
A NEW CLASSIFICATION OF THE KAPREKAR NUMBERS
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Abstract. Five sets of Kaprekar numbers are exhibited. A nonzero n-digit number is shown
to be a Kaprekar number if and only if it is a member of one of the given sets. Our result
gives a new classification of the Kaprekar numbers.

1. Introduction

Let Dn be the set of n-digit nonnegative integers and set D =
⋃∞

n=0Dn (D0 = {0}). There
is more than one notion of a ‘Kaprekar number’. Let us make clear what we mean.

Definition 1.1. Given a member α = a1 · · · an of D, reordering a1, . . . , an in descending order,
if necessary, we obtain αM , and reversing the order of the digits of the latter, we obtain αL.
Let f(α) = αM − αL. The mapping f from D to itself is called the Kaprekar transformation.
A nonzero member α of D such that f(α) = α is called a Kaprekar number.

For example, f(6174) = 7641− 1467 = 6174. D. R. Kaprekar [2] noticed that any member
α of D4 is sent to, by successive applications of the Kaprekar transformation, either 0 or 6174.
A similar phenomenon is observed for D3, where the role played by 6174 in D4 is replaced by
495.

Definition 1.2. A Kaprekar number κ in Dn is called a Kaprekar constant if any member of
Dn is sent to, by successive applications of Kaprekar transformation, either 0 or κ.

Prichett, et al. [3] showed that 6174 and 495 are the only Kaprekar constants. Meanwhile,
Hirata [1] found, by computation, 257 Kaprekar numbers less than or equal to 1031.

In this paper, we present five sets of mutually disjoint Kaprekar numbers, T1, T2, T3, T4,
and T5, and show that T =

⋃5
n=1 Tn is the set of all the Kaprekar numbers. Meanwhile,

the paper by Prichett, et al. [3] contains a proof showing that certain classes, A, B, C, and
D, of sets of numbers give rise to a complete classification of the Kaprekar numbers. (The
definitions of the latter classes shall be given later.) Our result, however, is explicit and gives
a simple method to obtain all the Kaprekar numbers in a given Dn. Our result also provides
a proof for the nonexistence of Kaprekar constants except 6174 and 495. We shall show that
our classification of the Kaprekar numbers and the classification due to Prichett, et al. [3] are
equivalent.

2. Five Sets of Kaprekar Numbers

Every member of D1 is sent to 0 by the Kaprekar transformation. A member α of D2 is
equal to αM or αL, hence f(α) = α implies that α = 0. Therefore, the set D2 contains no
Kaprekar number. Therefore, for our purpose of finding Kaprekar numbers in Dn, we may
assume that n ≥ 3.
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Definition 2.1.

(1) T1 = {f(α1 · · ·α1︸ ︷︷ ︸
x1

); x1 ∈ N} (α1 = 495)

(2) T2 = {f(6174α2 · · ·α2︸ ︷︷ ︸
y2

); y2 ∈ N ∪ {0}} (α2 = 36)

(3) T3 = {f(α3 · · ·α3︸ ︷︷ ︸
x3

α2 · · ·α2︸ ︷︷ ︸
y3

); x3 ∈ N, y3 ∈ N ∪ {0}} (α3 = 123456789)

(4) T4 = {f(α3 · · ·α3︸ ︷︷ ︸
x4,1

α2 · · ·α2︸ ︷︷ ︸
x4,2

α1 · · ·α1︸ ︷︷ ︸
2x4,2

α4 · · ·α4︸ ︷︷ ︸
3x4,2

); x4,1, x4,2 ∈ N} (α4 = 27)

(5) T5 = {f(α5 · · ·α5︸ ︷︷ ︸
x5,1

α6 · · ·α6︸ ︷︷ ︸
x5,2

α3 · · ·α3︸ ︷︷ ︸
y5,1

α2 · · ·α2︸ ︷︷ ︸
y5,2

); x5,1, x5,2 ∈ N, y5,1, y5,2 ∈ N∪{0}} (α5 =

124578, α6 = 09)

To see that the elements of T1 are Kaprekar numbers, we set α = α1 · · ·α1︸ ︷︷ ︸
x1

. We have

αM = 9 · · · 9︸ ︷︷ ︸
x1

5 · · · 5︸ ︷︷ ︸
x1

4 · · · 4︸ ︷︷ ︸
x1

and f(α) = 5 · · · 5︸ ︷︷ ︸
x1−1

4 9 · · · 9︸ ︷︷ ︸
x1

4 · · · 4︸ ︷︷ ︸
x1−1

5. We see that the numbers of

the digits appearing in f(α) and αM are the same. This implies that f(α) = α. The same
argument applies to show that the elements of T2, T3, T4 and T5 are Kaprekar numbers.

