WEIGHTED SCHREIER-TYPE SETS AND THE FIBONACCI SEQUENCE

HÙNG VIỆT CHU AND ZACHARY LOUIS VASSEUR

ABSTRACT. For a finite set $A \subset \mathbb{N}$ and $k \in \mathbb{N}$, let $\omega_k(A) = \sum_{i \in A, i \neq k} 1$. For each $n \in \mathbb{N}$, define

 $a_{k,n} = |\{E \subset \mathbb{N} : E = \emptyset \text{ or } \omega_k(E) < \min E \leq \max E \leq n\}|.$

We prove that

 $a_{k,k+\ell} = 2F_{k+\ell}$ for all $\ell \ge 0$ and $k \ge \ell+2$,

where F_n is the *n*th Fibonacci number.

1. INTRODUCTION

Recall that a finite set $E \subset \mathbb{N}$ is called a *Schreier* set if $\min E \ge |E|$. Denote the collection of all Schreier sets by S, which includes the empty set. Sets E with $\min E > |E|$ ($\min E = |E|$, respectively) are called *nonmaximal Schreier* sets (*maximal Schreier* sets, respectively). The empty set is vacuously maximal and nonmaximal. We let S^{NMAX} consist of nonmaximal Schreier sets and let S^{MAX} consist of maximal Schreier sets. Bird [4] showed that for each positive integer n,

$$|\{E \in \mathcal{S} : \max E = n\}| = F_n,$$

where $(F_n)_{n=0}^{\infty}$ is the Fibonacci sequence defined as: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Beanland, et al. [2] generalized the Schreier condition to $q \min E \ge p|E|$ and established an inclusion-exclusion type recurrence for the sequence

$$m_{p,q,n} := |\{E \subset \mathbb{N} : q \min E \ge p|E| \text{ and } \max E = n\}|.$$

$$(1.1)$$

In particular, [2, Theorem 1] gives

$$m_{p,q,n} = \sum_{k=1}^{q} (-1)^{k+1} \binom{q}{k} m_{p,q,n-k} + m_{p,q,n-(p+q)} \text{ for } n \ge p+q.$$

Recently, Beanland, et al. [3] studied unions of Schreier sets and proved a linear recurrence for their counts using recursively defined characteristic polynomials. Relations between Schreier sets and partitions, compositions, and Turán graphs have also been discovered [1, 7, 8].

Previous work gave a uniform weight to each number when measuring the size of a set. For example, rewriting $q \min E \ge p|E|$ in (1.1) as $\min E \ge (p/q)|E|$, one can think of (p/q)|E| as the size of E, where each element is given the same weight p/q. In this paper, we shall assign the weight 0 to one number and the weight 1 to the other numbers. Specifically, let \mathcal{N} be the collection of finite subsets of \mathbb{N} . For $E \in \mathcal{N}$ and $k \in \mathbb{N}$, define $\omega_k(E) := \sum_{n \in E} n \neq k} 1$ and

$$\mathcal{S}^{(k)} := \{ E \in \mathcal{N} : E = \emptyset \text{ or } \min E > \omega_k(E) \}.$$

For example, $S^{(1)} = S^{NMAX} \cup \{1\}$, $S^{(2)} = S^{NMAX} \cup \{\{2, n\} : 2 < n\}$, and $S^{(3)} = S^{NMAX} \cup \{\{2, 3\}\} \cup \{\{3, n_1, n_2\} : 3 < n_1 < n_2\}$. Generally, we have the following equality, whose proof is in the appendix:

$$\mathcal{S}^{(k)} = \mathcal{S}^{NMAX} \cup \{ E \in \mathcal{S}^{MAX} : k \in E \}.$$
(1.2)

The work was partially supported by the College of Arts & Sciences at Texas A&M University.

For $n, k \in \mathbb{N}$, let

$$\mathcal{A}_{k,n} := \{E \in \mathcal{S}^{(k)} : E = \emptyset \text{ or } \max E \leq n\} \text{ and } a_{k,n} = |\mathcal{A}_{k,n}|$$

We can write

$$\mathcal{A}_{k,n} = \{ E \in \mathcal{N} : E = \emptyset \text{ or } \omega_k(E) < \min E \leqslant \max E \leqslant n \}.$$

We record values of $a_{k,n}$ for small k and n in Table 1.

$k \backslash n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	2	3	4	6	9	14	22	35	56	90	145	234	378	611	988	1598
2	1	2	4	7	11	17	26	40	62	97	153	243	388	622	1000	1611
3	1	2	4	6	10	17	28	45	71	111	173	270	423	666	1054	1676
4	1	2	3	6	10	16	26	43	71	116	187	298	471	741	1164	1830
5	1	2	3	5	10	16	26	42	68	111	182	298	485	783	1254	1995
6	1	2	3	5	8	16	26	42	68	110	178	289	471	769	1254	2037
$\overline{7}$	1	2	3	5	8	13	26	42	68	110	178	288	466	755	1226	1995
	Table 1. Initial numbers $a_{k,n}$ for different k and n.															

