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1. INTRODUCTION AND NOTATIONS

The Bernoulli polynomials Bn(X) are defined by

teXt

et − 1
=
∞∑

n=0

Bn(X)tn

n!
, |t| < 2π.

And the Bernoulli numbers Bn can be defined by Bn = Bn(0). The Euler polynomials En(X)
are defined by

2eXt

et + 1
=
∞∑

n=0

En(X)tn

n!
, |t| < π.

And the Euler numbers En are defined by En = 2nEn(1/2). These numbers and polynomi-
als arise in some combinatorial contexts, and have been investigated by many authors. For
example, see Powell [6], Young [7], and Zhang [8]. The well-known congruences among these
numbers or polynomials are the classical Kummer’s congruences:
Theorem 1.1: (ref. page 239 in [4]). Suppose p is prime, and m,n and e are positive integers
such that m and n are even, and p− 1 6 | m,n. Then one has

1
m

(1− pm−1)Bm ≡
1
n

(1− pn−1)Bn (mod pe),

if m ≡ n (modϕ(pe)).
Kummer’s congruences play important roles in the p-adic interpolation of the Riemann

zeta function [5]. In 1997, Eie and Ong [3] generalized Kummer’s congruences to Bernoulli
polynomials via p-adic interpolation on p-adic spaces.
Theorem 1.2: (ref. [3]). Suppose that p is an odd prime, and m,n, and e are positive integers
such that p−1 6 | m,n. Then for any positive integer k relatively prime to p and positive integers
0 ≤ α, β ≤ k − 1 such that α+ jk = pβ for some j with 0 ≤ j ≤ p− 1, one has

1
m

{
Bm

(α
k

)
− pm−1Bm

(
β

k

)}
≡ 1
n

{
Bn

(α
k

)
− pn−1Bn

(
β

k

)}
(mod pe),

if m ≡ n (mod ϕ(pe)).
In this paper, we prove the following theorem which is a generalization of Kummer’s

congruences on Euler polynomials.
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Theorem 1.3: Suppose that p is an odd prime, and m,n, and e are positive integers such that
p − 1 6 | m,n. Then for any positive integer k relatively prime to p and positive integers α, β
such that α+ 2jk = pβ with 0 ≤ j ≤ (p− 1)/2, one has

Em−1

(α
k

)
− pm−1Em−1

(
β

k

)
≡ En−1

(α
k

)
− pn−1En−1

(
β

k

)
(mod pe),

if m ≡ n (mod ϕ(pe)).
The classical congruences on Euler numbers (ref. page 124 of [2])

E4n ≡ 5 (mod 60) and E4n−2 ≡ −1 (mod 60), (1)

are normally attributed to Stern. In 1998, Zhang [8] deduced some other congruences on Euler
numbers:
Proposition 1.4: (ref. Corollary 1 in [8]). For any odd prime p, we have the congruence

Ep−1 ≡
{

0 (mod p), if 4|p− 1,
2 (mod p), if 4|p− 3.

Proposition 1.5: (ref. Corollary 2 in [8]). For any integer n > 0, we have the congruences
(1) E2n+2 − E2n ≡ 0 (mod 6),
(2) E2n+4 − 10E2n+2 + 9E2n ≡ 0 (mod 24),
(3) E2n+6 − E2n ≡ 0 (mod 42).

Here we derive some new congruences on Euler numbers:
Theorem 1.6: Assume δ = pn1

1 pn2
2 . . . pnr

r , where pi are odd primes, and ni are positive
integers for i = 1, . . . , r. Let N = max

1≤i≤r
ni and M = l.c.m.{2k, ϕ(pn1

1 ), . . . , ϕ(pnr
r )}, where k is

a non-negative integer. Then for any positive integers m,n with min{2m, 2n} ≥ N , we have

E2m ≡ E2n (mod 2kδ)

if 2m ≡ 2n (mod M).
In the last section, we give an algorithm to treat the congruences of Euler numbers for

any modulus. Using this algorithm we can easily derive all the above congruences.

