
ON THE EULER FUNCTION OF LINEARLY RECURRENT SEQUENCES
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Abstract. In this paper, we show that if (Un)n≥1 is any nondegenerate linearly recurrent
sequence of integers whose general term is up to sign not a polynomial in n, then the inequality
ϕ(|Un|) ≥ |Uϕ(n)| holds on a set of positive integers n of density 1, where ϕ is the Euler
function. We show that the set of n ≤ x for which the above inequality fails has counting
function OU (x/ log x).

1. Introduction

Let (Un)n≥1 be a linearly recurrent sequence of integers. Such a sequence satisfies a
recurrence of the form

Un+k = a1Un+k−1 + · · ·+ akUn for all n ≥ 1, (1)

with integers a1, . . . , ak, where U1, . . . , Uk are integers. Assuming k is minimal, Un can be
represented as

Un =
s∑

i=1

Pi(n)α
n
i , (2)

where

Ψ(X) := Xk − a1X
k−1 − · · · − ak =

s∏
i=1

(X − αi)
σi (3)

is the characteristic polynomial of (Un)n≥1, α1, . . . , αs are the distinct roots of Ψ(X) with
multiplicities σ1, . . . , σs, respectively, and Pi(X) is a polynomial of degree σi − 1 with
coefficients in Q(αi). The sequence is nondegenerate if αi/αj is not a root of 1 for any
i ̸= j in {1, . . . , s}. A classic example is the Fibonacci sequence (Fn)n≥1 that has k = 2,
Ψ(X) = X2−X−1, and initial terms F1 = F2 = 1. Let ϕ(m) and σ(m) be the Euler function
and sum of divisors function of the positive integer m. In [5], the first author proved that the
inequalities

ϕ(Fn) ≥ Fϕ(n) and σ(Fn) ≤ Fσ(n)

hold for all positive integers n. It was also remarked that if instead of considering (Fn)n≥1,
one considers a Lucas sequence with complex conjugated roots, i.e., a nondegenerate binary
recurrent sequence (Un)n≥0 with U0 = 0, U1 = 1, and Ψ(X) a quadratic polynomial with
complex conjugated roots, then the inequality

ϕ(|Un|) ≥ |Uϕ(n)|
fails infinitely often. It fails for a positive proportion of prime numbers n. Such questions were
recently revisited by other authors (see [4] and [7], for example).

In this paper, we prove the following theorem. Recall that if f(x) and g(x) are functions
defined on R+ with values in R+, we write f(x) = O(g(x)) and f(x) = o(g(x)) if the inequality
f(x) < Kg(x) holds with some constant K > 0 and all x > x0, and limx→∞ f(x)/g(x) = 0,
respectively. Further, the notations f(x) ≪ g(x) and g(x) ≫ f(x) are equivalent to
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f(x) = O(g(x)). When the implied constant K depends on some other parameters like U, ε,
we indicate this by writing f(x) = OU,ε(g(x)) or f(x) ≪U,ε g(x).

Theorem 1. Let (Un)n≥1 be a nondegenerate linearly recurrent sequence of integers such that
|Un| is not a polynomial in n for all large n and let x be a large real number. Then, the
inequality

ϕ(|Un|) ≥ |Uϕ(n)| (4)

fails on a set of positive integers n ≤ x of cardinality OU (x/ log x). A similar statement holds
for the positive integers n ≤ x for which the inequality

σ(|Un|) ≤ |Uσ(n)|

fails.

The theorem does not hold for sequences for which Un is either P (n) or (−1)nP (n), with
some polynomial P (X) ∈ Z[X], whose characteristic polynomial Ψ(X) is one of (X − 1)k or
(X + 1)k, where k − 1 is the degree of P (X). For example, with k = 3 and P (X) = X2 + 1,
we have that if n is odd, then Un = n2 + 1 is even; therefore,

ϕ(Un) ≤
n2 + 1

2
.

On the other hand, for a positive proportion of n, we have ϕ(n) > n/
√
2 and all such n are

odd. Indeed, if n is even, then ϕ(n)/n ≤ 1/2, so we cannot have ϕ(n)/n > 1/
√
2 for such n.