Observe that when k > n, the $a_{k,n}$ s are Fibonacci numbers. This is expected because when k > n, $\omega_k(E) = |E|$ for all sets $E \subset \{1, \ldots, n\}$, so the weight ω_k gives the cardinality of sets as in the result by Bird [4]. When k = n, we witness the Fibonacci numbers multiplied by 2 (see Table 2). When n > k, we shall see that the $a_{k,n}$ s are found by iterated partial sums. $k \mid n \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 13 \mid 14 \mid 15 \mid 16$

$k \setminus n$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	2															
2		2														
3			4													
4				6												
5					10											
6						16										
$\overline{7}$							26									
	I	Table 2. The diagonal $a_{n,n}$.														
	$1 \\ 2 \\ 3 \\ 4 \\ 5$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												

The following confirms that the pattern in Table 2 holds for all n.

Theorem 1.1. For $n \in \mathbb{N}$, it holds that

$$a_{n,n} = 2F_n. \tag{1.3}$$

We shall use Theorem 1.1 to establish a general formula for $a_{k,n}$ for each pair $(k,n) \in \mathbb{N}^2$.

Theorem 1.2. It holds that

$$a_{k,k+\ell} = \begin{cases} F_{\ell+2} + 1, & \text{if } k = 1, \ell \ge 0; \\ 2\sum_{i=0}^{k-2} \binom{\ell}{i} F_{k-i} + 2\binom{\ell}{k-1} + \sum_{j=1}^{\ell} \binom{j}{\ell-j+k}, & \text{if } k \ge 2, \ell \ge 0; \\ F_{k+\ell+1}, & \text{if } k \ge 2, -k < \ell < 0. \end{cases}$$

Example 1.3. Let k = 4 and $\ell = 6$. Table 1 gives us $a_{4,10} = 116$, whereas Theorem 1.2 gives

$$2\sum_{i=0}^{2} \binom{6}{i} F_{4-i} + 2\binom{6}{3} + \sum_{j=1}^{6} \binom{j}{10-j}$$

= $2\left(\binom{6}{0}F_4 + \binom{6}{1}F_3 + \binom{6}{2}F_2\right) + 2\binom{6}{3} + \binom{5}{5} + \binom{6}{4} = 116,$

as expected.

VOLUME 62, NUMBER 4

As a corollary of Theorem 1.2, we obtain a more general identity than the one in Theorem 1.1.

Theorem 1.4. For $\ell \ge 0$ and $k \ge \ell + 2$, we have

$$a_{k,k+\ell} = 2F_{k+\ell}.$$

Our paper is structured as follows: Section 2 proves Theorem 1.1, and Section 3 uses Theorem 1.1 and properties of iterated partial sums to prove Theorem 1.2.

2. The Sequence $(a_{n,n})_{n \ge 1}$

We shall present two proofs of Theorem 1.1. The first uses bijective maps, and the second uses the two well-known formulas:

$$\sum_{i=m}^{n} \binom{i}{m} = \binom{n+1}{m+1} \text{ for } n, m \in \mathbb{N}, \text{ and}$$
(2.1)

$$\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n-k}{k} = F_{n+1} \text{ for } n \ge 0.$$
(2.2)

Bijective proof of Theorem 1.1. Since $a_{1,1} = a_{2,2} = 2$, it suffices to show that $a_{n+1,n+1} = a_{n,n} + a_{n-1,n-1}$ for $n \ge 2$. Consider the following map $\Psi_1 : \mathcal{A}_{n-1,n-1} \to \mathcal{A}_{n+1,n+1}$ defined as

$$\Psi_1(F) = (F+1) \cup \{n+1\}.$$

Then Ψ_1 is well-defined because $\Psi_1(\emptyset) = \{n+1\} \in \mathcal{A}_{n+1,n+1}$, and if $F \neq \emptyset$,

 $\min \Psi_1(F) = \min F + 1 \ge |F| + 1 = |\Psi_1(F)| > |\Psi_1(F)| - 1 = \omega_{n+1}(\Psi_1(F)).$ (2.3) Furthermore, $\Psi_1(F)$ is clearly one-to-one.

Define the following map $\Psi_2: \mathcal{A}_{n,n} \to \mathcal{A}_{n+1,n+1} \setminus \Psi_1(\mathcal{A}_{n-1,n-1})$ as

$$\Psi_2(F) = \begin{cases} F, & \text{if } F \in \mathcal{S}^{NMAX}; \\ (F \setminus \{n\}) \cup \{n+1\}, & \text{if } F \in \mathcal{S}^{MAX} \setminus \{\emptyset\}. \end{cases}$$

We show that Ψ_2 is well-defined. Obviously, $\Psi_2(\mathcal{A}_{n,n}) \subset \mathcal{A}_{n+1,n+1}$. Let us show that $\Psi_2(\mathcal{A}_{n,n}) \cap \Psi_1(\mathcal{A}_{n-1,n-1}) = \emptyset$. Pick $F \in \mathcal{A}_{n,n}$.

Case 1: If $F \in \mathcal{S}^{NMAX}$, then $\Psi_2(F) = F$ and $n+1 \notin \Psi_2(F)$, so $\Psi_2(F) \notin \Psi_1(\mathcal{A}_{n-1,n-1})$.