2. CONGRUENCES WITH EULER POLYNOMIALS

Lemma 2.1: Suppose that p is an odd prime, and m, k are positive integers. Then for any
positive integers α, β, one has

Em−1

(α
k

)
− pm−1Em−1

(
β

k

)

=
2m

m

[
Bm

(
α+ k

2k

)
− pm−1Bm

(
β + k

2k

)]
− 2m

m

[
Bm

( α
2k

)
− pm−1Bm

(
β

2k

)]
.
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Proof: By formula 23.1.27 of [1]

Em−1(x) =
2m

m

[
Bm

(
x+ 1

2

)
−Bm

(x
2

)]
.

Utilizing this to find the following difference in values of Em−1(x) for x = α/k and x = β/k
yields

Em−1

(α
k

)
− pm−1Em−1

(
β

k

)

=
2m

m

[
Bm

(
α+ k

2k

)
−Bm

( α
2k

)]
− pm−1 2m

m

[
Bm

(
β + k

2k

)
−Bm

(
β

2k

)]
.

This completes our proof.
Now we prove the generalization of Kummer’s congruences on Euler polynomials in the

following theorem which is stated as the same with Theorem 1.3 in Section 1.
Theorem 2.2: Suppose that p is an odd prime, and m,n, and e are positive integers such that
p − 1 6 | m,n. Then for any positive integer k relatively prime to p and positive integers α, β
such that α+ 2jk = pβ with 0 ≤ j ≤ (p− 1)/2, one has

Em−1

(α
k

)
− pm−1Em−1

(
β

k

)
≡ En−1

(α
k

)
− pn−1En−1

(
β

k

)
(mod pe),

if m ≡ n (mod ϕ(pe)).
Proof: Suppose p is an odd prime, and k is relatively prime to p. This implies that

(2k, p) = 1. Applying Theorem 1.2 (ref. [3]), and then for any positive integers α, β such that
α+ j · (2k) = pβ with 0 ≤ j ≤ p−1

2 , one has

1
m

{
Bm

( α
2k

)
− pm−1Bm

(
β

2k

)}
≡ 1
n

{
Bn

( α
2k

)
− pn−1Bn

(
β

2k

)}
(mod pe),

if m ≡ n (mod ϕ(pe)).
Since p−1

2 ≤ j+ p−1
2 ≤ p−1 and (α+k)+

(
j + p−1

2

)
· (2k) = (k+β)p. Applying Theorem

1.2 again, it follows that

1
m

{
Bm

(
α+ k

2k

)
− pm−1Bm

(
β + k

2k

)}
≡ 1
n

{
Bn

(
α+ k

2k

)
− pn−1Bn

(
β + k

2k

)}
(mod pe).

From Fermat’s Little Theorem we have 2m ≡ 2n (mod pe). Combining these three congruences
together, we find that

2m

m

[
Bm

(
α+ k

2k

)
− pm−1Bm

(
β + k

2k

)]
− 2m

m

[
Bm

( α
2k

)
− pm−1Bm

(
β

2k

)]

≡ 2n

n

[
Bn

(
α+ k

2k

)
− pn−1Bn

(
β + k

2k

)]
− 2n

n

[
Bn

( α
2k

)
− pn−1Bn

(
β

2k

)]
(mod pe).
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Applying Lemma 2.1, we conclude our assertion.
In particular, we let α = β = k = 1 in Theorem 2.2. And we apply the fact that (see e.g.

formula 23.1.20 of [1])
En(0) = −2(n+ 1)−1(2n+1 − 1)Bn+1.

We obtain
(1− pm−1)Em−1(1) ≡ (1− pn−1)En−1(1) (mod pe)

(1− pm−1)Em−1(0) ≡ (1− pn−1)En−1(0) (mod pe)

(1− pm−1)
(−2)(2m − 1)Bm

m
≡ (1− pn−1)

(−2)(2n − 1)Bn

n
(mod pe).

By Euler’s generalization of Fermat’s Little Theorem we can divide

−2(2m − 1) ≡ −2(2n − 1) (mod pe)

from the above congruence and this gives the classical Kummer’s congruences.

3. CONGRUENCES WITH EULER NUMBERS

Since En(1/2) = 2−nEn, if we let k = 2 in Theorem 2.2, then we could reformulate
congruences in terms of Euler numbers.
Theorem 3.1: Suppose that p is an odd prime and m,n be non-negative integers. Then if
2m ≡ 2n (mod ϕ(pe)), we have{

(1− p2m)E2m ≡ (1− p2n)E2n (mod pe), if 4|p− 1,
(1 + p2m)E2m ≡ (1 + p2n)E2n (mod pe), if 4|p− 3.