To justify why there are a positive proportion of such n, recall that Schoenberg [9] proved the
existence of a continuous monotone function f : [0, 1] → [0, 1] with f(0) = 0 and f(1) = 1
such that

lim
x→∞

1

x
#

{
n ≤ x :

ϕ(n)

n
≤ α

}
= f(α) for α ∈ [0, 1].

In particular, the density of the set of n such that ϕ(n)/n > 1/
√
2 equals 1 − f(1/

√
2) > 0.

For such n,

Uϕ(n) = ϕ(n)2 + 1 >
n2

2
+ 1 > ϕ(Un).

As we said above, the bound OU (x/ log x) from the statement of Theorem 1 is close to the
truth in some cases like when (Un)n≥0 is a Lucas sequence with complex conjugated roots.
Even more, it is easy to construct binary recurrent sequences (Un)n≥1 with real roots for
which inequality (4) fails for a number of positive integers n ≤ x, which is ≫U x/(log x). For
example, let q1 < · · · < qk be odd primes such that

k∑
i=1

1

qi
> 1.

Let a > 2 be a positive integer such that a ≡ 2 (mod qi) for i = 1, . . . , k. Then 2p − a is a
multiple of qi for all i = 1, . . . , k, whenever p is a prime such that p ≡ 1 (mod qi − 1) for all
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i = 1, . . . , k. For such primes p that are sufficiently large, we have

ϕ(2p − a) = (2p − a)
∏

q|2p−a

(
1− 1

q

)
≤ (2p − a)

k∏
i=1

(
1− 1

qi

)

< (2p − a) exp

(
−

k∑
i=1

1

qi

)
<

2p − a

e

< 2p−1 − a = 2ϕ(p) − a.

Thus, ϕ(Un) < Uϕ(n) for n = p a large prime in the progression

p ≡ 1 (mod lcm[q1 − 1, . . . , qk − 1])

and Un := 2n − a, which is the nth term of a binary recurrent sequence of characteristic
polynomial Ψ(X) = X2− 3X +2. In the above, the notation lcm[q1− 1, . . . , qk − 1] stands for
the least common multiple of q1 − 1, . . . , qk − 1.

2. Preliminary Results

2.1. Arithmetic Functions. Here, we collect a few facts from the anatomy of integers that
are useful for our proof of Theorem 1. The first result addresses the minimal order of ϕ(n)
and the maximal order of σ(n). It follows from Theorems 323, 328, and 329 in [3].

Lemma 1. Let n ≥ 3. We then have

ϕ(n)

n
≫ 1

log log n
and

σ(n)

n
≪ log logn.

For a positive integer n, put p(n) for the smallest prime factor of n with the convention
that p(1) = 1. For x ≥ y ≥ 2, put

Φ(x, y) := #{n ≤ x : p(n) > y}.

The following inequality is a consequence of the Brun sieve and appears, for example, on page
397 in [10] (see also Exercise on page 11 in [2]).

Lemma 2. We have, uniformly for x ≥ y ≥ 2,

Φ(x, y) ≪ x

log y
.

Let Ω(n) be the total number of prime factors of n counting multiplicities.

Lemma 3. Let x ≥ 10. The number of positive integers n ≤ x such that Ω(n) ≥ 10 log log x
is O(x/(log x)2).

Proof. Exercise 05 on page 12 in [2] shows that

#{n ≤ x : Ω(n) = k} ≪ xk log x

2k
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uniformly in k ≥ 1 and x ≥ 2. Taking K := ⌊10 log log x⌋ and applying the above estimate
with k ≥ K, we get that

#{n ≤ x : Ω(n) ≥ 10 log log x} ≪ x log x
∑
k≥K

k

2k
≪ xK log x

2K

≪ x log x log log x

210 log log x
=

x log x log log x

(log x)10 log 2

= O

(
x

(log x)2

)
.

□

Let τ(n) be the number of divisors of n.