Case 2: If $F \in \mathcal{S}^{MAX} \setminus \{\emptyset\}$, then (1.2) implies that $n \in F$. That F contains $n \ge 2$ and $F \in \mathcal{S}^{MAX}$ imply that $|F| \ge 2$. Therefore,

$$|\Psi_2(F)| = |F| = \min F = \min \Psi_2(F).$$
(2.4)

Suppose, for a contradiction, that there exists $G \in \mathcal{A}_{n-1,n-1}$ such that $\Psi_1(G) = \Psi_2(F)$. By (2.4), $\min \Psi_1(G) = |\Psi_1(G)|$. It follows from (2.3) that $\min G = |G|$. By (1.2), we must have $n-1 \in G$. Hence, $n \in \Psi_1(G)$, contradicting that $n \notin \Psi_2(F)$. We have shown that $\Psi_2(\mathcal{A}_{n,n}) \cap \Psi_1(\mathcal{A}_{n-1,n-1}) = \emptyset$.

Furthermore, Ψ_2 is one-to-one. Indeed, suppose that $\Psi_2(F_1) = \Psi_2(F_2)$. If $n+1 \notin \Psi_2(F_1) = \Psi_2(F_2)$, then by the definition of Ψ_2 , we have

$$F_1 = \Psi_2(F_1) = \Psi_2(F_2) = F_2.$$

If $n + 1 \in \Psi_2(F_1) = \Psi_2(F_2)$, then $F_1, F_2 \in \mathcal{S}^{MAX} \setminus \{\emptyset\}$, so (1.2) implies that $n \in F_1 \cap F_2$. Therefore, $\Psi_2(F_1) = \Psi_2(F_2)$ guarantees that $F_1 = F_2$.

Finally, we show that Ψ_2 is surjective. Take a nonempty $F \in \mathcal{A}_{n+1,n+1} \setminus \Psi_1(\mathcal{A}_{n-1,n-1})$.

NOVEMBER 2024

Case 1: $F \in \mathcal{S}^{NMAX}$. Then $n + 1 \notin F$ because otherwise, $\Psi_1(F \setminus \{n + 1\} - 1) = F$. By (1.2), $F \in \mathcal{S}^{NMAX}$, so $\Psi_2(F) = F$.

Case 2: $F \in \mathcal{S}^{MAX}$. Then $n+1 \in F$. Let $E = (F \setminus \{n+1\}) \cup \{n\}$. It follows that $|F| \ge |E|$. Note that $F \notin \Psi_1(\mathcal{A}_{n-1,n-1})$ implies that $F \ne \{n+1\}$. Hence, $|F| \ge 2$ and so,

$$\min E = \min F > |F| - 1 \ge |E| - 1 = \omega_n(E).$$

Therefore, $E \in \mathcal{A}_{n,n}$. To show that $\Psi_2(E) = F$, it remains to verify that $n \notin F$. Suppose otherwise, i.e., $n \in F$. Let $H = F \setminus \{n+1\} - 1$. We have

$$\min H = \min F - 1 > \omega_{n+1}(F) - 1 = |F| - 2 = |H| - 1 = \omega_{n-1}(H).$$

Hence, $F = \Psi_1(H) \in \Psi(\mathcal{A}_{n-1,n-1})$, a contradiction. This completes our proof.

Alternative proof of Theorem 1.1. For $n \in \mathbb{N}$, we build a set $A \subset \{1, \ldots, n\}$ with $\min A > \omega_n(A)$.

If $n \notin A$, then $\omega_n(A) = |A|$. Set $k = \min A \in \{1, \ldots, n-1\}$. For each such k, the set $A \setminus \{k\} \subset \{k+1, k+2, \ldots, n-1\}$. Since $k > |A|, |A \setminus \{k\}| \leq k-2$. Hence, the number of sets $A \in \mathcal{A}_{n,n}$ with $n \notin A$ is

$$c = \sum_{k=1}^{n-1} \sum_{j=0}^{k-2} \binom{n-k-1}{j}.$$

If $n \in A$, then $\omega_n(A) = |A| - 1$. Set $k = \min A \in \{1, \ldots, n\}$. For each $k \neq n$, the set $A \setminus \{k, n\}$ is a subset of $\{k + 1, k + 2, \ldots, n - 1\}$ and has size

$$|A \setminus \{k,n\}| = |A| - 2 = (|A| - 1) - 1 < k - 1$$

Hence, the number of sets $A \in \mathcal{A}_{n,n}$ with $n \in A$ and $A \neq \{n\}$ is also c.

If we include the empty set and $\{n\}$, we obtain

$$a_{n,n} = 2 + 2 \sum_{k=1}^{n-1} \sum_{j=0}^{k-2} {n-k-1 \choose j}.$$

It suffices to show that

$$\sum_{k=1}^{n-1} \sum_{j=0}^{k-2} \binom{n-k-1}{j} = F_n - 1.$$

Exchanging the order of the double sum and using (2.1) and (2.2), we have

$$\sum_{k=1}^{n-1} \sum_{j=0}^{k-2} \binom{n-k-1}{j} = \sum_{j=0}^{n-3} \sum_{k=j+2}^{n-1} \binom{n-k-1}{j} = \sum_{j=0}^{\lfloor (n-3)/2 \rfloor} \sum_{k=j}^{n-3-j} \binom{k}{j}$$
$$= \sum_{j=0}^{\lfloor (n-3)/2 \rfloor} \binom{n-2-j}{j+1} = \sum_{j=1}^{\lfloor (n-1)/2 \rfloor} \binom{n-1-j}{j}$$
$$= F_n - 1,$$

as desired.