Proof: First, let p be an odd prime with 4|p − 1, that is, p = 4j + 1 for some positive
integer j. Clearly, it is the case that α = β = 1 in Theorem 2.2, therefore

Em−1

(
1
2

)
− pm−1Em−1

(
1
2

)
≡ En−1

(
1
2

)
− pn−1En−1

(
1
2

)
(mod pe)

21−m(1− pm−1)Em−1 ≡ 21−n(1− pn−1)En−1 (mod pe),

if m ≡ n (mod ϕ(pe)) and p − 1 is not a divisor of m. Since Fermat’s Little Theorem gives
21−m ≡ 21−n (mod pe), we can divide it from the above congruence. And let m = 2m′ + 1
and n = 2n′ + 1 where m′, n′ are non-negative integers. It is clear that p − 1 is not a divisor
of 2m′ + 1 for any odd prime p. Then we get our assertion for the case 4|p− 1.

Second, let p be an odd prime number with 4|p−3, that is, p = 4j+3 for some non-negative
integer j. Clearly, it is the case that α = 3, β = 1 in Theorem 2.2, therefore

Em−1

(
3
2

)
− pm−1Em−1

(
1
2

)
≡ En−1

(
3
2

)
− pn−1En−1

(
1
2

)
(mod pe)
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if m ≡ n (mod ϕ(pe)) and p− 1 is not a divisor of m. By formula 23.1.6 of [1]

En

(
3
2

)
= 2−n+1 − En

(
1
2

)
, for n ≥ 0.

Substituting this in the above congruence, one has

22−mEm−1

(
1
2

)
− pm−1Em−1

(
1
2

)
≡ 22−n − En−1

(
1
2

)
− pn−1En−1

(
1
2

)
(mod pe)

22−m − 21−m(1 + pm−1)Em−1 ≡ 22−n − 21−n(1 + pn−1)En−1 (mod pe).

Again using Fermat’s Little Theorem, we can cancel

22−m ≡ 22−n, 21−m ≡ 21−n (mod pe),

from the above congruence. Similarly we let m = 2m′ + 1 and n = 2n′ + 1 where m′, n′ are
non-negative integers. The condition p− 1 is not a divisor of 2m′+ 1 always holds for any odd
prime p. Then the proof is complete.

Now we treat the situation when p = 2.
Lemma 3.2: For any non-negative integer n, we have

En = 1 +
1

n+ 1

n+1∑
k=2

(
n+ 1
k

)
2k(1− 2k)Bk. (2)

Proof: By formula 23.1.7 of [1]

En(x+ h) =
n∑

k=0

(
n

k

)
Ek(x)hn−k.

We substitute x = 0 and h = 1/2 in the above equation. Then

2−nEn = En

(
1
2

)
=

n∑
k=0

(
n

k

)
Ek(0)2k−n.

Now (see e.g. formula 23.1.20 of [1])

En(0) = −2(n+ 1)−1(2n+1 − 1)Bn+1,

and the above equality becomes

En =
n∑

k=0

(
n

k

)
2k+1(1− 2k+1)

k + 1
Bk+1

= 1 +
1

n+ 1

n+1∑
k=2

(
n+ 1
k

)
2k(1− 2k)Bk.
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This gives our assertion.
We set n = 2m − 1 in Eq. (2) and since E2m−1 = 0, we get an identity in Bernoulli

numbers

m∑
k=1

(
2m
2k

)
22k(22k − 1)B2k = 2m,

for any positive integer m.
In the following we will discuss the congruences of Euler numbers modulo 2r for some

integer r. Here we introduce two notations. The notation 2h ‖ t means 2h divides t, but 2h+1

does not divide t. To simplify the writing we denote

Ck(n) =
1

n+ 1

(
n+ 1
k

)
2k(1− 2k)Bk.

Proposition 3.3: For any non-negative integers m and r with 2m ≥ r, we have

E2m ≡ 1 +
1

2m+ 1

[r/2]∑
k=1

(
2m+ 1

2k

)
22k(1− 22k)B2k (mod 2r),

where [r/2] denotes the greatest integer not exceeding r/2.
Proof: We consider Eq. (2) in Lemma 3.2, i.e.

En = 1 +
1

n+ 1

n+1∑
k=2

(
n+ 1
k

)
2k(1− 2k)Bk

= 1 +
n+1∑
k=2

Ck(n).