The least digit appearing in α ∈ T1 is 4. For members of T2, T3, and T4, the least digit is
1. The members of T5 have least digit 0. The maximum digit in a member of T2 is 7, whereas
T1, T3, T4, and T5 all have a maximum digit of 9. For the members of T3, the number of 9
digits does not exceed that of 6, whereas the number of 9 digits in T4 exceeds that of the digit
6. Hence, the sets T1, T2, T3, T4, and T5 are mutually disjoint.

3. The Classification by Prichett, et al.

Suppose we have α ∈ Dn (n ≥ 3). Let us write αM = bn · · · b1 and αL = cn · · · c1 and
suppose that αM > αL. We then have f(α) = αM − αL = a1 · · · akb 9 · · · 9︸ ︷︷ ︸

l

ca′k · · · a′1 (k ∈ N,

l ∈ N∪ {0}); a1 + a′1 = 10, ai + a′i = 9 (2 ≤ i ≤ k), b+ c = 8; a1 ≥ · · · ≥ ak ≥ b, and if k ≥ 2,
c ≥ a′k ≥ · · · ≥ a′2.

Following Prichett, et al. [3], we set n = 2r + δ (δ = 0, 1). Let us write dn = bn − cn,
. . ., dr = br − cr and d(α) = dn · · · dr. For instance, if α = 6174, we have n = 4, r = 2,
and d(α) = 62; whereas, for β = 495 we have n = 3, r = 1, and d(β) = 5. As Prichett, et
al. point out, f(α) is readily obtained from d(α). They also proved that an element α ∈ D
is a Kaprekar number if and only if the corresponding d(α) belongs to one of four classes
described below.

For a given member of Dn (n = 2r+δ) and a digit a (a = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), we denote
by la the number of a’s appearing in the given member of Dn. We consider the following
classes, A, B, C, and D.
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A: l8 = l6 = l4 = l2 = 2l0+ δ, l7 = l5 = l1, l9 = 0 if and only if l1 = 0, l0, l1, or δ is nonzero.

B: l9 = l1 = 0, l6 = l8, l7 = 2l3, l4 = l2 = l3 + l8, l5 = l3 ̸= 0, and l0 = l3 + (l8 − δ)/2.

C: l6 = l2 = 1, li = 0 (i ̸= 2, 3, 6), and δ = 0.

D: l5 = 2l0 + δ, li = 0 (i ̸= 0, 5), l0, or δ is nonzero.

The original paper by Prichett, et al. [3] contained errors with regard to B; the above is
the version corrected by the referee. We added ‘̸=’ following l5 = l3 in the definition for B to
avoid A and B sharing elements. If an element α in B satisfies, instead of l5 = l3 ̸= 0, the
requirement l5 = l3 = 0, we must have l7 = 0, l9 = l1 = 0, l4 = l2 = l8 = l6 = 2l0 + δ, and
furthermore, l7 = l5 = l1 = 0. In addition, if l0 = δ = 0, we end up having li = 0 for all
i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which is impossible. Thus, if the condition l5 = l3 ≥ 0 is left as in
the original, the specific case of l5 = l3 = 0 for α in B implies that at least one of l0 and δ
must be nonzero, thus, α ∈ A.

Theorem 3.1. Let α be a member of Dn (n ≥ 3). The digit α is a Kaprekar number if and
only if it belongs to one of Ti (1 ≤ i ≤ 5).

Proof. Because we have already shown that every member of Ti (1 ≤ i ≤ 5) is a Kaprekar
number, it is enough to show that every member of the A, B, C, and D belongs to one of the
latter Ti (1 ≤ i ≤ 5).

Let us denote α = a1 · · · an of Dn with n = 2r + δ, (δ = 0, 1), and α̃ = a1 · · · ar.

We begin by computing, for each member α of the above Ti, its d(α).

(1) α = f(α1 · · ·α1︸ ︷︷ ︸
x

) ∈ T1, α1 = 495, and x ∈ N. We have n = 3x.

(1-1) x = 2x′. We then have r = 3x′ and δ = 0.