VOLUME 62, NUMBER 4

WEIGHTED SCHREIER-TYPE SETS AND THE FIBONACCI SEQUENCE

3. The TABLE $(a_{k,n})_{k,n\geq 1}$

The goal of this section is to prove Theorem 1.2, giving formulas to compute $a_{k,n}$ for any $(k,n) \in \mathbb{N}^2$. We shall describe the proof idea for Theorem 1.2 after proving the next proposition and introducing the partial sum operators.

Proposition 3.1. For $n > \max\{k, 2\}$, we have

$$a_{k,n} = a_{k,n-1} + a_{k-1,n-2}. ag{3.1}$$

Proof. It is obvious from the definition of $\mathcal{A}_{k,n}$ that $\mathcal{A}_{k,n-1} \subset \mathcal{A}_{k,n}$. It suffices to show that there is a bijective map between $\mathcal{A}_{k,n} \setminus \mathcal{A}_{k,n-1}$ and $\mathcal{A}_{k-1,n-2}$. To do so, we define Ψ : $\mathcal{A}_{k-1,n-2} \to \mathcal{A}_{k,n} \setminus \mathcal{A}_{k,n-1}$ as

$$\Psi(F) := (F+1) \cup \{n\}$$

We check that Ψ is well-defined. Let $F \in \mathcal{A}_{k-1,n-2}$ and $E = \Psi(F)$. If $F = \emptyset$, then $E = \{n\} \in \mathcal{A}_{k,n} \setminus \mathcal{A}_{k,n-1}$. If $F \neq \emptyset$, we have max E = n and

 $\min E = \min F + 1 > \omega_{k-1}(F) + 1 = \omega_k(F+1) + 1 = \omega_k((F+1) \cup \{n\}) = \omega_k(E).$

Thus, Ψ is well-defined.

Clearly, Ψ is injective. Let us verify that Ψ is surjective. Pick $E \in \mathcal{A}_{k,n} \setminus \mathcal{A}_{k,n-1}$. Then $n \in E$. Let $F = E \setminus \{n\} - 1$. We claim that $F \in \mathcal{A}_{k-1,n-2}$. Indeed, if $E = \{n\}$, then $F = \emptyset$. If $\{n\} \subsetneq E$, then

$$\max F = \max E \setminus \{n\} - 1 \leq n - 1 - 1 = n - 2.$$

Furthermore,

$$\min F = \min E - 1 > \omega_k(E) - 1 = \omega_k((F+1) \cup \{n\}) - 1 = \omega_k(F+1) = \omega_{k-1}(F).$$

This completes the proof.

This completes the proof.

Next, we collect useful properties of iterated partial sums of a sequence. Given a sequence $(a_n)_{n=0}^{\infty}$ and a number b, the partial sum operator P_b produces the sequence $(a'_n)_{n=0}^{\infty}$ defined as follows:

$$a'_0 = b, \quad a'_1 = b + a_0, \quad a'_2 = b + a_0 + a_1, \quad \dots$$

In general,

$$P_b((a_n)_{n=0}^{\infty}) := \left(a'_n := b + \sum_{i=0}^{n-1} a_i\right)_{n \ge 0}.$$

Fix a sequence $\mathbf{s} = (b_n)_{n=0}^{\infty}$ and let $(t_{k,n}^{\mathbf{s}})_{n=0}^{\infty}$, for $k \ge 0$, denote the sequence

 $P_{b_{h-1}}(\cdots P_{b_1}(P_{b_0}((a_n)_{n=0}^{\infty}))).$

Here, $(t_{0,n}^{\mathbf{s}})_{n=0}^{\infty} = (a_n)_{n=0}^{\infty}$. In the special case that **s** consists of only 0, the sequence $(t_{k,n}^{\mathbf{s}})_{n \ge 0}$ is what is known as the k-partial sum of $(a_n)_{n\geq 0}$, which shall be denoted by $P^{(k)}((a_n)_{n\geq 0})$, and its mth term is denoted by $P^{(k)}((a_n)_{n\geq 0})(m)$. As a result,

$$P^{(k)}((a_n)_{n \ge 0})(m) = t_{k,m}^{\mathbf{s}} \text{ for all } m \ge 0.$$

We are ready to describe the proof idea for Theorem 1.2. The most technical case is when $k \ge 2$ and $\ell \ge 0$. When $\ell = 0$, Theorem 1.1 gives

$$a_{k,k+\ell} = a_{k,k} = 2F_k.$$

Let us focus on when $\ell > 0$. Proposition 3.1 states that

$$a_{k,k+\ell} = a_{k,k+\ell-1} + a_{k-1,k+\ell-2}$$

NOVEMBER 2024

Hence, $(a_{k,k+\ell})_{\ell \ge 0}$ is $P_{a_{k,k}}((a_{k-1,k-1+n})_{n \ge 0})$. For example, it is readily checked that $(a_{3,n})_{n \ge 3}$ is $P_{a_{3,3}}((a_{2,2+n})_{n \ge 0})$. Applying Proposition 3.1 repeatedly, we obtain that

$$(a_{k,k+\ell})_{\ell \ge 0} = P_{a_{k,k}} P_{a_{k-1,k-1}} \cdots P_{a_{2,2}}((a_{1,1+n})_{n \ge 0})$$

