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1. INTRODUCTION

The beautiful identity
j∑

n=1

F 2
n = FjFj+1 (1.1)

was the inspiration for [2], in which analogous sums involving cubes of Fibonacci numbers were
developed. In turn, [2] was the motivation for [5], [6], and [7]. In the present paper, where
we restrict ourselves to summands that consist of products of at most two terms (as in (1.1)),
our motivation has again been to find sums where the right side has a pleasing form. We have
found it profitable to consider non-alternating sums, alternating sums, and sums that
alternate according to (−1)

n(n+1)
2 . Fibonacci-related sums of the latter type are almost non-

existent in the literature.
During the discovery process we became aware of numerous connections that exist between

various groups of sums. So, rather than merely to present a collection of sums, a priority of
ours has been to highlight the strong thread of unity that exists. Another priority has been to
achieve a balance between elegance and generality, and, to achieve this, experimentation has
led us to employ the four sequences that we now define.

We define the sequence {Wn}, for all integers n, by

Wn = pWn−1 +Wn−2, W0 = a, W1 = b, (1.2)
where a, b, and p are assumed to be arbitrary complex numbers with p(p2 + 2)(p2 + 4) 6= 0.
Then, since ∆ = p2 + 4 6= 0, the roots α and β of x2 − px − 1 = 0 are distinct. Hence the
Binet form (see [3]) for Wn is

Wn =
Aαn −Bβn

α− β
, (1.3)

where A = b− aβ and B = b− aα. The Binet form gives Wn for all integers n.
We define another sequence {Xn} by Xn = Wn+1 +Wn−1, and, with the use of (1.3), we

find that
Xn = Aαn +Bβn for all integers n. (1.4)

For (a, b) = (0, 1) write Wn = Un and Xn = Vn. Thus Wn and Xn generalize Un and Vn,
respectively, which in turn generalize Fn and Ln, respectively. Aspects of {Wn} and {Xn}
have been treated, for example, in [1], [4], and [11], and more recently in [8].

In Sections 2, 3, and 4 we present our results, and then conclude by giving a sample proof.
Since we have decided upon a limited focus, we do not claim that our results are exhaustive.
Indeed, we expect that there is scope for further research along the lines that we set forth.
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In each of our sums the lower limit is allowed to vary. Accordingly, in keeping with
convention, we always assume the upper limit to be greater than the lower limit, and that
either limit may be negative.

2. THE FIRST SET OF SUMS

In this section, and the sections that follow, we systematically consider non-alternating
sums, alternating sums, and sums that alternate according to (−1)

n(n+1)
2 . We begin with the

following three results.

j∑
n=i

Wn =

{
1
pV(j−i+1)/2(W(j+i+1)/2 +W(j+i−1)/2) if j − i ≡ 1(mod 4)
1
pU(j−i+1)/2(X(j+i+1)/2 +X(j+i−1)/2) if j − i ≡ 3(mod 4)

, (2.1)

j∑
n=i

(−1)nWn =


(−1)j

p V(j−i+1)/2(W(j+i+1)/2 −W(j+i−1)/2) if j − i ≡ 1(mod 4)
(−1)j

p U(j−i+1)/2(X(j+i+1)/2 −X(j+i−1)/2) if j − i ≡ 3(mod 4)
, (2.2)

and

j∑
n=i

(−1)
n(n+1)

2 Wn =

{
(−1)

j(j+1)
2 W(j+i)/2(U(j−i+2)/2 + (−1)jU(j−i)/2) if j − i ≡ 0(mod 2)

(−1)
j(j+1)

2 U(j−i+1)/2(W(j+i+1)/2 + (−1)jW(j+i−1)/2) if j − i ≡ 1(mod 2)
.

(2.3)
Now suppose that, in the summands of (2.1) and (2.2), W is replaced by X. Then

if j − i ≡ 3 (mod 4) we modify the right sides by multiplying with ∆ and replacing each
occurrence of X by W . It is now clear what (2.1)-(2.3) become when any of Un, Vn, or Xn is
substituted for Wn in the summand.

3. THE SECOND SET OF SUMS

In this section we consider sums similar to (2.1)-(2.3) in which Wn is replaced by W2n.

j∑
n=i

W2n =

{
1
pVj−i+1Wj+i if j − i ≡ 0(mod 2)
1
pUj−i+1Xj+i if j − i ≡ 1(mod 2)

, (3.1)

and

j∑
n=i

X2n =
∆
p
Uj−i+1Wj+i if j − i ≡ 1 (mod 2). (3.2)

In the alternating sum that follows the parity of the limits is not an issue.

j∑
n=i

(−1)nW2n = (−1)jUj−i+1Wj+i. (3.3)
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For the following group of sums the upper and lower limits are specified as belonging to
certain residue classes modulo 4.

