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1. INTRODUCTION

Let a0, a1, . . . , ar−1(ar−1 6= 0) and α0, α1, . . . , αr−1(r ≥ 1) be two sequences of real or
complex numbers. The sequence {V (r)

n }n≥−r+1 defined by V (r)
n = α−n for −r+ 1 ≤ n ≤ 0 and

the linear recurrence of order r

V
(r)
n+1 = a0V

(r)
n + a1V

(r)
n−1 + · · ·+ ar−1V

(r)
n−r+1 (n ≥ 0) (1.1)

is called a weighted r-generalized Fibonacci sequence. Such sequences have been extensively
studied in the literature (see [6, 10, 11, 13] for example). In this paper we shall refer to such
an object as a sequence of type (1.1). Such sequences have interested many authors because
of their various applications. For example, in numerical analysis some discretization by finite
divisions gives such a linear recurrence relation (for example, see [2, 4, 8, 9]).

Sequences of type (1.1) have been generalized in [14, 15] as follows. Let {aj}j≥0 and
{αj}j≥0 be two sequences of real or complex numbers. The sequence {Vj}j∈Z defined by
Vn = α−n(n ≤ 0) and the linear recurrence of order ∞

Vn+1 = a0Vn + a1Vn−1 + · · ·+ amVn−m + . . . (n ≥ 0) (1.2)

is called an ∞-generalized Fibonacci sequence. Such sequences have been studied under some
hypotheses on the two sequences {aj}j≥0 and {αj}j≥0 which guarantee the existence of the
terms Vn for every n ≥ 1 (see [3, 14, 15, 17]). The origin of r- or ∞-generalized Fibonacci
sequences goes back to Euler. In [7, Chapter XVII] he discussed Daniel Bernoulli’s method of
using linear recurrences to approximate zeros of (mainly polynomial) functions.

In this paper, we first study the relationship between a given polynomial function and the
associated sequence of type (1.1), and then we use it to approximate and find a zero of the
polynomial through Bernoulli’s method (§2). Our results will be a bit weaker than the usual
ones; nevertheless, we have included them in the aim to generalize them to the case of general
holomorphic functions. In §§3 and 4, this will be carried out through the use of ∞-generalized
Fibonacci sequences. These results are very important, since, as far as the authors know, there
has been practically no method for approximating or finding a zero of an arbitrary holomorphic
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function using the coefficients in their power series expansions. Furthermore, in §4, we will
discuss the approximation process by using r-generalized Fibonacci sequences with r finite (see
[3]), which will enable us to obtain more precise results.

2. BERNOULLI’S METHOD FOR POLYNOMIAL FUNCTIONS

In order to approximate a root of a polynomial Pr(X) of degree r, Bernoulli considered
a sequence {V (r)

n }n≥−r+1 of type (1.1) such that Pr(X) is its characteristic polynomial. More

precisely, he used the initial values V (r)
0 = 1 and V

(r)
−1 = · · · = V

(r)
−r+1 = 0. It is well known

that under certain conditions, if

q = lim
n→∞

V
(r)
n+1

V
(r)
n

exists, then it is a root of Pr(X) such that |q′| ≤ |q| for any other root q′ of Pr(X) (see [8, 9]
or [6, Theorem 7], for example). The aim of this section is to establish similar results by using
the theory of holomorphic functions.

Let Qr(z) = 1− a0z − · · · − ar−2z
r−1 − ar−1z

r be a complex polynomial of degree r(r ≥
1, ar−1 6= 0), and consider the complex function fr(z) = 1/Qr(z). Since Qr(0) = 1 6= 0, the
Taylor expansion of fr(z) in a disk centred at 0 can be written as

fr(z) =
∞∑
n=0

V (r)
n zn (2.1)

for some complex numbers V (r)
0 , V

(r)
1 , . . . . The identity Qr(z)f(z) = 1 implies that

V
(r)
n+1 =

r−1∑
j=0

ajV
(r)
n−j

for all n ≥ 0, where V (r)
0 = 1 and V (r)

−1 = · · · = V
(r)
−r+1 = 0. Hence, {V (r)

n }n≥−r+1 is a sequence
of type (1.1) and its characteristic polynomial coincides with Pr(X) = Xr − a0X

r−1 − · · · −
ar−2X − ar−1.

