SOME IDENTITIES INVOLVING THE FIBONACCI NUMBERS AND LUCAS NUMBERS

Wenpeng Zhang

Research Center for Basic Science, Xi'an Jiaotong University Xi'an Shaanxi, People's Republic of China (Submitted August 2001–Final Revision March 2003)

1. INTRODUCTION AND RESULTS

As usual, the Fibonacci sequence $\{F_n\}$ and the Lucas sequences $\{L_n\}(n=0,1,2,\ldots,)$ are defined by the second-order linear recurrence sequences

$$F_{n+2} = F_{n+1} + F_n$$
 and $L_{n+2} = L_{n+1} + L_n$

for $n \geq 0$, $F_0 = 0$, $F_1 = 1$, $L_0 = 2$ and $L_1 = 1$. These sequences play a very important role in the studied of the theory and application of mathematics. Therefore, the various properties of F_n and L_n were investigated by many authors. For example, R. L. Duncan [2] and L. Kuipers [5] proved that (log F_n) is uniformly distributed mod 1. Neville Robbins [4] studied the Fibonacci numbers of the forms $px^2 \pm 1$, $px^3 \pm 1$, where p is a prime. The author [6] and Fengzhen Zhao [3] obtained some identities involving the Fibonacci numbers. In this paper, as a generalization of [3] and [6], we shall use elementary methods to study the calculating problems of the general summations

$$\sum_{a_1+a_2+\dots+a_k=n} F_{m(a_1+1)} \cdot F_{m(a_2+1)} \dots F_{m(a_k+1)}$$
 (1)

and

$$\sum_{a_1 + a_2 + \dots + a_k = n} L_{ma_1} \cdot L_{ma_2} \dots L_{ma_k}, \tag{2}$$

and give two exact calculating formulas, where the summation is taken over all k-dimension nonnegative integer coordinates (a_1, a_2, \ldots, a_k) such that $a_1 + a_2 + \cdots + a_k = n, k$ and m are any positive integers, and n be any nonnegative integer.

For convenience, we first define Chebyshev polynomials of the first and second kind $T(x) = \{T_n(x)\}$ and $U(x) = \{U_n(x)\}(n = 0, 1, 2, ...,)$ as follows:

$$T_{n+2}(x) = 2xT_{n+1}(x) - T_n(x)$$
(3)

and

$$U_{n+2}(x) = 2xU_{n+1}(x) - U_n(x)$$
(4)

for $n \geq 0$, $T_0(x) = 1$, $T_1(x) = x$, $U_0(x) = 1$ and $U_1(x) = 2x$. Let $U_n^{(k)}(x)$ denote the k^{th} derivative of $U_n(x)$ with respect to x. We will use generating functions for the sequences $T_n(x)$ and $U_n(x)$ and their partial derivatives to prove the following two theorems.

Theorem 1: For any positive integer k, m and nonnegative integer n, we have the identity

$$\sum_{a_1+a_2+\cdots+a_{k+1}=n} F_{m(a_1+1)} \cdot F_{m(a_2+1)} \dots F_{m(a_{k+1}+1)} = (-i)^{mn} \frac{F_m^{k+1}}{2^k \cdot k!} U_{n+k}^{(k)} \left(\frac{i^m}{2} L_m\right),$$

where i is the square root of -1.

Theorem 2: For any positive integer k, m and nonnegative integer n, we have

$$\sum_{a_1+a_2+\dots+a_{k+1}=n+k+1} L_{ma_1} \cdot L_{ma_2} \dots L_{ma_{k+1}}$$

$$= (-i)^{m(n+k+1)} \frac{2}{k!} \sum_{h=0}^{k+1} \left(\frac{i^{m+2}}{2} L_m \right)^h \binom{k+1}{h} U_{n+2k+1-h}^{(k)} \left(\frac{i^m}{2} L_m \right),$$

where $\binom{k+1}{h} = \frac{(k+1)!}{h! \cdot (k+1-h)!}$.