Let n = 2m and from the Staudt-Clausen Theorem we know 2Bk is 2-integral, thus the number
h with 2h ‖ Ck(n) satisfies h ≥ k − 1. Thus when 2m ≥ k − 1 ≥ r,

Ck(2m) ≡ 0 (mod 2r).

Therefore

E2m ≡ 1 +
r∑

k=2

Ck(2m) (mod 2r)

≡ 1 +
r∑

k=2

1
2m+ 1

(
2m+ 1
k

)
2k(1− 2k)Bk (mod 2r)

≡ 1 +
1

2m+ 1

[r/2]∑
k=1

(
2m+ 1

2k

)
22k(1− 22k)B2k (mod 2r),
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for 2m ≥ r.
Lemma 3.4: If 2h ‖ k!, then h ≤ k − 1.

Proof: Clearly, the power of 2 that divides k! is given by

h =
[
k

2

]
+
[
k

22

]
+ · · · .

Since k is finite, [k/2m] = 0 for all m sufficiently large. Thus

h <
k

2
+

k

22
+ · · · = k.

Therefore h ≤ k − 1.
Proposition 3.5: For any non-negative integers m,n, and r, we have

E2m ≡ E2n (mod 2r),

if 2m ≡ 2n (mod 2r).
Proof: From the Staudt-Clausen Theorem we know 2B2k is 2-integral and the result

of Lemma 3.4 gives 22k−1/(2k)! is also 2-integral. Therefore 22k−1(1 − 22k)2B2k/(2k)! is
2-integral. This gives for 2k ≤ min{2m, 2n},

C2k(2m) = 2m · (2m− 1) · · · (2m+ 2− 2k) · 22k−1

(2k)!
(1− 22k) · (2B2k)

≡ 2n · (2n− 1) · · · (2n+ 2− 2k) · 22k−1

(2k)!
(1− 22k) · (2B2k) (mod 2r)

= C2k(2n).
We assume 2m < r, so 2n = 2m + (a · 2r) ≥ 2r > r for some positive integer a. If

k ≥ m + 1, then (2n − 2m) divides 2n · (2n − 1) · · · (2n − 2k + 2). This gives C2k(2n) ≡ 0
modulo 2r. Hence by Proposition 3.3

E2n ≡ 1 +
[r/2]∑
k=1

C2k(2n) (mod 2r)

≡ 1 +
m∑

k=1

C2k(2n) (mod 2r)

≡ 1 +
m∑

k=1

C2k(2m) ≡ E2m (mod 2r).
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And the remaining case min{2m, 2n} ≥ r is found by applying C2k(2m) ≡ C2k(2n) for k =
1, . . . , [r/2]. The proof is complete.

Now we combine the above proposition and Theorem 3.1, we give a congruence relation
between Euler numbers for any modulus which is stated as the same with Theorem 1.6 in
Section 1.
Theorem 3.6: Assume δ = pn1

1 pn2
2 · · · pnr

r , where pi are odd primes, and ni are positive
integers for i = 1, · · · , r. Let N = max

1≤i≤r
ni and M = l.c.m.{2k, ϕ(pn1

1 ), · · · , ϕ(pnr
r )}, where k

is a non-negative integer. Then for any positive integers m, n with min{2m, 2n} ≥ N , we
have

E2m ≡ E2n (mod 2kδ)

if 2m ≡ 2n (mod M).
Proof: Since 2m ≡ 2n (mod ϕ(pni

i )) for i = 1, · · · , r, we may apply Theorem 3.1 and
obtain {

(1− p2m
i )E2m ≡ (1− p2n

i )E2n (mod pni
i ), if 4|pi − 1;

(1 + p2m
i )E2m ≡ (1 + p2n

i )E2n (mod pni
i ), if 4|pi − 3.

However, both 2m and 2n are not less than N = max{n1, · · · , nr}, thus

E2m ≡ E2n (mod pni
i ), for i = 1, · · · , r.