Remark 2.1: Conversely, suppose that {V (r)
n }n≥−r+1 is a sequence of type (1.1) such that

V
(r)
0 = 1 and V

(r)
−1 = · · · = V

(r)
−r+1 = 0. Then we have

fr(z) =
∞∑
n=0

V (r)
n zn =

1
Qr(z)

,

where Qr(z) = 1− a0z − · · · − ar−2z
r−1 − ar−1z

r.
The polynomial function Qr has a root and Qr(0) 6= 0. Hence, the function fr = 1/Qr

has a Taylor expansion near 0 and it is defined in the open disk of radius

R = min{|λ|; λ is a root of Qr}.
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Note that we always have 0 < R <∞. Thus, by using the standard theory of power series (for
example, see [1]), we can prove the following (for more details, see the proof of Theorem 3.2
in the next section).
Proposition 2.2: Let Qr(z) = 1− a0z− · · · − ar−2z

r−1− ar−1z
r(ar−1 6= 0) be a complex

polynomial of degree r. Consider the sequence {V (r)
n }n≥−r+1 of type (1.1) whose coefficients

and initial values are given by a0, a1, . . . , ar−1 and V
(r)
0 = 1, V (r)

−1 = · · · = V
(r)
−r+1 = 0

respectively. We suppose that V (r)
n 6= 0 for all sufficiently large n. Then the radius of conver-

gence R of the series (2.1) satisifies

lim inf
n→∞

∣∣∣∣∣ V (r)
n

V
(r)
n+1

∣∣∣∣∣ ≤ R ≤ lim sup
n→∞

∣∣∣∣∣ V (r)
n

V
(r)
n+1

∣∣∣∣∣
and R = min{|λ|iλ is a root of Qr}. In particular, we have Qr(Reiθ) = 0 for some θ ∈ [0, 2π),
and R ≤ |µ| for all other roots µ of Qr.

As an immediate corollary, we have the following.
Corollary 2.3: In the above proposition, if

Λ(r) = lim
n→∞

∣∣∣∣∣ V (r)
n

V
(r)
n+1

∣∣∣∣∣
exists, then Λ(r) is the smallest among the moduli of the roots of Qr.
Remark 2.4: As we noted before, if

λ(r) = lim
n→∞

V
(r)
n

V
(r)
n+1

exists, then actually λ(r) itself is a root of Qr with the smallest modulus (for example, see [6]).
In fact, we can easily show that Qr(λ(r)) = 0 as follows:

Qr(λ(r)) = lim
n→∞

1− a0
V

(r)
n

V
(r)
n+1

− a1

(
V

(r)
n

V
(r)
n+1

)2

− · · · − ar−1

(
V

(r)
n

V
(r)
n+1

)r

= lim
n→∞

1− a0
V

(r)
n

V
(r)
n+1

− a1
V

(r)
n

V
(r)
n+1

V
(r)
n−1

V
(r)
n

− · · · − ar−1
V

(r)
n

V
(r)
n+1

. . .
V

(r)
n−(r−1)

V
(r)
n+1−(r−1)



= lim
n→∞

1− a0
V

(r)
n

V
(r)
n+1

− a1

V
(r)
n−1

V
(r)
n+1

− · · · − ar−1

V
(r)
n−(r−1)

V
(r)
n+1



= lim
n→∞

V
(r)
n+1 − a0V

(r)
n − a1V

(r)
n−1 − · · · − ar−1V

(r)
n−(r−1)

V
(r)
n+1

= 0.
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Example 2.5: Consider the usual Fibonacci sequence {Fn+1}n≥−1, which is a sequence of
type (1.1) with r = 2. In this case, the corresponding polynomial is Q2(z) = 1 − z − z2.
Furthermore, it is well known that

λ(2) = lim
n→∞

Fn−1

Fn
=
√

5− 1
2

.