Lemma 4. Let x ≥ 10. The number of positive integers n ≤ x such that τ(σ(n)) >
exp(

√
log x) is O(x/(log x)2).

Proof. Theorem 1 in [6] shows that∑
n≤x

τ(ϕ(n)) = x exp

(
c(x)

(
log x

log log x

)1/2(
1 +O

(
log log log x

log log x

)))
,

where c(x) ∈ [e−γ/2/7, 2
√
2e−γ/2] and γ = 0.577 . . . is the Euler-Mascheroni constant. The

remarks on page 128 of the same paper show that the above estimate holds with ϕ(n) replaced
by σ(n). In particular,

#{n ≤ x : τ(σ(n)) > exp(
√
log x)} exp(

√
log x) ≤

∑
n≤x

τ(σ(n))

< x exp

(
O

(
log x

log log x

)1/2
)
,

which gives that

#{n ≤ x : τ(σ(n)) > exp(
√
log x)} < x exp

(
−
√
log x+O

((
log x

log log x

)1/2
))

= O

(
x

(log x)2

)
.

□

2.2. The Subspace Theorem and Linearly Recurrent Sequences. Here, we review
a quantitative version of the Subspace Theorem due to Evertse from [1] and apply it to
nondegenerate linearly recurrent sequences of integers. Let K be an algebraic number field
with ring of integers OK and collection of places (equivalence classes of absolute values) MK.
For v ∈ MK and x ∈ K, we define the absolute value |x|v as follows:

|x|v :=


|σ(x)|

1
[K:Q] , if v corresponds to σ : K 7→ R;

|σ(x)|
2

[K:Q] , if v corresponds to the pair σ, σ : K 7→ C;
N(π)

− ordπ(x)
[K:Q] , if v corresponds to the prime ideal π ⊂ OK.

Here, N(π) := #(OK/π) is the norm of π and ordπ(x) is the exponent of π in the factorization
of the principal fractional ideal (x) of K with the convention that ordπ(0) = ∞. In the first
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two cases above, we call v real infinite or complex infinite, respectively, whereas in the third
case we call v finite. These absolute values satisfy the product formula∏

v∈MK

|x|v = 1 for all x ∈ K∗.

Now let s ≥ 2, x := (x1, . . . , xs) ∈ Ks with x ̸= 0, and define

|x|v :=


(∑s

i=1 |xi|
2[K:Q]
v

) 1
2[K:Q]

, if v is real infinite;(∑s
i=1 |xi|

[K:Q]
v

) 1
[K:Q]

, if v is complex infinite;

max{|x1|v, . . . , |xs|v}, if v is finite.

Note that for infinite places v, | · |v is a power of the Euclidean norm. Define

H(x) :=
∏

v∈MK

|x|v.

In the statement of the next result, the following apply:

• K is an algebraic number field;
• S is a finite subset of MK of cardinality r containing all the infinite places;
• {l1,v, . . . , ls,v} for v ∈ S are linearly independent sets of linear forms with algebraic
coefficients in s variables such that

H(li,v) ≤ H, [K(li,v) : K] ≤ D

for all i = 1, . . . , s and v ∈ S.
The following is the main Theorem in [1].

Theorem 2. Let 0 < δ < 1. Consider the inequality∏
v∈S

s∏
i=1

|li,v(x)|v
|x|v

<

(∏
v∈S

|det(l1,v, . . . , ls,v)|v

)
H(x)−s−δ, x ∈ Ks. (5)

Then

(i) There are proper linear subspaces T1, . . . , Tt1 with

t1 ≤ (260s
2
δ−7s)r log(4D) log log(4D)

such that every solution x ∈ Ks to (5) with H(x) ≥ H satisfies

x ∈ T1 ∪ · · · ∪ Tt1 .

(ii) There are proper linear subspaces S1, S2, . . . , St2 of Ks with

t2 ≤ (150s4δ−1)sr+1(2 + log log(2H))

such that every solution x ∈ Ks of (5) with H(x) < H satisfies

x ∈ S1 ∪ S2 ∪ · · · ∪ St2 .