From these two theorems we may immediately deduce the following corollaries: Corollary 1: For any positive integer m and nonnegative integer n, we have the identities

$$\sum_{a_1+a_2+a_3=n} F_{m(a_1+1)} \cdot F_{m(a_2+1)} \cdot F_{m(a_3+1)} = \frac{3}{2} \frac{(-1)^{m-1} F_m^2}{4 - (-1)^m L_m^2} \times$$

$$\left[\frac{(n+2)(n+4)}{3}F_{m(n+3)} - \frac{2(n+3)L_m}{4 - (-1)^m L_m^2}F_{m(n+2)} + \frac{(n+2)(-1)^m L_m^2}{4 - (-1)^m L_m^2}F_{m(n+3)}\right].$$

In particular, for m = 2, 3, 4 and 5, we have the identities

$$\sum_{a_1+a_2+a_3=n} F_{2(a_1+1)} \cdot F_{2(a_2+1)} \cdot F_{2(a_3+1)} = \frac{1}{50} [18(n+3)F_{2n+4} + (n+2)(5n-7)F_{2n+6}],$$

$$\sum_{a_1+a_2+a_3=n} F_{3(a_1+1)} \cdot F_{3(a_2+1)} \cdot F_{3(a_3+1)} = \frac{1}{50} [(n+2)(5n+8)F_{3n+9} - 6(n+3)F_{3n+6}],$$

$$\sum_{a_1+a_2+a_3=n} F_{4(a_1+1)} \cdot F_{4(a_2+1)} \cdot F_{4(a_3+1)} = \frac{1}{150} [(n+2)(15n+11)F_{4(n+3)} + 14(n+3)F_{4(n+2)}]$$

and

$$\sum_{a_1+a_2+a_3=n} F_{5(a_1+1)} \cdot F_{5(a_2+1)} \cdot F_{5(a_3+1)} = \frac{1}{1250} [(n+2)(125n+137)F_{5(n+3)} - 66(n+3)F_{5(n+2)}].$$

Corollary 2: For any positive integer k and nonnegative integer n, we have the identities

$$\sum_{a_1+a_2+a_3=n+3} L_{a_1} \cdot L_{a_2} \cdot L_{a_3} = \frac{n+5}{2} [(n+10)F_{n+3} + 2(n+7)F_{n+2}],$$

$$\sum_{a_1+a_2+a_3=n+3} L_{2a_1} \cdot L_{2a_2} \cdot L_{2a_3} = \frac{n+5}{2} [3(n+10)F_{2n+5} + (n+16)F_{2n+4}]$$

and

$$\sum_{a_1+a_2+a_3=n+3} L_{3a_1} \cdot L_{3a_2} \cdot L_{3a_3} = \frac{n+5}{2} [4(n+10)F_{3n+7} + 3(n+9)F_{3n+6}].$$

Corollary 3: For any positive integer m and nonnegative integer n, we have the congruences

$$(n+2)(4n+16-(-1)^mL_m^2)\cdot F_{m(n+3)} \equiv 6(n+3)\cdot L_m\cdot F_{m(n+2)} \bmod 2(4-(-1)^mL_m^2)^2\cdot F_m.$$

In particular, for m = 3, 4 and 5, we have

$$(n+2)(5n+8)F_{3n+9} \equiv 6(n+3)F_{3n+6} \mod 400;$$

$$(n+2)(15n+11)F_{4(n+3)} + 14(n+3)F_{4(n+2)} \equiv 0 \mod 4050;$$

$$(n+2)(125n+137)F_{5(n+3)} \equiv 66(n+3)F_{5(n+2)} \mod 156250.$$

2. SEVERAL LEMMAS

In this section, we shall give several lemmas which are necessary in the proofs of the theorems. First we need two exact expressions and generating functions on $T_n(x)$ and $U_n(x)$ (see (2.1.1) of [1]). That is,

$$T_n(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right]$$
 (5)

and

$$U_n(x) = \frac{1}{2\sqrt{x^2 - 1}} \left[\left(x + \sqrt{x^2 - 1} \right)^{n+1} - \left(x - \sqrt{x^2 - 1} \right)^{n+1} \right]. \tag{6}$$