= $P_{a_{k,k}} P_{a_{k-1,k-1}} \cdots P_{a_{2,2}}((F_{n+2}+1)_{n \ge 0}).$

Therefore, to compute $(a_{k,k+\ell})_{\ell \geq 0}$, we shall equivalently compute

$$P_{a_{k,k}}P_{a_{k-1,k-1}}\cdots P_{a_{2,2}}((F_{n+2}+1)_{n\geq 0}),$$

which is a slight modification of the partial sums of the Fibonacci numbers

$$\underbrace{P_0 P_0 \cdots P_0}_{k-1} ((F_n)_{n \ge 0}) =: P^{(k-1)}((F_n)_{n \ge 0}).$$

But $P^{(k-1)}((F_n)_{n\geq 0})$ is well-known from [6, Theorem 1.3], which states that

$$P^{(k)}((F_n)_{n \ge 0})(\ell) = \sum_{j=0}^{\ell-1} {j \choose \ell - 1 - j + k} \text{ for } k, \ell \ge 0.$$
(3.2)

The above observations suggest that we should transform $P_{a_{k,k}}P_{a_{k-1,k-1}}\cdots P_{a_{2,2}}((F_{n+2}+1)_{n\geq 0})$ into $P^{(k-1)}((F_n)_{n\geq 0})$. The next few results serve this goal: Lemma 3.2 connects $P_{a_{k,k}}P_{a_{k-1,k-1}}\cdots P_{a_{2,2}}$ and $\underbrace{P_0P_0\cdots P_0}_{k-1} = P^{(k-1)}$, whereas Lemma 3.3 connects $P^{(k-1)}((F_{n+2}+1))_{k-1}$

 $(1)_{n \ge 0}$) and $P^{(k-1)}((F_{n+2})_{n \ge 0})$.

Back to the notation introduced above, let \mathbf{s}_1 consist of only 0 and $\mathbf{s}_2 = (b_n)_{n \ge 0}$. Our following lemma compares, for each $k \in \mathbb{N}$, the two sequences $(t_{k,n}^{\mathbf{s}_1})_{n \ge 0}$ and $(t_{k,n}^{\mathbf{s}_2})_{n \ge 0}$. The proof is standard, using double induction.

Lemma 3.2. Let $k \ge 0$ and let \mathbf{s}_1 consist of only 0 and $\mathbf{s}_2 = (b_n)_{n \ge 0}$. Then

$$t_{k,n}^{\mathbf{s}_2} - t_{k,n}^{\mathbf{s}_1} = \sum_{i=0}^{k-1} \binom{n}{i} b_{k-1-i} \text{ for all } n \ge 0.$$
(3.3)

Proof. We prove by induction on k. For the base case, (3.3) clearly holds for $k \in \{0, 1\}$. Suppose that (3.3) holds for all $k \leq j$ for some $j \geq 1$. We shall show that (3.3) holds for k = j + 1. To do so, we proceed by induction on $n \geq 0$, given that k = j + 1 and that (3.3) holds for all $k \leq j$. For the base case, by definitions, we have

$$t_{j+1,0}^{\mathbf{s}_2} - t_{j+1,0}^{\mathbf{s}_1} = b_j - 0 = b_j = \sum_{i=0}^j \binom{0}{i} b_{j-i}$$

hence, (3.3) is true for k = j + 1 and n = 0. Assume that (3.3) is true for k = j + 1 and all $n \leq \ell$ for some $\ell \geq 0$. We show that (3.3) is true for k = j + 1 and $n = \ell + 1$. Indeed, by the

two inductive hypotheses, we have

$$\begin{aligned} t_{j+1,\ell+1}^{\mathbf{s}_{2}} - t_{j+1,\ell+1}^{\mathbf{s}_{1}} &= \left(t_{j+1,\ell}^{\mathbf{s}_{2}} + t_{j,\ell}^{\mathbf{s}_{2}} \right) - \left(t_{j+1,\ell}^{\mathbf{s}_{1}} + t_{j,\ell}^{\mathbf{s}_{1}} \right) \\ &= \left(t_{j+1,\ell}^{\mathbf{s}_{2}} - t_{j+1,\ell}^{\mathbf{s}_{1}} \right) + \left(t_{j,\ell}^{\mathbf{s}_{2}} - t_{j,\ell}^{\mathbf{s}_{1}} \right) \\ &= \sum_{i=0}^{j} \binom{\ell}{i} b_{j-i} + \sum_{i=0}^{j-1} \binom{\ell}{i} b_{j-1-i} \\ &= \sum_{i=0}^{j} \binom{\ell}{i} b_{j-i} + \sum_{i=1}^{j} \binom{\ell}{i-1} b_{j-i} \\ &= b_{j} + \sum_{i=1}^{j} \left(\binom{\ell}{i-1} + \binom{\ell}{i} \right) b_{j-i} = \sum_{i=0}^{j} \binom{\ell+1}{i} b_{j-i}. \end{aligned}$$
pletes our proof.

