the velocity of consecutive Fiboknights (which can only be of the
form FN3n+1, FN3n+2) converges to ϕ. In general, for fixed m, k ≥ 1,

lim
n→∞

primitive

v(NFn+k,Fn+m+k
)

v(NFn,Fn+m)
=

2(ϕk + ϕm+k)ϕ2(m+k)

ϕ2k + 3ϕ2(m+k)

2(1 + ϕm)ϕ2m

1 + 3ϕ2m

= ϕk.
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