We present an application to small values of nondegenerate linearly recurrent sequences.
But before, let us record the following result of Schmidt [8]. For a nondegenerate linearly
recurrent sequence (Un)n≥1, let

ZU := #{n : Un = 0}.

320 VOLUME 62, NUMBER 4



ON THE EULER FUNCTION OF LINEARLY RECURRENT SEQUENCES

Theorem 3. If (Un)n≥1 is a nondegenerate linearly recurrent sequence of order k ≥ 2 whose
terms are complex numbers, then

#ZU ≤ exp(exp(exp(3k log k))).

Now let (Un)n≥1 be a nondegenerate linearly recurrent sequence of integers given by
recurrence (1), whose characteristic polynomial is given by (3) and formula for the general
term (2). Assume that |α1| ≥ |α2| ≥ · · · ≥ |αs| and that |Un| is not a polynomial in n for large
n. In particular, |α1| > 1.

We prove the following lemma.

Lemma 5. Let (Un)n≥1 be a nondegenerate linearly recurrent sequence of integers whose
general term is given by (2) with s ≥ 2 and assume that |α1| = max{|αj | : 1 ≤ j ≤ s}. Then
there exists x0 and c := c(U) ∈ (0, 1/3) such that for x ≥ x0, the number of n ≤ x such that

|Un| ≤ |α1|n(1−δ), (6)

with δ := x−c is of cardinality OU (
√
x).

Proof. We may assume that n ∈ (x1/2, x] since there are only O(x1/2) positive integers

n ≤ x1/2. Using (2), inequality (6) becomes∣∣∣∣∣
s∑

i=1

Pi(n)α
n
i

∣∣∣∣∣ ≤ |α1|n(1−δ).

Let L be a positive integer that is a common multiple of all the denominators of all the
coefficients of Pi(X) for i = 1, . . . , s. Multiplying across by L, we get, by setting Qi(X) :=
LPi(X), that ∣∣∣∣∣

s∑
i=1

Qi(n)α
n
i

∣∣∣∣∣ ≤ L|α1|n(1−δ). (7)

Note now that Qi(n)α
n
i ∈ OK, where K := Q(α1, . . . , αs) is an algebraic number field. For tech-

nical reasons, we would like to exclude the greatest common divisor of the ideals (α1), . . . , (αs).
So, let I := gcd((α1), . . . , (αs)). Then Ih is principal for some positive integer h, which can
be taken to be the cardinality of the class group of K. Let β be a generator of Ih. Then β
divides αh

i for all i = 1, . . . , s, so (αh
1/β), . . . , (α

h
s/β) are coprime. Since I is Galois invariant,

any conjugate β(j) of β is also a generator of I, so β is associated to any of its conjugates.
Letting d be the degree of β, we get that αh

i /β
(j) are all associated for j = 1, . . . , d (and

fixed i ∈ {1, . . . , s}) and in particular, they are also associated with αhd
i /b, where we can

take b := N(β). Now we replace (Un)n≥1 with any of the hd linearly recurrent sequences
(Uhdm+ℓ)m≥0 and ℓ ∈ {0, 1, . . . , hd− 1} by fixing ℓ. Then

Uhdm+ℓ = bm
s∑

i=1

Q′
i(m)α′m

i ,

where Q′
i(X) := αℓ

iQi(hdX + ℓ) ∈ OK[X] and α′
i := αhd

i /b for i = 1, . . . , s. Inequality (7) now
implies ∣∣∣∣∣

s∑
i=1

Q′
i(m)α′m

i

∣∣∣∣∣ ≤ L|α1|ℓ
∣∣∣∣αhd

1

b

∣∣∣∣m · α−δ(hdm+ℓ)
1 = L′|α′

1|m(1−δ1), (8)

where L′ := L|α1|ℓ(1−δ) and δ1 := c0δ with c0 :=
hd log |α1|

hd log |α1| − log b
. Note that |α′

1| > 1, for if

not, then |αhd
i /b| ≤ 1 holds for all i = 1, . . . , s. Since α′

i are algebraic integers having all the
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conjugates at most 1, we get that they are roots of unity. Thus, αi/αj is a root of unity for
all i ̸= j, which contradicts the nondegeneracy assumption.