This completes our proof.

Lemma 3.3. Fix $k \ge 0$ and a sequence $(a_n)_{n \ge 0}$. Then

$$P^{(k)}((a_n+1)_{n\geq 0})(m) - P^{(k)}((a_n)_{n\geq 0})(m) = \binom{m}{k} \text{ for all } m \geq 0.$$
(3.4)

Proof. We prove by induction on k. Base case: (3.4) is clearly true when k = 0. Inductive hypothesis: assume that (3.4) holds for $k \leq \ell$ for some $\ell \geq 0$. We show that (3.4) holds for $k = \ell + 1$, i.e.,

$$P^{(\ell+1)}((a_n+1)_{n\geq 0})(m) - P^{(\ell+1)}((a_n)_{n\geq 0})(m) = \binom{m}{\ell+1} \text{ for all } m \geq 0.$$
(3.5)

To do so, we induct on m. For m = 0, both sides of (3.5) are equal to 0. Inductive hypothesis: suppose that (3.5) is true for all $m \leq s$ for some $s \geq 0$. We have

$$P^{(\ell+1)}((a_n+1)_{n\geq 0})(s+1) - P^{(\ell+1)}((a_n)_{n\geq 0})(s+1)$$

$$= (P^{(\ell+1)}((a_n+1)_{n\geq 0})(s) + P^{(\ell)}((a_n+1)_{n\geq 0})(s))$$

$$- (P^{(\ell+1)}((a_n)_{n\geq 0})(s) + P^{(\ell)}((a_n)_{n\geq 0})(s))$$

$$= (P^{(\ell+1)}((a_n+1)_{n\geq 0})(s) - P^{(\ell+1)}((a_n)_{n\geq 0})(s))$$

$$+ (P^{(\ell)}((a_n+1)_{n\geq 0})(s) - P^{(\ell)}((a_n)_{n\geq 0})(s))$$

$$= \binom{s}{\ell+1} + \binom{s}{\ell} = \binom{s+1}{\ell+1}.$$

This completes our proof.

The proof of the following lemma is similar to those of Lemmas 3.2 and 3.3, so we move the proof to the appendix.

Lemma 3.4. For all $k, \ell \ge 0$, we have

$$P^{(k)}((F_{n+2})_{n\geq 0})(\ell) = P^{(k)}((F_n)_{n\geq 0})(\ell) + P^{(k)}((F_n)_{n\geq 0})(\ell+1).$$
(3.6)

The following easy observation shall be used in due course.

Proposition 3.5. For $k > n \in \mathbb{N}$, we have

$$a_{k,n} = F_{n+1}$$
 for $k > n$.

NOVEMBER 2024

Proof. For k > n, we have

$$a_{k,n} = |\mathcal{A}_{k,n}| = |\{E \in \mathcal{S}^{(k)} : E = \emptyset \text{ or } \max E \leq n\}|$$

= $|\{E \subset \{1, 2, \dots, n\} : E = \emptyset \text{ or } \min E > \omega_k(E)\}|$
= $|\{E \subset \{1, 2, \dots, n\} : E = \emptyset \text{ or } \min E > |E|\}|$
= F_{n+1} ,

where the last equality follows from [5, Theorem 1].

Proof of Theorem 1.2. We consider the three cases in the theorem.

When k = 1 and $\ell \ge 0$,

$$\mathcal{A}_{1,1+\ell} = \{\emptyset\} \cup \{E \in \mathcal{N} : E \neq \emptyset, \max E \leqslant 1+\ell, \text{ and } \min E > \omega_1(E)\}.$$

Hence, for a nonempty set $E \in \mathcal{A}_{1,1+\ell}$, $1 \in E$ implies that

$$1 = \min E > \omega_1(E) = |E| - 1,$$

which gives |E| < 2. Therefore, $1 \in E$ implies that $E = \{1\}$. We can write $\mathcal{A}_{1,1+\ell}$ as

$$\{\emptyset\} \cup \{\{1\}\} \cup \{E \subset \{1, 2, \dots, 1+\ell\} : E \neq \emptyset \text{ and } \min E > |E|\} \\= \{\{1\}\} \cup \{E \subset \{1, 2, \dots, 1+\ell\} : E = \emptyset \text{ or } \min E > |E|\}.$$

We use [5, Theorem 1] to obtain $|\mathcal{A}_{1,1+\ell}| = F_{\ell+2} + 1$.

