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Please submit all new problem proposals and corresponding solutions to the Problems Edi-
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must be submitted to the Solutions Editor, DR. JAWAD SADEK, Department of Mathemat-
ics and Statistics, Northwest Missouri State University, 800 University Drive, Maryville, MO
64468.

If you wish to have receipt of your submission acknowledged, please include a self-
addressed, stamped envelope.

Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by January 15, 2005. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−
√

5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-976 Proposed by Muneer Jebreel Karameh, Jerusalem, Israel

Prove that (LnLn+3)2 + (2Ln+1Ln+2)2 = (L2n+5 − L2n+1)2.

B-977 Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria

Determine all integers n such that αn = a+ b
√

5 where a and b are integers.

B-978 Proposed by Carl Libis, University of Rhode Island, Kingston, RI

For n > 0, let An = [ai,j ] denote the symmetric matrix with ai,i = i+1 and ai,j =min{i, j}
for all integers i and j with i 6= j. Find the determinant of An.

B-979 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo,
MI

Prove that
lim
n→∞

[
n
(

n+1
√
Fn+1 − n

√
Fn

)]
= 0.
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B-980 Proposed by Steve Edwards, Southern Polytechnic State University,
Marietta, GA

For any integers m and n, evaluate(
Lnα

m + Ln−1α
m−1

)
/
(
Lmα

n + Lm−1α
n−1
)
.

SOLUTIONS

A Constant Sum

B-961 Proposed by Steve Edwards, Southern Polytechnic State University,
Marietta, GA

(Vol. 41, no. 4, August 2003)

Show that Ln+1
αn−1 + Ln

αn is a constant for all nonnegative integers n.

Solution by Kathleen E. Lewis, SUNY Oswego, Oswego, NY

Ln+1

αn−1
+
Ln
αn

=
αn+1 + βn+1

αn−1
+
αn + βn

αn

= α2 + αβ
βn

αn
+ 1 +

βn

αn
.

But αβ = −1, so Ln+1
αn+1 + Ln

αn is equal to the constant α2 + 1 = 5+
√

5
2 .

Paul Bruckman generalized the problem to all integers and Walther Janous generalized it
to include all sequences of the form xn = Aλn + βMn such that xn+2 = axn+1 + xn where λ
and M(λ 6= M) are the solutions of t2 − at− 1 = 0.

Almost all other solutions are similar to the featured one.

Also solved by Luay Q. Abdel-Jaber, Gurdial Arora, Charles Ashbaker, Scott
H. Brown, Paul Bruckman, Mario Catalani, Charles Cook, Kenneth Davenport,
José Luis Diaz-Barrero and Óscar Ciaurri Ramirez (jointly), Ovidiu Furdui, Pentti
Haukkanen, Gerald A. Heuer, Walther Janous, Harris Kwong, Carl Libis, Jaroslav
Seibert, H.-J. Seiffert, James Sellers, and the proposer.

An Infinite Fibonacci Product

B-962 Proposed by Steve Edwards, Southern Polytechnic State University,
Marietta, GA

(Vol. 41, no. 4, August 2003)

Find

∞∏
k=1

F2kF2k+2 + F2k−1F2k+2

F2kF2k+2 + F2kF2k+1
.
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Solution by Charles K. Cook, University of South Carolina Sumter, Sumter, SC

Let

Pn =
n∏
k=1

F2kF2k+2 + F2k−1F2k+2

F2kF2k+2 + F2kF2k+1
=

n∏
k=1

F2k+1F2k+2

F2kF2k+3
.

Then

Pn =
F3F4

F2F5
· F5F6

F6F7
· F7F8

F6F9
· · · F2n−1F2n

F2n−2F2n+1
· F2n+1F2n+2

F2nF2n+3

=
F3

F2
· F2n+2

F2n+3
=

2F2n+2

F2n+3
.

Thus limn→∞ Pn = 2
α = −2β =

√
5− 1 ≈ 1.23608.

Also solved by Paul Bruckman, José Luis Diaz-Barrero and Óscar Ciaurri Ramirez
(jointly), Walther Janous, Harris Kwong, Kathleen Lewis, Jaroslav Seibert, H.-J.
Seiffert, James A. Sellers. Four incorrect solutions were received.

A Simple Lower Bound for a Fibonacci Fraction

B-963 Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo,
MI
(Vol. 41, no. 4, August 2003)

Prove that

F2n+1 − 1
F2n+4 − 3Fn+2 − Ln+2 + 3

≥ 1
n

for all n ≥ 1.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY

Using induction, it is easy to show that for n ≥ 1,

n∑
k=1

Fk = Fn+2 − 1,
n∑
k=1

Lk = Ln+2 − 3,
n∑
k=1

F2k = F2n+1 − 1.

In addition, F2k = FkLk follows immediately from Binet’s formulas. Finally, recall that
Chebyshev inequality asserts that

n
∑
k=1

akbk ≥
(

n∑
k=1

ak

)(
n∑
k=1

bk

)
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for all nondecreasing positive sequences {ak} and {bk}. Combining these results, we find

F2n+1 − 1
F2n+4 − 3Fn+2 − Ln+2 + 3

=
F2n+1 − 1

(Fn+2 − 1)(Ln+2 − 3)
=

∑n
k=1 FkLk

(
∑n
k=1 Fk)(

∑n
k=1 Lk)

≥ 1
n

for all n ≥ 1.