We now set up the subspace machinery. We let S be the subset of MK containing all the
infinite valuations as well as all the finite ones v such that |α′

i|v ̸= 1 for some i = 1, . . . , s. We
take x = (x1, . . . , xs) and li,v(x) given by

li,v(x) := xi for all (i, v) ∈ {1, . . . , s} × S with i ≥ 2 or v finite,

and take

l1,v(x) := x1 + · · ·+ xs for v infinite.

We evaluate
s∏

i=1

∏
v∈S

|li,v(x)|v (9)

in x := (Q′
1(m)α′m

1 , . . . , Q′
s(m)α′m

s ) with some m satisfying inequality (8). For a fixed i ≥ 2,
we have ∏

v∈S
|li,v(x)|v =

∏
v∈S

|Q′
i(m)α′m

i |v ≤
∏

v infinite

|Q′
i(m)|v ≪ mσi−1,

where the implied constant depends on the coefficients of Q′
i(x). The above inequality follows

by the product formula for α′m
i , together with the fact that S contains all the places of MK for

which |α′
i|v ̸= 1 and together with the fact that Q′

i(m) is an algebraic integer, so |Q′
i(m)|v ≤ 1

for all finite places v. Hence,
s∏

i=2

∏
v∈S

|li,v(x)|v ≪
s∏

i=2

mσi−1 = m
∑s

i=2 σi−1.

For i = 1, we have that∏
v∈S

|l1,v(x)|v =
∏
v∈S

v finite

|Q′
1(m)α′m

1 |v
∏
v∈S

v infinite

|
s∑

i=1

Q′
i(m)α′m

i |v

≪
∏
v∈S

v infinite

|Q′
i(m)|v

 ∏
v∈S

v finite

|α′m
1 |v

 |α′
1|m(1−δ1).

In the above, we used the fact that
∑s

i=1Q
′
i(m)α′m

i is an integer from Z, so the product of
its valuations over all infinite places v ∈ MK is just the regular absolute value of this integer.
Using again the product formula, |α′m

1 | is cancelled by the second product above, so we get
that ∏

v∈S
|l1,v(x)|v ≪ mσ1−1(|α′m

1 |)−δ1 .

Collecting everything together, we get that the product shown in (9) is bounded as
s∏

i=1

∏
v∈S

|li,v(x)|v ≪ m
∑s

i=1 σi−1(|α′m
1 |)−δ1 ≪ mk|α′m

1 |−δ1 . (10)

To be able to apply Theorem 2, we should compare the above upper bound on our double
product with (∏

v∈S
|det(l1,v, l2,v, . . . , ls,v)|v

)(∏
v∈S |x|v
H(x)

)s

H(x)−δ2
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for some suitable δ2. Well, the first factor above is easy since all the involved determinants
are equal to 1. For the second factor above, we have that∏

v∈S |x|v
H(x)

=
∏

v∈MK\S

|x|−1
v =

∏
v∈MK\S

(max{|Q′
i(m)α′m

i |v})−1

=
∏

v∈MK\S

(max{|Q′
i(m)|v})−1 ≥ 1.

In the above, we used the fact that MK\S consists only of finite valuations v for which
|α′m

i |v = 1. Finally for H(x), we use the fact that xi ∈ OK to deduce that

H(x) ≤
∏

v infinite

|x|v ≤

(
s∑

i=1

|Q′
i(m)2α′

i|2m
)1/2

≪ mk|α′
1|m.

Here, we used the fact that
∑s

i=1Q
′
i(m)2α′2m

i is an integer as the collection of numbers
{Q′

1(m)2α′2m
1 , . . . , Q′

s(m)α′2m
s } is Galois stable. In particular, we have that(∏

v∈S
|det(l1,v, l2,v, . . . , ls,v)|v

)(∏
v∈S |x|v
H(x)

)s

H(x)−δ2 ≫ m−kδ2 |α′m
1 |−δ2 .