When $k \ge 2$ and $-k < \ell < 0$, that $a_{k,k+\ell} = F_{k+\ell+1}$ follows from Proposition 3.5. When $k \ge 2$ and $\ell \ge 0$, we apply Lemma 3.2 with

$$\begin{cases} \mathbf{s}_2 &= (a_{\ell+2,\ell+2})_{\ell \ge 0}, \\ (t_{k-1,\ell}^{\mathbf{s}_2})_{\ell \ge 0} &= (a_{k,k+\ell})_{\ell \ge 0} \text{ (due to Proposition 3.1)}, \\ (t_{k-1,\ell}^{\mathbf{s}_1})_{\ell \ge 0} &= (P^{(k-1)}((a_{1,j+1})_{j \ge 0})(\ell))_{\ell \ge 0}, \end{cases}$$

to obtain

$$a_{k,k+\ell} - P^{(k-1)}((a_{1,j+1})_{j\geq 0})(\ell) = \sum_{i=0}^{k-2} \binom{\ell}{i} a_{k-i,k-i}.$$
(3.7)

By Theorem 1.1 and Proposition 3.5, we can write (3.7) as

$$a_{k,k+\ell} - P^{(k-1)}((F_{j+2}+1)_{j\geq 0})(\ell) = 2\sum_{i=0}^{k-2} {\ell \choose i} F_{k-i}.$$

Using Lemma 3.3, we arrive at

$$a_{k,k+\ell} = 2\sum_{i=0}^{k-2} \binom{\ell}{i} F_{k-i} + \binom{\ell}{k-1} + P^{(k-1)}((F_{j+2})_{j\geq 0})(\ell),$$

VOLUME 62, NUMBER 4

which, due to Lemma 3.4 and then (3.2), gives

$$\begin{aligned} a_{k,k+\ell} &= 2\sum_{i=0}^{k-2} \binom{\ell}{i} F_{k-i} + \binom{\ell}{k-1} + P^{(k-1)}((F_j)_{j \ge 0})(\ell) + P^{(k-1)}((F_j)_{j \ge 0})(\ell+1) \\ &= 2\sum_{i=0}^{k-2} \binom{\ell}{i} F_{k-i} + \binom{\ell}{k-1} + \sum_{j=0}^{\ell-1} \binom{j}{\ell-2-j+k} + \sum_{j=0}^{\ell} \binom{j}{\ell-1-j+k} \\ &= 2\sum_{i=0}^{k-2} \binom{\ell}{i} F_{k-i} + 2\binom{\ell}{k-1} + \sum_{j=0}^{\ell-1} \binom{j+1}{\ell-1-j+k} \\ &= 2\sum_{i=0}^{k-2} \binom{\ell}{i} F_{k-i} + 2\binom{\ell}{k-1} + \sum_{j=1}^{\ell} \binom{j}{\ell-j+k}, \end{aligned}$$

as desired.

Proof of Theorem 1.4. The proof follows immediately from Theorem 1.2 and the identity

$$\sum_{i=0}^{\ell} {\ell \choose i} F_{k-i} = F_{k+\ell} \text{ for all } \ell \ge 0 \text{ and } k \ge \ell+2,$$
(3.8)

which we prove in the appendix.

4. Appendix

Proof of (1.2). For $k \leq 1$, let

$$\mathcal{A} := \{ E \in \mathcal{N} : E = \emptyset \text{ or } \min E > \omega_k(E) \} \text{ and} \\ \mathcal{B} := \mathcal{S}^{NMAX} \cup \{ E \in \mathcal{S}^{MAX} : k \in E \}.$$

We shall show that $\mathcal{A} = \mathcal{B}$. Let us rewrite $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2$, where

$$\mathcal{A}_1 = \{ E \in \mathcal{N} : k \in E \text{ and } \min E > |E| - 1 \} \text{ and}$$

$$\mathcal{A}_2 = \{ E \in \mathcal{N} : (k \notin E \text{ and } \min E > |E|) \text{ or } E = \emptyset \}.$$

First, we show $\mathcal{A} \subset \mathcal{B}$. Pick F in \mathcal{A}_1 . If $F \in \mathcal{S}^{MAX}$, then $F \in \{E \in \mathcal{S}^{MAX} : k \in E\} \subset \mathcal{B}$. If $F \in \mathcal{S}^{NMAX}$, then $F \in \mathcal{B}$ by definition. Hence, $\mathcal{A}_1 \subset \mathcal{B}$. Furthermore, \mathcal{A}_2 is a subset of \mathcal{S}^{NMAX} . Therefore, $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \subset \mathcal{B}$.

Next, we prove that $\mathcal{B} \subset \mathcal{A}$ by writing

$$S^{NMAX} = \{E \in \mathcal{N} : \min E > |E| \text{ or } E = \emptyset\}$$

= $\{E \in \mathcal{N} : (k \notin E \text{ and } \min E > |E|) \text{ or } E = \emptyset\}$
 $\cup \{E \in \mathcal{N} : k \in E \text{ and } \min E > |E|\},$

which is clearly in $\mathcal{A}_1 \cup \mathcal{A}_2$. Moreover,

$$\{E \in \mathcal{S}^{MAX} : k \in E\} = \{E \in \mathcal{N} : k \in E \text{ and } \min E = |E|\} \subset \mathcal{A}_1$$

Therefore, $\mathcal{B} \subset \mathcal{A}$, which completes our proof.