It is easy to verify that λ is the root of Q2 with the smallest modulus.

Remark 2.6: In the above results, the condition that V (r)
n 6= 0 for all sufficiently large n is

essential. For example, if r is even and Qr(z) is a polynomial of z2, then in the power series
expansion of fr(z), the coefficients V

(r)
n with n odd are all zero. Thus we cannot consider

V
(r)
n /V

(r)
n+1 for even n.

We have a combinatorial expression for sequences of type (1.1) as follows.

Proposition 2.7: Let {V (r)
n }n≥−r+1 be a sequence of type (1.1) whose coefficients and initial

values are a0, a1, . . . , ar−1 and V (r)
0 = 1, V (r)

−1 = · · · = V
(r)
−r+1 = 0 respectively. Then we have

V (r)
n =

∑
k0+2k1+···+rkr−1=n

(k0 + k1 + · · ·+ kr−1)!
k0!k1! . . . kr−1!

ak00 a
k1
1 . . . a

kr−1
r−1 (2.2)

for all n ≥ −r + 1, where k0, k1, . . . , kr−1 run over nonnegative integers.
Proof: Let us prove the assertion by induction on n. It is easy to see that it is true for

n ≤ 0. Suppose that n ≥ 0 and that the assertion is true for all integers less than or equal to
n. It is easy to see that

r−1∑
j=0

(k0 + k1 + · · ·+ kr−1 − 1)!
k0!k1! . . . kj−1!(kj − 1)!kj+1! . . . kr−1!

=
(k0 + · · ·+ kr−1)!

k0! . . . kr−1!

holds, where we ignore the terms corresponding to those j with kj = 0. Then, using this, we
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see that

V
(r)
n+1 =

r−1∑
j=0

ajV
(r)
n−j

=
r−1∑
j=0

aj
∑

k0+2k1+···+rkr−1=n−j

(k0 + k1 + · · ·+ kr−1)!
k0!k1! . . . kr−1!

ak00 a
k1
1 . . . a

kr−1
r−1

=
r−1∑
j=0

aj
∑

k0+2k1+···+rkr−1=n+1,kj≥1

(k0 + · · ·+ kr−1 − 1)!
k0! . . . (kj − 1)! . . . kr−1!

ak00 . . . a
kj−1
j . . . a

kr−1
r−1

=
∑

k0+2k1+···+rkr−1=n+1

r−1∑
j=0

(k0 + · · ·+ kr−1 − 1)!
k0! . . . (kj − 1)! . . . kr−1!

ak00 . . . a
kj

j . . . a
kr−1
r−1

=
∑

k0+2k1+···+rkr−1=n+1

(k0 + k1 + · · ·+ kr−1)!
k0!k1! . . . kr−1!

ak00 a
k1
1 . . . a

kr−1
r−1 .

This completes the proof.
Compare the above proposition with [5, 12, 16].
Let us denote the right hand side of the equation (2.2) by ρ(n, r). Then by Corollary 2.3,

if

Λ(r) = lim
n→∞

∣∣∣∣ ρ(n, r)
ρ(n+ 1, r)

∣∣∣∣
exists, then (Λ(r))−1 is the largest among the moduli of the roots of the characteristic poly-
nomial Pr(X), and the radius of convergence R of the Taylor series (2.1) of fr(z) = 1/Qr(z)
coincides with Λ(r). Furthermore, if

λ(r) = lim
n→∞

ρ(n, r)
ρ(n+ 1, r)

exists, then λ(r) is a root of Qr as we have seen in Remark 2.4. In other words, we can
approximate a root of Qr with the smallest modulus by using a0, a1, . . . , ar−1 together with
the combinatorial formula (2.2).
Remark 2.8: The Taylor expansion of the complex function fr(z) = 1/Qr(z) in the open
disk D(0;R), with R being as above, is given by

fr(z) =
∞∑
n=0

1
n!
f (n)
r (0)zn.