4j∑
n=4i+1

(−1)
n(n+1)

2 W2n =
∆

∆− 2
U4j−4iW4j+4i+1, (3.4)

4j∑
n=4i+3

(−1)
n(n+1)

2 W2n =
1

∆− 2
V4j−4i−2X4j+4i+3, (3.5)

4j+3∑
n=4i

(−1)
n(n+1)

2 W2n =
p

∆− 2
U4j−4i+4X4j+4i+3, (3.6)

4j+3∑
n=4i+2

(−1)
n(n+1)

2 W2n =
p

∆− 2
V4j−4i+2W4j+4i+5. (3.7)

We now make an observation concerning the subscripts on the right sides of (3.1)-(3.7).
The subscripts of U and V are (upper limit-lower limit+1), while the subscripts of W and X
are (upper limit + lower limit). The reader can observe that this also applies to most of the
sums in this paper.

Notice that, in (3.4)-(3.7), one limit of summation is even while the other is odd. Ac-
cordingly, we have observed that each of (3.4)-(3.7) has a dual sum that is obtained with the
use of the rule below. We highlight this rule since it also applies to certain groups of sums in
Section 4.

Rule for the Formation of the Dual Sum
• Replace the even limit by the even limit corresponding to the other residue class modulo

4 and the odd limit by the odd limit corresponding to the other residue class modulo 4
• Calculate the subscripts on the right in accordance with the paragraph following (3.7)
• Multiply the right side by −1.

For example, the dual of (3.7) is

4j+1∑
n=4i

(−1)
n(n+1)

2 W2n =
−p

∆− 2
V4j−4i+2W4j+4i+1. (3.8)

We also remark that if, in (3.5) and (3.6), W in the summand is replaced by X, then on
the right we replace X by W and multiply by ∆. This also applies to the duals of (3.5) and
(3.6). It is now clear what the summation identities of this section become when W in the
summand is replaced by either U, V , or X.
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Finally if, in each sum of this seciton, W2n is replaced by W2n+k, the subscript of W or
X on the right side is simply increased by k. The same applies to each sum where X2n occurs
in the summand.

4. THE THIRD SET OF SUMS

In this section we consider sums where the summand contains a second order product.
Since, for example, UnVn = U2n, sums that involve the product UnVn follow from Section 3.
However, sums that involve U2

n or V 2
n do not follow from anything we have done so far. To

remedy this, and to achieve more generality, we next consider sums in which the summand
contains UnWn, UnXn, VnWn, or VnXn.

In the three sums that follow i and j are assumed to have different parities. Under this
assumption we have

j∑
n=i

UnWn =
1
p
Uj−i+1Wj+i, (4.1)

j∑
n=i

VnWn =
1
p
Uj−i+1Xj+i, (4.2)

and

j∑
n=i

VnXn =
∆
p
Uj−i+1Wj+i, (4.3)

It is clear that the corresponding sum involving the summand UnXn can be obtained from
(4.1).

Next we consider the associated alternating sums, where, unfortunately, the right sides do
not factorise nicely. Nevertheless, for the sake of completeness, we have managed to salvage
something in the spirit of our previous results. Without any assumptions on the parities of
the limits we have

j∑
n=i

(−1)nUnWn =
1
∆
(
(−1)jUj−i+1Xj+i − (j − i+ 1)X0

)
, (4.4)

and

j∑
n=i

(−1)nUnXn = (−1)jUj−i+1Wj+i − (j − i+ 1)W0. (4.5)

In (4.4), if UnWn is replaced with VnXn, the right side is multiplied by ∆ and the sign of the
coefficient of X0 is changed. In (4.5), if UnXn is replaced by VnWn, then only the sign of the
coefficient of W0 is changed on the right side.

The next group of sums has (−1)
n(n+1)

2 in the summand.

4j∑
n=4i+1

(−1)
n(n+1)

2 UnXn =
∆

∆− 2
U4j−4iW4j+4i+1, (4.6)
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4j∑
n=4i+3

(−1)
n(n+1)

2 UnXn =
1

∆− 2
V4j−4i−2X4j+4i+3, (4.7)

4j+3∑
n=4i

(−1)
n(n+1)

2 UnXn =
p

∆− 2
U4j−4i+4X4j+4i+3, (4.8)

4j+3∑
n=4i+2

(−1)
n(n+1)

2 UnXn =
p

∆− 2
V4j−4i+2W4j+4i+5 + 2W0. (4.9)

The right sides of these four sums should be compared, respectively, with the right sides of
(3.4)-(3.7). The only difference occurs in (4.9) where the term 2W0 is added. Furthermore,
each of (4.6)-(4.9) has a dual sum that is obtained with the use of the rule in Section 3. And
from this total of eight sums we obtain a further eight sums if, in each summand, we replace
UnXn by VnWn. In each case the right side remains unchanged, except for (4.9) and its dual,
where the coefficient of W0 undergoes a change in sign.

To conclude the list of sums in this paper we list four more, and, as in the previous
paragraph, we describe how to obtain an additional twelve. We have found the following.