So, inequality (5) will hold for us, assuming that

c1m
k|α′m

1 |−δ1 ≤ c2m
−kδ2 |α′m

1 |−δ2 (11)

holds, where c1 and c2 are the constants implied by the ≪ and ≫ symbols in (10) and (11),
respectively. We take δ2 := δ1/2 and the above inequality becomes equivalent to

(c1/c2)m
k(1+δ2) < |α′m

1 |δ1/2.

Taking logarithms, we get

k(1 + δ2) logm+ log(c1/c2) ≤ (δ1/2)(log |α′
1|)m.

Since n ≤ x, then the left side is O(log x). Since δ1 = c0δ ≫ x−1/3, log |α′
1| > 0, and

m ≫ n ≫
√
x, it follows that the right side above is ≫ x1/6. Thus, the last inequality above

holds for x > x0, where x0 depends on U . We conclude that our x satisfies inequality (5) with
δ2 := δ1/2 and x > x0.

We take a closer look at H(x). Since (α′
1), . . . , (α

′
s) are coprime, it follows that for every

finite place v ∈ MK, there is i ∈ {1, . . . , s} such that |α′
i|v = 1. This shows that for finite v,

we have

|x|v ≫ min{|Q′
i(m)|v} ≫ m−k.

Hence,

H(x) ≫ m−rk
∏

v infinite

|Q′
i(m)α′m

i |v ≫ m−rk|α′
1|m. (12)

Here, r is the cardinality of S. For our set-up, the parameter H can be taken to be
√
s. Since

m ≫ n ≫ x1/2, it follows that for large x, the inequality

c3m
−rk|α′

1|m ≥
√
s

holds, where c3 is the constant implied in (12). Thus, for x > x0, we have

H(x) ≥ H.
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Also, for us D = 1, since li,v(x) have coefficients from Z. So, by Theorem 2, there are proper
subspaces T1, . . . , Tt1 with

t1 ≤ (260s
2
δ−7s
2 )r log 4 log log 4

such that x ∈ T1 ∪ T2 ∪ · · · ∪ Tt1 . Each of the containments x ∈ Tj leads to an equation of the
form

s∑
i=1

C
(j)
i Q′

i(m)α′
i(m) = 0,

where C(j) := (C
(j)
1 , . . . , C

(j)
s ) ∈ Ks is not the zero vector. Each such equation signals that

m is in the set of zeros of a nondegenerate linearly recurrent sequence of order at most k,
so there are at most Ok(1) such values of m, where the constant in Ok can be taken to be
exp(exp(exp(3k log k))) by Theorem 3. So, it remains to understand the upper bound on t2.
But, this is

(260s
2+7sc−7s

0 x7sc)r log 4 log log 4.

Taking c := 1/(15sr), the above bound becomes

2(60s
2+7s)rc−7sr

0 x7/15 log 4 log log 4,

and this is smaller than x1/2 for x > x0. This finishes the proof. □

3. Proof of Theorem 1

3.1. The Case of the Euler ϕ Function. Let p(n) be the smallest prime factor of n. Let

A1(x) = {n ≤ x : p(n) > xc1},

where c1 ∈ (0, 1/6) is a constant to be determined later. We show first that A1(x) contains
O(x/ log x) positive integers n ≤ x as x → ∞. Indeed, putting y := xc1 , the set A1(x)
coincides with the n ≤ x, which are coprime to all the primes p ≤ y. The number of such is,
by Lemma 2,

Φ(x, y) ≪ x

log y
≪ x

log x
.

From now on, let n ≤ x not in A1(x). We also assume that n ≥ x1/2, since there are only

O(x1/2) = o(x/ log x) as x → ∞ positive integers failing this last inequality.
For such n, the interval [1, n] contains at least n/p(n) numbers, which are not coprime to

n, namely all the positive integers that are multiples of p(n). Thus,

ϕ(n) ≤ n− n

p(n)
≤ n− nδ,

where δ := 1/xc1 . Let

Un =
s∑

i=1

Pi(n)α
n
i .