Thus, from the expression (2.1) we derive that f (n)
r (0) = n!V (r)

n for all n ≥ 0.
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3. THE BERNOULLI-EULER METHOD FOR HOLOMORPHIC FUNCTIONS

In this section, we show that Bernoulli’s method for approximating and finding a root of
a polynomial function presented in §2 can be extended to the case of holomorphic functions.

Let Q(z) be a complex function which is holomorphic in a neighbourhood of 0. Let R1 > 0
be the largest positive number such that Q is holomorphic in the open disk D(0;R1). In order
to study the zeros of Q in D(0;R1) − {0}, we may only consider the case where Q takes the
form

Q(z) = 1−
∞∑
j=0

ajz
j+1. (3.1)

Since Q(0) = 1 6= 0, f(z) = 1/Q(z) has a Taylor expansion in a certain disk centred at 0,
which is of the form

f(z) =
∞∑
n=0

Vnz
n. (3.2)

The identity Q(z)f(z) = 1 implies that we have

Vn+1 =
∞∑
j=0

ajVn−j

for all n ≥ 0, where V0 = 1 and V−j = 0 and for all j ≥ 1. Hence, {Vn}n∈Z is an∞-generalized
Fibonacci sequence as in (1.2) whose initial values are given by V0 = 1 and V−j = 0 for all
j ≥ 1.
Remark 3.1: Conversely, suppose that {Vn}n∈Z is a sequence as in (1.2) such that V0 = 1
and V−j = 0 for all j ≥ 1. Then, we have

f(z) =
∞∑
n=0

Vnz
n =

1
Q(z)

formally, where Q(z) is given by (3.1).
As a direct generalization of Proposition 2.2, we have the following.

Theorem 3.2: Let

Q(z) = 1−
∞∑
j=0

ajz
j+1

be a holomorphic function defined in a neighbourhood of the origin with radius of convergence
R1 > 0. Consider the sequence {Vn}n∈Z as in (1.2) whose coefficients and initial values are
given by {aj}j≥0 and V0 = 1, V−j = 0 for all j ≥ 1, respectively. We suppose that Vn 6= 0 for
all sufficiently large n and that the radius of convergence R of the series (3.2) satisfies R < R1.
Then, we have

lim inf
n→∞

∣∣∣∣ VnVn+1

∣∣∣∣ ≤ R ≤ lim sup
n→∞

∣∣∣∣ VnVn+1

∣∣∣∣
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and R = min{|λ|;λ is a zero of Q}. In particular, we have Q(Reiθ) = 0 for some θ ∈ [0, 2π),
and R ≤ |µ| for all other zeros µ of Q.

Proof: It is well known that R =
(

lim sup
n→∞

n
√
|Vn|

)−1

(for example, see [1]). Let L

be an arbitrary real number such that 0 < L < lim inf
n→∞

|Vn/Vn+1|. Then there exists an N

such that |Vn/Vn+1| > L for all n ≥ N . Therefore, |VN+k| < |VN |L−k for k = 1, 2, 3, . . . ,
and hence N+k

√
|VN+k| < N+k

√
|VN |L−k = L−1 N+k

√
|VN |LN . This implies that R−1 =

lim sup
k→∞

N+k
√
|VN+k| ≤ L−1. Since L is arbitrary, we conclude that lim inf

n→∞
|Vn/Vn+1| ≤ R.

By a similar argument, we can show that R ≤ lim sup
n→∞

|Vn/Vn+1|.

For the second part, first note that Q(z) has no zero in the open disk |z| < R, since
otherwise the radius of convergence R of f(z) = 1/Q(z) would be strictly smaller than R.
Suppose that Q(z) has no zero on the circle |z| = R. Then it has no zero in the open disk
D(0, R + ε) for some ε > 0 (recall that R < R1). It follows that the radius of convergence R
of f(z) = 1/Q(z) is strictly greater than R, which is a contradiction. Therefore, we have R =
min{|λ|;Q(λ) = 0} and we have Q(Reiθ) = 0 for some θ ∈ [0, 2π).