4j∑
n=4i+1

(−1)
n(n+1)

2 UnWn =
1

∆− 2
U4j−4iX4j+4i+1, (4.10)

4j∑
n=4i+3

(−1)
n(n+1)

2 UnWn =
1

∆− 2
V4j−4i−2W4j+4i+3, (4.11)

4j+3∑
n=4i

(−1)
n(n+1)

2 UnWn =
p

∆− 2
U4j−4i+4W4j+4i+3, (4.12)

4j+3∑
n=4i+2

(−1)
n(n+1)

2 UnWn =
1
∆

(
p

∆− 2
V4j−4i+2X4j+4i+5 + 2X0

)
. (4.13)

Each of (4.10)-(4.13) has a dual sum that is obtained with the use of the rule in Section 3.
And from this total of eight sums we obtain a further eight sums if, in each summand, we
replace UnWn by VnXn and multiply the right side by ∆.

Multiplication by ∆ is the only change we are required to make to the right side, except
for (4.13) and its dual, where, in addition, we must change the sign of the coefficient of X0.
For example, the dual of (4.13) is

4j+1∑
n=4i

(−1)
n(n+1)

2 UnWn =
−1
∆

(
p

∆− 2
V4j−4i+2X4j+4i+1 + 2X0

)
, (4.14)
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and an additional sum is

4j+1∑
n=4i

(−1)
n(n+1)

2 VnXn = −
(

p

∆− 2
V4j−4i+2X4j+4i+1 − 2X0

)
. (4.15)

By way of example, if we put Wn = Fn then (3.3), (3.5), and (4.12) become, respectively,

j∑
n=i

(−1)nF2n = (−1)jFj−i+1Fj+1, (4.16)

4j∑
n=4i+3

(−1)
n(n+1)

2 F2n =
1
3
L4j−4i−2L4j+4i+3, (4.17)

and

4j+3∑
n=4i

(−1)
n(n+1)

2 F 2
n =

1
3
F4j−4i+4F4j+4i+3. (4.18)

5. A SAMPLE PROOF

Each of our sums can be proved by induction, and we illustrate by proving (4.12). We
require the following result, which is a special case of (79) in [1].

Xn+k −Xn−k = ∆UkWn, k even. (5.1)

By our earlier assumption on the limits, the smallest allowable value of j is i. Thus, we
begin our inductive proof by verifying that

4i+3∑
n=4i

(−1)
n(n+1)

2 UnWn =
p

p2 + 2
U4W8i+3. (5.2)

We recall that ∆ = p2 + 4 = (α− β)2, replace Un and Wn with their Binet forms, and expand
to obtain

LHS =
1
∆

((X8i+6 −X8i+4)− (X8i+2 −X8i))

=
p

∆
(X8i+5 −X8i+1) (from the recurrence for Xn)

=
p

∆
(X8i+3+2 −X8i+3−2)

= p2W8i+3 (from (5.1))
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which is the right side of (5.2) since U4 = p3 + 2p.
Next, if (4.12) is true for the parameter j, then

4(j+1)+3∑
n=4i

(−1)
n(n+1)

2 UnWn =
p

p2 + 2
U4j−4i+4W4j+4i+3 +

4j+7∑
n=4j+4

(−1)
n(n+1)

2 UnWn, (5.3)

and we are required to prove that the right side of (5.3) is equal to p
p2+2U4j−4i+8W4j+4i+7.

Equivalently, we are required to prove that

4j+7∑
n=4j+4

(−1)
n(n+1)

2 UnWn =
p

p2 + 2
(U4j−4i+8W4j+4i+7 − U4j−4i+4W4j+4i+3).

Proceeding as before, we find

LHS =
1
∆

(X8j+14 −X8j+12 − (X8j+10 −X8j+8))

=
p

∆
(X8j+13 −X8j+9)

= p2W8j+11 (from (5.1)). Similarly

RHS =
p

(p2 + 2)∆
(X8j+15 −X8j+7) =

p

(p2 + 2)∆
× ∆U4W8j+11

1
= LHS,

and the proof is complete.

6. CONCLUDING COMMENTS

In [9] Russell considers the sums
∑j

n=iRn and
∑j

n=iRnSn with no restrictions on the
limits of summation. Here {Rn} and {Sn} are sequences generated by the recurrence Wn =
pWn−1 + qWn−2 with p and q real. In each of these sums several cases are given depending
on the values of p and q. Indeed, there are three cases for the first sum and seven cases for
the second. The character of Russell’s sums and ours is quite different, since our motivation
has been to present sums in which the right side has a pleasing form. In a subsequent paper,
Russell [10] gives finite sums in which each summand consists of products of up to three terms,
where each term is generated by Wn = Wn−1 +Wn−2. Neither of Russell’s papers

contains alternating sums or sums that alternate according to (−1)
n(n+1)

2 . However, they are
the only papers we have seen that contain finite sums where each summand consists of terms
(or products of terms) generated by second-order linear recurrences, and where the lower limit
of summation is allowed to vary.

We discovered each of our results numerically by first considering the Fibonacci and Lucas
sequences. Initially all lower limits were taken to be one, and in each case we varied the upper
limit until the sum could be expressed as a product of Fibonacci and/or Lucas numbers.
We then decided to vary the upper and lower limits simultaneously and then found that our
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results could be translated to the more general sequences defined herein. The process was quite
tedious, and we gratefully acknowledge our use of the computer algebra package Mathematica
3.0.
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