Combining the congruences in Proposition 3.5, we complete our proof.
Remark 3.7: In particular we let n = 0 in the congruences in Theorem 3.1 and Proposition
3.5. We obtain 

E2km ≡ 1 (mod 2k);

(1− pϕ(p
ni
i

)m

i )Eϕ(p
ni
i

)m ≡ 0 (mod pni
i ), if 4|pi − 1;

(1 + p
ϕ(p

ni
i

)m

i )Eϕ(p
ni
i

)m ≡ 2 (mod pni
i ), if 4|pi − 3,

for any non-negative integer m. Since ϕ(pni
i ) > ni for any odd prime pi and non-negative

integer ni, we have 
E2km ≡ 1 (mod 2k);
Eϕ(p

ni
i

)m ≡ 0 (mod pni
i ), if 4|pi − 1;

Eϕ(p
ni
i

)m ≡ 2 (mod pni
i ), if 4|pi − 3,

for any positive integer m.
Letting ni = 1 in the above congruences, we have the following corollary which is a

generalization of Corollary 1 in [8].
Corollary 3.8: For any odd prime p and any positive integer m, we have

E(p−1)m ≡
{

0 (mod p), if 4|p− 1,
2 (mod p), if 4|p− 3.
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It is clearly we have following corollary which can be stated in a similar manner as The-
orems 1.1, 1.2, and 1.3.
Corollary 3.9: Let

∏t
i=1 p

ni
i be the prime-power factorization of an odd integer D. Let

N = max
1≤i≤t

ni, and M = lcm
1≤i≤t

ϕ(pni
i ). Then

Em ≡ En (mod D),

if m ≡ n(mod M) and min{m,n} ≥ N .
¿From Eq. (1) we know

E4n ≡ 1 (mod 4) and E4n−2 ≡ 3 (mod 4).

Therefore, the condition that D is an odd integer in the above corollary cannot be changed to
that D is an integer.

4. ALGORITHM AND APPLICATIONS

Combining Theorem 3.6 and Remark 3.7, we can given an algorithm to list all the con-
gruences of Euler numbers for any modulus.
Algorithm 4.1: Given an arbitrary positive integer m.
Step 1: Write down the prime factorization of m as

m = 2kpa1
1 p

a2
2 . . . par

r qb1
1 q

b2
2 . . . qbs

s ,

where 4 divides both (pi − 1) and (qj − 3) for i = 1, . . . , r; j = 1, . . . , s.
Step 2: Compute

M = l.c.m.{2k, ϕ(pa1
1 ), . . . , ϕ(par

r ), ϕ(qb1
1 ), . . . , ϕ(qbs

s )}.

and let
N = max{ai, bj |i = 1, . . . , r, j = 1, . . . , s}.

Step 3: Use the Chinese Remainder Theorem to solve
EM(n+1) ≡ 1 (mod 2k);
EM(n+1) ≡ 0 (mod pai

i ), for i = 1, . . . , r;

EM(n+1) ≡ 2 (mod q
bj

j ), for j = 1, . . . , s,

for any non-negative integer n, and denote the solution by x0 modulo m.
Step 4: For any non-negative integer n, we can list all the congruences of Euler numbers
modulo m as

{
EM(n+1) ≡ x0 (mod m),
EMn+2i ≡ E2i (mod m), for N ≤ 2i ≤ N +M − 2 and 2i 6≡ 0 (mod M).

Using Algorithm 4.1 we can easily derive the classical congruences in Euler numbers which
is attributed to Stern (ref. page 124 of [2]).
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Proposition 4.2: For any positive integer n, we have{
E4n ≡ 5 (mod 60)
E4n−2 ≡ −1 (mod 60).

Proof: Since 60 = 22 · 3 · 5, M = l.c.m.{22ϕ(3), ϕ(5)} = 4, and N = 1. We apply the
Chinese Remainder Theorem to solve

E4(n+1) ≡ 1 (mod 22);
E4(n+1) ≡ 0 (mod 5);
E4(n+1) ≡ 2 (mod 3),

and we obtain
E4(n+1) ≡ 5 (mod 60).

Since 1 = N ≤ 2i ≤ N +M − 2 = 3 and 2i 6≡ 0 (mod 4), this forces i = 1. Therefore we
have {

E4n+4 ≡ 5 (mod 60)
E4n+2 ≡ E2 ≡ −1 (mod 60),

for any non-negative integer n.
In fact, the above congruences give

E2n ≡ 5 (mod 6),

for any positive integer n. This is exactly the congruences in Corollary 2(a) in [8].
Proposition 4.3: For any positive integer n,

E6n ≡ 65 (mod 126),
E6n−2 ≡ 5 (mod 126),
E6n−4 ≡ −1 (mod 126).