Proof of Lemma 3.4. First, we induct on k: for $\ell \ge 0$, we have

$$\begin{cases} P^{(0)}((F_{n+2})_{n \ge 0})(\ell) &= F_{\ell+2} \\ P^{(0)}((F_n)_{n \ge 0})(\ell) + P^{(0)}((F_n)_{n \ge 0})(\ell+1) &= F_{\ell} + F_{\ell+1} = F_{\ell+2} \end{cases}$$

NOVEMBER 2024

313

Hence, (3.6) holds for k = 0. Inductive hypothesis: suppose that (3.6) is true for $k \ge 0$. We show that it is true for k + 1, i.e.,

$$P^{(k+1)}((F_{n+2})_{n\geq 0})(\ell) = P^{(k+1)}((F_n)_{n\geq 0})(\ell) + P^{(k+1)}((F_n)_{n\geq 0})(\ell+1) \text{ for all } \ell \geq 0.$$
(4.1)

We induct on ℓ . Clearly, (4.1) is true for $\ell = 0$, because then both sides are 0. Inductive hypothesis: suppose that (4.1) holds for some $\ell \ge 0$. By the inductive hypotheses, we write (1 . 1) (1 . 1) $\langle 1 \rangle$

$$P^{(k+1)}((F_{n+2})_{n\geq 0})(\ell+1) = P^{(k+1)}((F_{n+2})_{n\geq 0})(\ell) + P^{(k)}((F_{n+2})_{n\geq 0})(\ell)$$

$$= (P^{(k+1)}((F_{n})_{n\geq 0})(\ell) + P^{(k+1)}((F_{n})_{n\geq 0})(\ell+1)) + (P^{(k)}((F_{n})_{n\geq 0})(\ell) + P^{(k)}((F_{n})_{n\geq 0})(\ell+1))$$

$$= (P^{(k+1)}((F_{n})_{n\geq 0})(\ell) + P^{(k)}((F_{n})_{n\geq 0})(\ell) + (P^{(k+1)}((F_{n})_{n\geq 0})(\ell+1) + P^{(k)}((F_{n})_{n\geq 0})(\ell+1))$$

$$= P^{(k+1)}((F_{n})_{n\geq 0})(\ell+1) + P^{(k+1)}((F_{n})_{n\geq 0})(\ell+2),$$

finishes our proof of (4.1).

which finishes our proof of (4.1).

Proof of (3.8). We prove by induction on ℓ . Base case: (3.8) clearly holds for $\ell = 0$. Inductive hypothesis: suppose that (3.8) holds for some $\ell \ge 0$. We show that it holds for $\ell + 1$. We have

$$\begin{split} \sum_{i=0}^{\ell+1} \binom{\ell+1}{i} F_{k-i} &= F_k + F_{k-\ell-1} + \sum_{i=1}^{\ell} \binom{\ell+1}{i} F_{k-i} \\ &= F_k + F_{k-\ell-1} + \sum_{i=1}^{\ell} \binom{\ell}{i} F_{k-i} + \sum_{i=1}^{\ell} \binom{\ell}{i-1} F_{k-i} \\ &= \sum_{i=0}^{\ell} \binom{\ell}{i} F_{k-i} + \sum_{i=0}^{\ell} \binom{\ell}{i} F_{k-1-i} \\ &= \binom{\ell}{\sum_{i=0}^{\ell} \binom{\ell}{i} F_{k+1-i} - \sum_{i=0}^{\ell} \binom{\ell}{i} F_{k-1-i} \end{pmatrix} + \sum_{i=0}^{\ell} \binom{\ell}{i} F_{k-1-i} \\ &= \sum_{i=0}^{\ell} \binom{\ell}{i} F_{k+1-i} = F_{k+1+\ell}, \end{split}$$

where the last equality is due to the inductive hypothesis. This completes our proof.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous referee for helpful suggestions that helped improve the paper's exposition.

References

- [1] K. Beanland and H. V. Chu, On Schreier-type sets, partitions, and compositions, J. Integer Seq., 27 (2024), 1 - 13.
- [2] K. Beanland, H. V. Chu, and C. E. Finch-Smith, Generalized Schreier sets, linear recurrence relation, and Turán graphs, The Fibonacci Quarterly, 60.4 (2022), 352–356.
- [3] K. Beanland, D. Gorovoy, J. Hodor, and D. Homza, Counting unions of Schreier sets, to appear in Bull. Aust. Math. Soc. Available at https://arxiv.org/abs/2211.01049.
- [4] A. Bird, Schreier sets and the Fibonacci sequence, https://outofthenormmaths.wordpress.com/2012/05/ 13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/.

WEIGHTED SCHREIER-TYPE SETS AND THE FIBONACCI SEQUENCE

- [5] H. V. Chu, The Fibonacci sequence and Schreier-Zeckendorf sets, J. Integer Seq., 22 (2019), 1–12.
- [6] H. V. Chu, Partial sums of the Fibonacci sequence, The Fibonacci Quarterly, 59.2 (2021), 132-135.
- [7] H. V. Chu, A note on the Fibonacci sequence and Schreier-type sets, The Fibonacci Quarterly, 61.3 (2023), 194–196.
- [8] H. V. Chu, N. Irmak, S. J. Miller, L. Szalay, and S. X. Zhang, Schreier multisets and the s-step Fibonacci sequences, Integers, 24A (2024), 11 pp.

MSC2020: 11Y55, 11B37

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843, USA *Email address:* hungchu1@tamu.edu

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843, USA *Email address:* zachary.l.v@tamu.edu