So we can easily deduce that the generating function of T(x) and U(x) are

$$G(t,x) = \frac{1 - xt}{1 - 2xt + t^2} = \sum_{n=0}^{+\infty} T_n(x) \cdot t^n$$
 (7)

and

$$F(t,x) = \frac{1}{1 - 2xt + t^2} = \sum_{n=0}^{+\infty} U_n(x) \cdot t^n.$$
 (8)

Applying these generating functions we can easily deduce the following

Lemma 1: For any positive integer k and nonnegative integer n, we have the identity

$$\sum_{a_1+a_2+\cdots+a_{k+1}=n} U_{a_1}(x) \cdot U_{a_2}(x) \dots U_{a_{k+1}}(x) = \frac{1}{2^k \cdot k!} U_{n+k}^{(k)}(x).$$

Proof: Differentiating (8) we obtain

$$\frac{\partial F(t,x)}{\partial x} = \frac{2t}{(1-2xt+t^2)^2} = \sum_{n=0}^{\infty} U_{n+1}^{(1)}(x) \cdot t^{n+1};$$

$$\frac{\partial_2 F(t,x)}{\partial x^2} = \frac{2! \cdot (2t)^2}{(1 - 2xt + t^2)^3} = \sum_{n=0}^{\infty} U_{n+2}^{(2)}(x) \cdot t^{n+2};$$

.

$$\frac{\partial^k F(t,x)}{\partial x^k} = \frac{k! \cdot (2t)^k}{(1 - 2xt + t^2)^{k+1}} = \sum_{n=0}^{\infty} U_{n+k}^{(k)}(x) \cdot t^{n+k}.$$
 (9)

where we have used the fact that $U_n(x)$ is a polynomial of degree n.

Therefore, from (9) we obtain

$$\sum_{n=0}^{\infty} \left(\sum_{a_1 + a_2 + \dots + a_{k+1} = n} U_{a_1}(x) \cdot U_{a_2}(x) \dots U_{a_{k+1}}(x) \right) \cdot t^n = \left(\sum_{n=0}^{\infty} U_n(x) \cdot t^n \right)^{k+1}$$

$$1 \qquad 1 \qquad \partial^k F(t, x) \qquad 1 \qquad \sum_{n=0}^{\infty} W_n(x) \cdot t^n$$

 $= \frac{1}{(1 - 2xt + t^2)^{k+1}} = \frac{1}{k!(2t)^k} \frac{\partial^k F(t, x)}{\partial x^k} = \frac{1}{2^k \cdot k!} \sum_{n=0}^{\infty} U_{n+k}^{(k)}(x) \cdot t^n.$ (10)

Equating the coefficients of t^n on both sides of equation (10) we obtain the identity

$$\sum_{a_1+a_2+\cdots+a_{k+1}=n} U_{a_1}(x) \cdot U_{a_2}(x) \dots U_{a_{k+1}}(x) = \frac{1}{2^k \cdot k!} \cdot U_{n+k}^{(k)}(x).$$

This proves Lemma 1.

Lemma 2: For any positive integer k and nonnegative integer n, we have

$$\sum_{a_1+a_2+\cdots+a_{k+1}=n+k+1} T_{a_1}(x)\cdots T_{a_{k+1}}(x) = \frac{1}{2^k \cdot k!} \sum_{h=0}^{k+1} (-x)^h \binom{k+1}{h} U_{n+2k+1-h}^{(k)}(x).$$

Proof: To prove Lemma 2, multiplying $(1-xt)^{k+1}$ on both sides of (9) we have

$$\frac{(1-xt)^{k+1}}{(1-2xt+t^2)^{k+1}} = \frac{1}{2^k \cdot k!} \sum_{n=0}^{\infty} U_{n+k}^{(k)}(x) \cdot t^n (1-xt)^{k+1}.$$
(11)

Note that $(1-xt)^{k+1} = \sum_{h=0}^{k+1} (-x)^h t^h \binom{k+1}{h}$. Comparing the coefficients of t^{n+k+1} on both sides of equation (11) we obtain Lemma 2.

Lemma 3: For any positive integers m and n, we have the identities

$$T_n(T_m(x)) = T_{mn}(x)$$
 and $U_n(T_m(x)) = \frac{U_{m(n+1)-1}(x)}{U_{m-1}(x)}$.