As an immediate corollary, we have the following.
Corollary 3.3: In the above theorem, if

Λ = lim
n→∞

∣∣∣∣ VnVn+1

∣∣∣∣
exists and Λ < R1, then Λ is the smallest among the moduli of the zeros of Q.
Remark 3.4: Even if we assume that Vn 6= 0 for all n, we do not have

R = lim inf
n→∞

∣∣∣∣ VnVn+1

∣∣∣∣ or R = lim sup
n→∞

∣∣∣∣ VnVn+1

∣∣∣∣
in general. For example, set

g(z) = 1 + z2 + z4 + z6 + · · · ,
h(z) = z + z(2z)2 + z(2z)4 + · · · = zg(2z),

and

f(z) = g(z) + h(z) =
∞∑
n=0

Vnz
n.

The radius of convergence of g is equal to 1, while that of h is equal to 1/2. Hence the radius
of convergence of f is equal to R = 1/2. However, we have

Vn
Vn+1

=
{

2−n, if n is even,
2n−1, if n is odd.
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Thus we have

lim sup
n→∞

∣∣∣∣ VnVn+1

∣∣∣∣ = +∞, lim inf
n→∞

∣∣∣∣ VnVn+1

∣∣∣∣ = 0.

So, neither of them gives R in this example.
Remark 3.5: Suppose that

λ = lim
n→∞

Vn
Vn+1

exists. Then we do not know if λ itself is a zero of Q with the smallest modulus. Compare
this with Remark 2.4. In §4 we will give a partial answer to this question.
Remark 3.6: In Corollary 3.3, if Λ ≥ R1, then Q does not have a zero in the open disk
D(0;R1).

By using Proposition 2.7, we can prove the following combinatorial expression for
{Vn}n∈Z .
Proposition 3.7: Let {Vn}n∈Z be a sequence as in (1.2) whose coefficients and initial values
are {aj}j≥0 and V0 = 1, V−j = 0 for all j ≥ 1, respectively. Then we have

Vn = ρ(n, n) =
∑

k0+2k1+···+nkn−1=n

(k0 + k1 + · · ·+ kn−1)!
k0!k1! . . . kn−1!

ak00 a
k1
1 . . . a

kn−1
n−1 (3.3)

for all n ∈ Z.
By Corollary 3.3, if

Λ = lim
n→∞

∣∣∣∣ ρ(n, n)
ρ(n+ 1, n+ 1)

∣∣∣∣
exists and is strictly smaller than R1, then Λ is the smallest among the moduli of the zeros of
Q. Furthermore, the radius of convergence R of the Taylor series (3.2) of f(z) = 1/Q(z)
coincides with Λ. We also have f (n)(0) = n!V (r)

n for all n ≥ 0 as in Remark 2.8.

4. THE BERNOULLI-EULER METHOD BY APPROXIMATION PROCESS

In this section, we will use the results of §2 in order to approximate a zero of a holomorphic
function by using r-generalized Fibonacci sequences with r finite. The idea is very similar to
that of [3].

Let Q(z) be a complex function which is holomorphic in a neighbourhood of the origin.
Let R1 > 0 be the largest positive real number such that Q is holomorphic in the open disk
D(0;R1). As in the previous section, we suppose that its Taylor series expansion takes the
form (3.1).

Let {Vn}n∈Z be an ∞-generalized Fibonacci sequence as in (1.2) whose coefficients and
initial values are {aj}j≥0 and V0 = 1, V−j = 0 for all j ≥ 1, respectively. Note that Vn exists
for all n ∈ Z. The following approximation has been established in [3]:

Vn = lim
r→∞

V (r)
n (4.1)
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for all n ≥ 1, where for each r ≥ 1, the sequence {V (r)
n }n≥−r+1 is a type (1.1) defined by

V
(r)
0 = 1, V (r)

n = 0 for −r + 1 ≤ n ≤ −1, and V
(r)
n+1 = a0V

(r)
n + · · ·+ ar−1V

(r)
n−r+1 for n ≥ 0.