α̃M = 9 · · · 9︸ ︷︷ ︸
x

5 · · · 5︸ ︷︷ ︸
x′

, α̃L = 4 · · · 4︸ ︷︷ ︸
x

5 · · · 5︸ ︷︷ ︸
x′

. Hence, for α ∈ T1 in the present case, we have

d(α) = 5 · · · 5︸ ︷︷ ︸
x

0 · · · 0︸ ︷︷ ︸
x′

.

(1-2) x = 2x′ + 1, r = 3x′, δ = 1, and x′ ≥ 0.

We have, for α ∈ T1 in the latter case, d(α) = 5 · · · 5︸ ︷︷ ︸
x

0 · · · 0︸ ︷︷ ︸
x′

.

(2) α = f(6174α2 · · ·α2︸ ︷︷ ︸
y

) ∈ T2, α2 = 36, and y ∈ N ∪ {0}. We have n = 4 + 2y, r = 2 + y,

and δ = 0.

α̃M = 76 · · · 6︸ ︷︷ ︸
y+1

, α̃L = 13 · · · 3︸ ︷︷ ︸
y

4, therefore, for α ∈ T2, we have d(α) = 6 3 · · · 3︸ ︷︷ ︸
y

2.
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(3) α = f(α3 · · ·α3︸ ︷︷ ︸
x

α2 · · ·α2)︸ ︷︷ ︸
y

∈ T3, α3 = 123456789, x ∈ N, and y ∈ N∪{0}. We have

n = 9x+ 2y.

(3-1) x = 2x′ and r = 9x′ + y.

α̃M = 9 · · · 9︸ ︷︷ ︸
x

8 · · · 8︸ ︷︷ ︸
x

7 · · · 7︸ ︷︷ ︸
x

6 · · · 6︸ ︷︷ ︸
x+y

5 · · · 5︸ ︷︷ ︸
x′

and α̃L = 1 · · · 1︸ ︷︷ ︸
x

2 · · · 2︸ ︷︷ ︸
x

3 · · · 3︸ ︷︷ ︸
x+y

4 · · · 4︸ ︷︷ ︸
x

5 · · · 5︸ ︷︷ ︸
x′

.

Therefore, for α ∈ T3 in the present case, we have

d(α) = 8 · · · 8︸ ︷︷ ︸
x

6 · · · 6︸ ︷︷ ︸
x

4 · · · 4︸ ︷︷ ︸
x

3 · · · 3︸ ︷︷ ︸
y

2 · · · 2︸ ︷︷ ︸
x

0 · · · 0︸ ︷︷ ︸
x′

.

(3-2) x = 2x′ + 1, r = 9x′ + 4 + y, n = 2r + δ, and δ = 1.

α̃M = 9 · · · 9︸ ︷︷ ︸
x

8 · · · 8︸ ︷︷ ︸
x

7 · · · 7︸ ︷︷ ︸
x

6 · · · 6︸ ︷︷ ︸
x+y

5 · · · 5︸ ︷︷ ︸
x′

and α̃L = 1 · · · 1︸ ︷︷ ︸
x

2 · · · 2︸ ︷︷ ︸
x

3 · · · 3︸ ︷︷ ︸
x+y

4 · · · 4︸ ︷︷ ︸
x

5 · · · 5︸ ︷︷ ︸
x′

.

Therefore, for α ∈ T3 in the present case, we have

d(α) = 8 · · · 8︸ ︷︷ ︸
x

6 · · · 6︸ ︷︷ ︸
x

4 · · · 4︸ ︷︷ ︸
x

3 · · · 3︸ ︷︷ ︸
y

2 · · · 2︸ ︷︷ ︸
x

0 · · · 0︸ ︷︷ ︸
x′

.

(4) α = f(α3 · · ·α3︸ ︷︷ ︸
x1

α2 · · ·α2︸ ︷︷ ︸
x2

α1 · · ·α1︸ ︷︷ ︸
2x2

α4 · · ·α4︸ ︷︷ ︸
3x2

) ∈ T4 and α4 = 27, x1, x2 ∈ N. We have

n = 9x1 + 14x2 = 2r + δ.

(4-1) x1 = 2x′1 and r = 9x′1 + 7x2.