We assume that |α1| ≥ |α2| ≥ · · · ≥ |αs|. Assume first that s = 1. In this case Ψ(X) =
(X − α1)

k, so α1 is an integer with |α1| ≥ 2. Thus,

Un = P1(n)α
n
1 ,
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where P1(X) ∈ Q[X]. Let L be the least common denominator of all the coefficients of P1(X).
Then, for large n (say larger than the maximal real root of P1(X)), we have

Lϕ(|Un|) ≥ ϕ(L|Un|) ≥ ϕ(L|P1(n)|)ϕ(|α1|n) ≫
L|P1(n)|

log log(L|P1(n)|)
|α1|n

≫ Lnk−1

log log n
|α1|n.

This gives

ϕ(|Un|) ≫
nk−1

log log n
|α1|n. (13)

On the other hand,

|Uϕ(n)| = |P1(ϕ(n))||α1|ϕ(n) ≪ ϕ(n)k−1|α1|n(1−δ) ≪ nk−1|α1|n(1−δ). (14)

By (13) and (14), it follows that if

ϕ(|Un|) ≤ |Uϕ(n)|

holds, then

nk−1

log log n
|α1|n ≤ ϕ(|Un|) ≤ |Uϕ(n)| ≪ nk−1|α1|n(1−δ).

This is equivalent to

|α1|nδ ≪ log log n.

Taking logarithms, this becomes

(nδ) log |α1| ≤ log log log n+O(1).

The right side is O(log log log x). Since |α1| ≥ 2, nδ ≥ x1/2/xc1 ≥ x1/3; it follows that the
above inequality implies that x is bounded. Thus, there are only finitely many such n in case
s = 1.

From now on, we assume s ≥ 2. In this case, the inequality

|α1|n/2 ≤ |Un| ≪ |α1|nnk

holds for all n ≥ n0. Indeed, the right side is obvious and the left side follows from a known
application of the Subspace Theorem (see, for example, [11, Lemma 4.1]). Thus, for n ≥ n0,
we have that

log log |Un| = log n+O(1).

Since ϕ(m) ≫ m/ log logm holds for all integers m ≥ 2 (see Lemma 1), we have that for
n > n0, the inequality

ϕ(|Un|) ≫
|Un|

log log |Un|
=

|Un|
log n+O(1)

holds. Assume now that

ϕ(|Un|) ≤ |Uϕ(n)|.
We then get

|Un|
log n+O(1)

≪ ϕ(|Un|) ≤ |Uϕ(n)| ≤ |α1|ϕ(n)ϕ(n)k ≪ |α1|n−nδnk.

This gives

|Un| ≪ |α1|n−nδnk(log n+O(1)).
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Let c4 be the constant implied by the above inequality and c5 be the constant implied by the
above O(1). We claim that with δ1 := 1/x2c1 , the inequality

c4|α1|n(1−δ)nk(log n+ c5) < |α1|n(1−δ1)

holds. Indeed, this is equivalent to

k log n+ log(log n+ c5) + log(c4) < n(δ − δ1) log |α1|. (15)

Since n ∈ (
√
x, x], the left side above is O(log x). Since δ1 = 1/x2c1 and δ = 1/xc1 , it follows

that δ − δ1 ≥ 0.5δ ≥ 0.5x−c1 for x ≥ x0. Since n ≥
√
x, it follows that the right side above is

≫ x1/2−c1 ≫ x1/3. Therefore, indeed (15) holds for all our n in (
√
x, x] and x > x0. Thus, we

get

|Un| ≤ |α1|n(1−δ1).

By Lemma 5, we can choose c1 := c/2 such that the number of n ≤ x satisfying the above
inequality is Ok(

√
x) = o(x/ log x) as x → ∞, which finishes the argument.