Also solved by Paul Bruckman, Walther Janous, Jaroslav Seibert, H.-J. Seiffert,
and the proposer.

Fibonacci to Lucas

B-964 Proposed by Stanley Rabinowitz, MathPro, Westford, MA
(Vol. 41, no. 4, August 2003)

Find a recurrence relation for rn = Fn

Ln
.

Solution by H.-J. Seiffert, Berlin, Germany

¿From (I8) and (I9) of [1], we know that Ln = Fn−1 + Fn+1 and 5Fn = Ln−1 + Ln+1.
Since Fn + Fn−1 = Fn+1 and Ln + Ln−1 = Ln+1, we then have Fn + Ln = 2Fn+1 and
5Fn + Ln = 2Ln+1. Hence,

rn+1 =
Fn+1

Ln+1
=

Fn + Ln
5Fn + Ln

=
rn + 1
5rn + 1

.

Reference:
1. V.E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci

Association, 1979.
It is interesting to note that only two other solvers gave the same recurrence formula.

Each one of the other solvers gave a different one.

Also solved by Luay Abdel-Jaber, Paul Bruckman, Mario Catalani, Charles Cook,
Ovidiu Furdui, Gerald D. Heuer, Walther Janous, Harris Kwong, Kathleen E.
Lewis, Jaroslav Seibert, and the proposer.

A Fancy Integer

B-965 Proposed by José Luis Díaz-Barrero and Juan José Egozcue, Universitat
Politècnica de Catalunya, Barcelona, Spain
(Vol. 41, no. 4, August 2003)

Let n be a positive integer. Prove that

Fn!(4Fn+1)!
(2Fn)!(Fn−1 + Fn+1)!(2Fn+1)!
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is an integer.

Solution I by Harris Kwong, SUNY Fredonia, Fredonia, NY

Observe that 2Fn+1 − (Fn−1 + Fn+1) = Fn+1 − Fn−1 = Fn. Thus

Fn!(4Fn+1)!
(2Fn)!(Fn−1 + Fn+1)!(2Fn+1)!

=
Fn!

(2Fn)!
· (2Fn+1)!

(Fn−1 + Fn+1)!
· (4Fn+1)!

(2Fn+1)!(2Fn+1)!

=
2Fn+1(2Fn+1 − 1) · · · (Fn + 1)

2Fn(2Fn − 1) · · · (Fn + 1)

(
4Fn+1

2Fn+1

)

= 2Fn+1(2Fn+1 − 1) · · · (2Fn+1 − 2Fn + 1)
(

4Fn+1

2Fn+1

)

= 2Fn+1(2Fn+1 − 1) · · · (2Fn−1 + 1)
(

4Fn+1

2Fn+1

)
,

which is obviously an integer.

Solution II by Walther Janous, Ursulinengymnasium, Innsbruck, Austria

We show a more general result, namely: Let

(xn, n ≥ 1)

be a sequence of nonnegative entire numbers satisfying

xn ≤ 2xn+1.

Then all numbers

xn!(4xn+1)!
(2xn)!(2xn+1 − xn)!(2xn+1)!

are integers.
Indeed, let p be an arbitrary prime.
As the maximum-exponent of pe dividing a factorial N ! equals

e =
∑
j≥1

[
N

pj

]
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where [x] denotes the floor-function, the claimed result will follow from the inequalities

[
xn
pj

]
+
[

4xn+1

pj

]
≥
[

2xn
pj

]
+
[

2xn+1 − xn
pj

]
+
[

2xn+1

pj

]

for j = 1, 2, 3, . . . .
All of these inequalities are of the type

[a] + [4b] ≥ [2a] + [2b− a] + [2b] (*)

where a and b are nonnegative (real) numbers such that a ≤ 2b.
We now will show the validity of (∗) by distinguishing several cases for a and b.
First of all, by cancelling out the entire parts of a and b it’s enough to consider (∗) for

a, b in [0, 1).
• Let 0 < a < 1/2. Then (∗) becomes

[4b] ≥ [2b− a] + [2b].

This is true because
[2b− a] + [2b] ≤ [2b− a+ 2b] ≤ [4b]

• 1/2 ≤ a < 1. Then b = a/2 + t ≥ 1/4, where 0 ≤ t < 1− a/2. Furthermore (∗) becomes

[
4
(a

2
+ t
)]
≥ 1 +

[
2
(a

2
+ t
)
− a
]

+
[
2
(a

2
+ t
)]

or equivalently,
2a+ 4t] ≥ 1 + [2t] + [a+ 2t] (**)

(i) If [2t] = 0, then (∗∗) becomes

[2(a+ 2t)] ≥ 1 + [a+ 2t].

But this inequality is evident for any of the two cases 1/2 ≤ a+2t < 1 and 1 ≤ a+2t < 2,
respectively.
(ii) If [2t] = 1 we get for (∗∗)

[2(a+ 2t)] ≥ 2 + [a+ 2t].

This inequality is evident as now 3/2 ≤ a+ 2t < 2 and the proof is complete.
The desired problem is the special case xn = Fn.

Also solved by Paul S. Bruckman and the proposer.
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