α̃M = 9 · · · 9︸ ︷︷ ︸
x1+2x2

8 · · · 8︸ ︷︷ ︸
x1

7 · · · 7︸ ︷︷ ︸
x1+3x2

6 · · · 6︸ ︷︷ ︸
x1+x2

5 · · · 5︸ ︷︷ ︸
x′
1+x2

and α̃L = 1 · · · 1︸ ︷︷ ︸
x1

2 · · · 2︸ ︷︷ ︸
x1+3x2

3 · · · 3︸ ︷︷ ︸
x1+x2

4 · · · 4︸ ︷︷ ︸
x1+2x2

5 · · · 5︸ ︷︷ ︸
x′
1+x2

.

Therefore, for α ∈ T4 in the present case, we have

d(α) = 8 · · · 8︸ ︷︷ ︸
x1

7 · · · 7︸ ︷︷ ︸
2x2

6 · · · 6︸ ︷︷ ︸
x1

5 · · · 5︸ ︷︷ ︸
x2

4 · · · 4︸ ︷︷ ︸
x1+x2

3 · · · 3︸ ︷︷ ︸
x2

2 · · · 2︸ ︷︷ ︸
x1+x2

0 · · · 0︸ ︷︷ ︸
x′
1+x2

.

(4-2) x1 = 2x′1 + 1, n = 2r + 1, and r = 9x′1 + 7x2 + 4.

α̃M = 9 · · · 9︸ ︷︷ ︸
x1+2x2

8 · · · 8︸ ︷︷ ︸
x1

7 · · · 7︸ ︷︷ ︸
x1+3x2

6 · · · 6︸ ︷︷ ︸
x1+x2

5 · · · 5︸ ︷︷ ︸
x′
1+x2

.

α̃L = 1 · · · 1︸ ︷︷ ︸
x1

2 · · · 2︸ ︷︷ ︸
x1+3x2

3 · · · 3︸ ︷︷ ︸
x1+x2

4 · · · 4︸ ︷︷ ︸
x1+2x2

5 · · · 5︸ ︷︷ ︸
x′
1+x2

.

Therefore, for α ∈ T4 in the present case, we have

d(α) = 8 · · · 8︸ ︷︷ ︸
x1

7 · · · 7︸ ︷︷ ︸
2x2

6 · · · 6︸ ︷︷ ︸
x1

5 · · · 5︸ ︷︷ ︸
x2

4 · · · 4︸ ︷︷ ︸
x1+x2

3 · · · 3︸ ︷︷ ︸
x2

2 · · · 2︸ ︷︷ ︸
x1+x2

0 · · · 0︸ ︷︷ ︸
x′
1+x2

.
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(5) α = f(α5 · · ·α5︸ ︷︷ ︸
x1

α6 · · ·α6︸ ︷︷ ︸
x2

α3 · · ·α3︸ ︷︷ ︸
y1

α2 · · ·α2︸ ︷︷ ︸
y2

) ∈ T5, α5 = 124578, α6 = 09, x1, x2 ∈ N, and

y1, y2 ∈ N ∪ {0}.

We have n = 6x1 + 2x2 + 9y1 + 2y2 = 2(3x1 + x2 + 4y1 + y2) + y1 = 2r + δ.

(5-1) y1 = 2y′1, r = 3x1 + x2 + 4y1 + y2 + y′1, and δ = 0.

α̃M = 9 · · · 9︸ ︷︷ ︸
x2+y1

8 · · · 8︸ ︷︷ ︸
x1+y1

7 · · · 7︸ ︷︷ ︸
x1+y1

6 · · · 6︸ ︷︷ ︸
y1+y2

5 · · · 5︸ ︷︷ ︸
x1+y′1

.

α̃L = 0 · · · 0︸ ︷︷ ︸
x2

1 · · · 1︸ ︷︷ ︸
x1+y1

2 · · · 2︸ ︷︷ ︸
x1+y1

3 · · · 3︸ ︷︷ ︸
y1+y2

4 · · · 4︸ ︷︷ ︸
x1+y1

5 · · · 5︸ ︷︷ ︸
y′1

.

Therefore, for α ∈ T5 in the present case, we have

d(α) = 9 · · · 9︸ ︷︷ ︸
x2

8 · · · 8︸ ︷︷ ︸
y1

7 · · · 7︸ ︷︷ ︸
x1

6 · · · 6︸ ︷︷ ︸
y1

5 · · · 5︸ ︷︷ ︸
x1

4 · · · 4︸ ︷︷ ︸
y1

3 · · · 3︸ ︷︷ ︸
y2

2 · · · 2︸ ︷︷ ︸
y1

1 · · · 1︸ ︷︷ ︸
x1

0 · · · 0︸ ︷︷ ︸
y′1

.