However, in our case, (4.1) is trivial, since we have V (r)
n = Vn for r ≥ n.

Our first result of this section is the following.
Theorem 4.1: Let

Q(z) = 1−
∞∑
j=0

ajz
j+1

be a holomorphic function defined in a neighbourhood of the origin with radius of convergence
R1 > 0. Consider the doubly indexed sequence {V (r)

n }n≥−r+1,r≥1 as above. We suppose the
following.

(1) V
(r)
n 6= 0 for all sufficiently large n and r.

(2) For all sufficiently large r,

λ(r) = lim
n→∞

V
(r)
n

V
(r)
n+1

exists.
(3) λ = limr→∞ λ

(r) exists and we have |λ| < R1.
Then λ is a zero of Q.

Proof: Set Qr(z) = 1− a0z − · · · − ar−2z
r−1 − ar−1z

r. By Remark 2.4, we have

lim
n→∞

Qr

(
V

(r)
n

V
(r)
n+1

)
= Qr

(
lim
n→∞

V
(r)
n

V
(r)
n+1

)
= Qr(λ(r)) = 0

for all sufficiently large r. Set Tr(z) = Q(z)−Qr(z). Note that for every R′1 with 0 < R′1 < R1,
we have

lim
r→∞

Tr(z) = 0

uniformly for |z| ≤ R′1. We have

Q(λ(r)) = lim
n→∞

Q

(
V

(r)
n

V
(r)
n+1

)
= lim
n→∞

Tr

(
V

(r)
n

V
(r)
n+1

)
= Tr(λ(r))

for all sufficiently large r. Hence we have
Q(λ) = lim

r→∞
Q(λ(r)) = lim

r→∞
Tr(λ(r)) = 0.

This completes the proof.
As a corollary, we have the following.
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Corollary 4.2: Let

Q(z) = 1−
∞∑
j=0

ajz
j+1

be a holomorphic function defined in a neighbourhood of the origin with radius of convergence
R1 > 0. Consider the doubly indexed sequence {V (r)

n }n≥−r+1,r≥1 and the sequence {Vn}n∈Z

as above. We suppose the following.

(1) V
(r)
n , Vn 6= 0 for all sufficiently large n and r.

(2) For all sufficiently large r,

λ(r) = lim
n→∞

V
(r)
n

V
(r)
n+1

exists and converges uniformly with respect to r.
(3) λ = limr→∞ λ

(r) exists and we have |λ| < R1.
Then we have

λ = lim
n→∞

Vn
Vn+1

and it is a zero of Q.
Proof: By our assumptions, we see that

lim
n,r→∞

V
(r)
n

V
(r)
n+1

= λ.

Then the result follows from (4.1) together with Theorem 4.1.
Example 4.3: Let us consider the example in [3, §7]. We shall use the same notation. In
this example, since the coefficients ai are all strictly positive real numbers, we have V (r)

n 6= 0
for all n ≥ 0 and r ≥ 1. It has been shown that the sequences {V (r)

n /qnr }n≥1 are uniformly
convergent for r ≥ 1 and that

lim
n→∞

V
(r)
n

qnr
= 1.

Since the sequence {qr}r≥1 converges to q > 0, the sequences {V (r)
n /V

(r)
n+1}n≥1 are also uni-

formly convergent and converge to q−1
r = pr for r ≥ 1. Furthermore, we have

lim
r→∞

pr = p

and 0 < p < R1, where R1 is the radius of convergence of Q (in [3, §7], R1 is written as R).
Thus all the assumptions of Corollary 4.2 are satisfied and p is a root of Q.
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