Proof: Since 126 = 2 · 32 · 7, M = l.c.m.{2, ϕ(32), ϕ(7)} = 6, and N = 2. We apply the
Chinese Remainder Theorem to solve

E6(n+1) ≡ 1 (mod 2);
E6(n+1) ≡ 2 (mod 7);
E6(n+1) ≡ 2 (mod 32),

and we obtain
E6(n+1) ≡ 65 (mod 126).

Since 2 = N ≤ 2i ≤ N +M −2 = 6 and 2i 6≡ 0 (mod 6), this forces i = 1 and 2. Therefore
E6n+6 ≡ 65 (mod 126)
E6n+2 ≡ E2 ≡ −1 (mod 126)
E6n+4 ≡ E4 ≡ 5 (mod 126),
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for any non-negative integer n.
The above congruences give us

E2n+6 ≡ E2n (mod 126),

for any positive integer n. This is clearly a generalization of Corollary 2(c) in [8].
Proposition 4.4: For any positive integer n,

E8n ≡ 65 (mod 120),
E8n−2 ≡ −61 (mod 120),
E8n−4 ≡ 5 (mod 120),
E8n−6 ≡ −1 (mod 120).

Proof: Since 120 = 23 · 3 · 5, M = l.c.m.{23, ϕ(3), ϕ(5)} = 8, and N = 1. We apply the
Chinese Remainder Theorem to solve

E8(n+1) ≡ 1 (mod 8);
E8(n+1) ≡ 0 (mod 5);
E8(n+1) ≡ 2 (mod 3),

and we obtain
E8(n+1) ≡ 65 (mod 120).

Since 1 = N ≤ 2i ≤ N + M − 2 = 7 and 2i 6≡ 0 (mod 8), this forces i = 1, 2, and 3.
Therefore 

E8n+8 ≡ 65 (mod 120)
E8n+2 ≡ E2 ≡ −1 (mod 120)
E8n+4 ≡ E4 ≡ 5 (mod 120)
E8n+6 ≡ E6 ≡ −61 (mod 120),

for any non-negative integer n.
Corollary 4.5: For any integer n > 0,

E2n − 9E2n−2 ≡ 14 (mod 120).

Proof: We just need to substitute n = 4k, 4k + 1, 4k + 2, and 4k + 3 in the above
congruences. Applying the results in Proposition 4.4, the assertion is proved.

Also the above result is a generalization of Corollary 2(b) in [8].
Proposition 4.6: For any non-negative integer n,{

E144n+2i ≡ E2i (mod 323), for 1 ≤ i ≤ 71,
E144n+144 ≡ 306 (mod 323).
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Proof: Since 323 = 17 · 19, M = l.c.m.{ϕ(17), ϕ(19)} = 144, and N = 1. We apply the
Chinese Remainder Theorem to solve{

E144(n+1) ≡ 0 (mod 17);
E144(n+1) ≡ 2 (mod 19),

and we obtain
E144(n+1) ≡ 306 (mod 323).

Since 1 = N ≤ 2i ≤ N + M − 2 = 143 and 2i 6≡ 0 (mod 144), this gives E144n+2i ≡ E2i

(mod 323), for 1 ≤ i ≤ 71. Therefore we complete the proof.
Proposition 4.7: For any non-negative integer n,

E16n+2 ≡ −1 (mod 68),
E16n+4 ≡ 5 (mod 68),
E16n+6 ≡ 7 (mod 68),
E16n+8 ≡ 25 (mod 68),


E16n+10 ≡ 3 (mod 68),
E16n+12 ≡ −31 (mod 68),
E16n+14 ≡ −9 (mod 68),
E16n+16 ≡ 17 (mod 68).

Proof: Since 68 = 22 ·17, M = l.c.m.{22, ϕ(17)} = 16, and N = 1. We apply the Chinese
Remainder Theorem to solve {

E16(n+1) ≡ 1 (mod 4);
E16(n+1) ≡ 0 (mod 17),

and we obtain
E16(n+1) ≡ 17 (mod 68).

Since 1 = N ≤ 2i ≤ N +M − 2 = 15 and 2i 6≡ 0 (mod 16), this gives E16n+2i ≡ E2i (mod
68), for i = 1, 2, . . . , 7. This completes our proof.
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