(5-2) y1 = 2y′1 + 1 and r = 3x1 + x2 ∗ 4y1 + y2 + y′1 + 4.

α̃M = 9 · · · 9︸ ︷︷ ︸
x2+y1

8 · · · 8︸ ︷︷ ︸
x1+y1

7 · · · 7︸ ︷︷ ︸
x1+y1

6 · · · 6︸ ︷︷ ︸
y1+y2

5 · · · 5︸ ︷︷ ︸
x1+y′1

.

α̃L = 0 · · · 0︸ ︷︷ ︸
x2

1 · · · 1︸ ︷︷ ︸
x1+y1

2 · · · 2︸ ︷︷ ︸
x1+y1

3 · · · 3︸ ︷︷ ︸
y1+y2

4 · · · 4︸ ︷︷ ︸
x1+y1

5 · · · 5︸ ︷︷ ︸
y′1

.

Therefore, for α ∈ T5 in the present case, we have

d(α) = 9 · · · 9︸ ︷︷ ︸
x2

8 · · · 8︸ ︷︷ ︸
y1

7 · · · 7︸ ︷︷ ︸
x1

6 · · · 6︸ ︷︷ ︸
y1

5 · · · 5︸ ︷︷ ︸
x1

4 · · · 4︸ ︷︷ ︸
y1

3 · · · 3︸ ︷︷ ︸
y2

2 · · · 2︸ ︷︷ ︸
y1

1 · · · 1︸ ︷︷ ︸
x1

0 · · · 0︸ ︷︷ ︸
y′1

.

Now, we show that every member belonging to one of A, B, C, or D is contained in one of
T1, T2, T3, T4, or T5.

(a) α ∈ A. We have three cases: (a-1), (a-2), and (a-3).

(a-1) l0 ̸= 0. In this case, we have l8 = l6 = l4 = l2 = 2l0 + δ = x ̸= 0. Let l0 = x′.

Then an element α of A of the latter case (a-1), with

d(α) = 8 · · · 8︸ ︷︷ ︸
x

6 · · · 6︸ ︷︷ ︸
x

4 · · · 4︸ ︷︷ ︸
x

3 · · · 3︸ ︷︷ ︸
y

2 · · · 2︸ ︷︷ ︸
x

0 · · · 0︸ ︷︷ ︸
x′

(y ∈ N ∪ {0}) is an element of T3.

(a-2) l1 ̸= 0. In this case, we have l9 ̸= 0, l7 = l5 = l1, and l8 = l6 = l4 = l2 = 2l0 + δ.

Let l1 = x1, l9 = x2, and l8 = l6 = l4 = l2 = 2l0 + δ = y1, l0 = y′1, and l3 = y2. We then
have y1 = 2y′1 + δ and x1, x2 ∈ N, and y1, y

′
1, y2 ∈ N ∪ {0}. The element α ∈ A with

d(α) = 9 · · · 9︸ ︷︷ ︸
x2

8 · · · 8︸ ︷︷ ︸
y1

7 · · · 7︸ ︷︷ ︸
x1

6 · · · 6︸ ︷︷ ︸
y1

5 · · · 5︸ ︷︷ ︸
x1

4 · · · 4︸ ︷︷ ︸
y1

3 · · · 3︸ ︷︷ ︸
y2

2 · · · 2︸ ︷︷ ︸
y1

1 · · · 1︸ ︷︷ ︸
x1

0 · · · 0︸ ︷︷ ︸
y′1
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belongs to T5.

(a-3) δ ̸= 0. Because we have already addressed the cases l0 ̸= 0 and l1 ̸= 0, we may assume
that l0 = l1 = 0. We now have l8 = l6 = l4 = l2 = δ = 1, l7 = l5 = l1 = 0, and l0 = L9 = 0.
Hence, the element α = f(α3) ∈ T3.

Therefore, we have A ⊂ T3 ∪ T5.

(b) α ∈ B. From the definition of B and the computations in (4) above, we have α ∈ T4.

(c) α ∈ C. We have α ∈ T2.

(d) α ∈ D. We have α ∈ T1.