3.2. The Case of the σ Function. Assume again that x is large and n ∈ (
√
x, x] is divisible

by some prime p ≤ xc1 for some small constant c1, since otherwise, like in the case of the Euler
function, the set of such n ≤ x is O(x/ log x). Then σ(n) ≥ n + nδ, where δ := 1/xc1 , which
gives

n ≤ σ(n)

1 + δ
≤ σ(n)(1− δ1),

where δ1 := δ/2. Assume now that

|Uσ(n)| ≤ σ(|Un|). (16)

As in the case of the ϕ function, we need to treat the case s = 1 separately. In this case,
Un = P1(n)α

n
1 , where |α1| ≥ 2 is an integer and P1(X) ∈ Q[X]. Let again L be the least

common denominator of the coefficients of P1(X) and n be larger than the maximal real zero
of P1(X). The right side above is by Lemma 1.

σ(|Un|) ≤ σ(L|Un|) = σ(L|P1(n)||α1|n) ≤ σ(L|P1(n)|)σ(|α1|n)
≪ L|P1(n)|(log log(L|P1(n)|))|α1|n

≪ nk−1(log log n)|α1|σ(n)(1−δ1), (17)

whereas

|Uσ(n)| = |P1(σ(n))||α1|σ(n) ≫ σ(n)k−1|α1|σ(n) ≫ nk−1|α1|σ(n). (18)

Inequality (16), with (17) and (18), imply

nk−1|α1|σ(n) ≪ |Uσ(n)| ≤ σ(|Un|) ≪ nk−1(log log n)|α1|σ(n)(1−δ1).

This leads to

|α1|δ1σ(n) ≪ log logn,

and by the argument for the case s = 1 and the ϕ function, this leads to the conclusion that
x (so, n) is bounded.

From now on, we assume that s ≥ 2. The right side is, by Lemma 1 and the calculation
done at the case of the Euler ϕ function,

σ(|Un|) ≪ |Un| log log |Un| ≪ |α1|nnk(log n+O(1))

≤ |α1|σ(n)(1−δ1)σ(n)k(log σ(n) +O(1)).
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Let c6 and c7 be the constants implied by the ≪-symbol and O-symbol above, respectively.
By the argument done in the case of the Euler ϕ function, putting δ2 := 1/x2c1 , the inequality

c6|α1|m(1−δ1)mk(logm+ c7) < |α1|m(1−δ2)

holds for all m = σ(n) and n ∈ (
√
x, x] for x > x0. Thus, putting m := σ(n), we get that

|Um| ≤ |α1|m(1−δ2)

holds, when x ≥ x0. Note that m ≪ x log log x by Lemma 1. By Lemma 5, we can choose
c1 = c/2 and then the set of m ≪ x log log x satisfying the above inequality is of cardinality

Ok(
√
x log log x).

But this is only an upper bound on the number of distinct values of σ(n) and we have to get
an upper bound on the number of n’s themselves. By Lemmas 3 and 4, we may assume that
Ω(n) ≤ 10 log log x and τ(σ(n)) ≤ exp(

√
log x), since the number of n ≤ x for which one of

the above inequalities fails is O(x/(log x)2). Writing

n = pa11 · · · paℓℓ ,

with distinct primes p1, . . . , pℓ and positive exponents a1, . . . , aℓ, we have

σ(n) =

ℓ∏
i=1

(
pai+1
i − 1

pi − 1

)
.

Given m = σ(n), each of (pai+1
i − 1)/(pi − 1) is a divisor di of σ(n). Additionally, given di

and also ai, pi is uniquely determined. Thus, since di can be fixed in at most τ(σ(n)) ways
and ai ≤ Ω(n) can be fixed in at most Ω(n) ways, it follows that paii can be fixed in at most
Ω(n)τ(σ(n)) ways. This is so for a fixed i, but i ≤ ℓ = ω(n) ≤ Ω(n). Thus, the number of
such n, when σ(n) and Ω(n) are given, is at most(

(10 log log x) exp(
√
log x)

)10 log log x
< exp

(
20(log log x)

√
log x

)
for x > x0. Varying Ω(n) up to 10 log log x, as well as the number of possible values of σ(n),
we get that the number of possible n ≤ x is

≪k

√
x log log x(log log x) exp

(
20(log log x)

√
log x

)
= o(x/ log x)

as x → ∞, which finishes the proof of the σ case.
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