Hence, every member of A, B, C, and D is contained in one of T1, T2, T3, T4, and T5.
Therefore, a member α of Dn (n ≥ 3) is a Kaprekar number if and only if it belongs to one of
Ti (1 ≤ i ≤ 5). □

4. Kaprekar Numbers in Dn

Let the set of Kaprekar numbers of degree n be denoted by Kn. We have shown that
K1 = K2 = ∅ and K3 = {495}. For n ≥ 4, Kn = Dn ∩ T (T =

⋃
1≤i≤5 Ti).

For the sake of simplicity, let

κ1(x1) = f(α1 · · ·α1︸ ︷︷ ︸
x1

) (α1 = 495).

κ2(y2) = f(6174α2 · · ·α2︸ ︷︷ ︸
y2

) (α2 = 36).

κ3(x3, y3) = f(α3 · · ·α3︸ ︷︷ ︸
x3

α2 · · ·α2︸ ︷︷ ︸
y3

) (α3 = 123456789).

κ4(x4,1, x4,2) = f(α3 · · ·α3︸ ︷︷ ︸
x4,1

α2 · · ·α2︸ ︷︷ ︸
x4,2

α1 · · ·α1︸ ︷︷ ︸
2x4,2

α4 · · ·α4︸ ︷︷ ︸
3x4,2

) (α4 = 27).

κ5(x5,1, x5,2, y5,1, y5,2) = f(α5 · · ·α5︸ ︷︷ ︸
x5,1

α6 · · ·α6︸ ︷︷ ︸
x5,2

α3 · · ·α3︸ ︷︷ ︸
y5,1

α2 · · ·α2︸ ︷︷ ︸
y5,2

) (α5 = 124578 and α6 = 09).

We have

T1 = {κ1(x1); x1 ∈ N}.

T2 = {κ2(y2); y2 ∈ N ∪ {0}}.

T3 = {κ3(x3, y3); x3 ∈ N, y3 ∈ N ∪ {0}}.

T4 = {κ4(x4,1, x4,2); x4,1, x4,2 ∈ N}.
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T5 = {κ5(x5,1, x5,2, y5,1, y5,2); x5,1, x5,2 ∈ N, y5,1, y5,2 ∈ N ∪ {0}}.

To obtain the members of Kn (n ≥ 4), we look at the degrees of κ1(x1), . . .,
κ5(x5,1, x5,2, y5,1, y5,2) and solve the following set of Diophantine equations.

n =



3x1 (x1 ∈ N) or

4 + 2y2 (y2 ∈ N ∪ {0}) or

9x3 + 2y3 (x3 ∈ N, y3 ∈ N ∪ {0}) or

9x4,1 + 14x4,2 (x4,1, x4,2 ∈ N) or

6x5,1 + 2x5,2 + 9y5,1 + 2y5,2 (x5,1, x5,2 ∈ N, y5,1, y5,2 ∈ N ∪ {0}).

(4.1)

For instance, the only solution of the above set of equations for n = 4 is n = 4 + 2 × 0.
Therefore, K4 = {6174}. Similarly, we have

K5 = ∅, K6 = {κ1(2), κ2(1)}, K7 = ∅, and K8 = {κ2(2), κ5(1, 1, 0, 0)}.

For an even 8 + 2k (k ≥ 0), we have K8+2k ∋ κ2(2 + k), κ5(1, 1, 0, k), and therefore,
D2n (n > 2) may not have a Kaprekar constant. Consider K2n+1 (n ≥ 4). Again, by exam-
ining equation (4.1), we have, K9 = {κ1(3), κ3(1, 0)}, K11 = {κ3(1, 1)}, K13 = {κ3(1, 2)}.
Furthermore, we have K15 = {κ1(5), κ3(1, 3)} and for 2n + 1 with n = 8 + k and k ≥ 0, we
have K2n+1 ∋ κ3(1, 4+ k), κ5(1, 1+ k, 1, 0). Hence, for all D2n+1 (n ≥ 2) except D11 and D13,
we note that D2n+1 contains no Kaprekar constant.

Consider the above exceptional cases. We note that an element of D11, α = 86420987532,
and an element β = 876532664322 of D13 satisfy f5(α) = α with fk(α) ̸= α for k < 5; whereas
f2(β) = β with f(β) ̸= β. Thus, α never reaches, by successive applications of the Kaprekar
transformation f , to κ3(1, 1), the only Kaprekar number in D11, which means that κ3(1, 1) is
not a Kaprekar constant. A similar proposition holds for κ3(1, 2) in D13. Therefore, our result
contains a verification of the result shown by Prichett, et al., namely, no Kaprekar constants
exist except for 495 and 6174.
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