Proof: For any positive integer m, from (5) we have

$$T_m^2(x) - 1 = \frac{1}{4} \left[(x + \sqrt{x^2 - 1})^m + (x - \sqrt{x^2 - 1})^m \right]^2 - 1$$
$$= \frac{1}{4} \left[(x + \sqrt{x^2 - 1})^m - (x - \sqrt{x^2 - 1})^m \right]^2$$

or

$$\sqrt{T_m^2(x) - 1} = \frac{1}{2} \left[(x + \sqrt{x^2 - 1})^m - (x - \sqrt{x^2 - 1})^m \right].$$

Thus,

$$T_m(x) + \sqrt{T_m^2(x) - 1} = (x + \sqrt{x^2 - 1})^m.$$
 (12)

$$T_m(x) - \sqrt{T_m^2(x) - 1} = (x - \sqrt{x^2 - 1})^m.$$
(13)

Combining (6), (12) and (13) we have

$$U_n(T_m(x)) = \frac{1}{2\sqrt{T_m^2(x) - 1}} \left[\left(T_m(x) + \sqrt{T_m^2(x) - 1} \right)^{n+1} - \left(T_m(x) - \sqrt{T_m^2(x) - 1} \right)^{n+1} \right]$$

$$= \frac{(x + \sqrt{x^2 - 1})^{m(n+1)} - (x - \sqrt{x^2 - 1})^{m(n+1)}}{(x + \sqrt{x^2 - 1})^m - (x - \sqrt{x^2 - 1})^m}$$

$$= \frac{U_{m(n+1)-1}(x)}{U_{m-1}(x)}.$$

Similarly, we can also deduce that $T_n(T_m(x)) = T_{mn}(x)$. This proves Lemma 3.

3. PROOF OF THE THEOREMS

Now we complete the proofs of the theorems. Let i be the square root of -1. Taking $x = T_m(\frac{i}{2})$ in Lemma 1 and Lemma 2, and noting that $U_n(\frac{i}{2}) = i^n F_{n+1}, T_n(\frac{i}{2}) = \frac{i^n}{2} L_n, T_n(T_m(\frac{i}{2})) = \frac{i^{mn}}{2} L_{mn}, U_n(T_m(\frac{i}{2})) = i^{mn} \frac{F_{m(n+1)}}{F_m}$, we may immediately deduce Theorem 1 and Theorem 2.

Proof of the Corollaries: First we note that $U_n(x)$ satisfies the differential equations

$$(1 - x^2)U_n'(x) = (n+1)U_{n-1}(x) - nxU_n(x)$$
(14)

and

$$(1 - x^2)U_n''(x) = 3xU_n'(x) - n(n+2)U_n(x), \tag{15}$$

So from Lemma 3, (14) and (15) we obtain

$$U'_n\left(T_m\left(\frac{i}{2}\right)\right) = \frac{4}{4 - (-1)^m L_m^2} \left[i^{m(n-1)} \frac{(n+1)F_{mn}}{F_m} - i^{m(n+1)} \frac{nL_m F_{m(n+1)}}{2F_m}\right]$$

and

$$U_n''\left(T_m\left(\frac{i}{2}\right)\right) = \frac{4i^{mn}}{F_m(4-(-1)^mL_m^2)}$$

$$\times \left[\frac{6(n+1)L_m}{4-(-1)^mL_m^2}F_{mn} - \frac{(-1)^m3nL_m^2}{4-(-1)^mL_m^2}F_{m(n+1)} - n(n+2)F_{m(n+1)}\right]. \tag{16}$$

Now Corollary 1 and Corollary 2 follows from the recurrence formula

$$F_{n+2} = F_{n+1} + F_n$$

(16), Theorem 1 and Theorem 2 (with k=2).

Corollary 3 follows from Corollary 1 and the fact that $F_m|F_{m(a+1)}$ for all integer $a \ge 0$.

ACKNOWLEDGMENTS

The author expresses his gratitude to the referee for his very helpful and detailed comments.

This work is supported by the N.S.F. (10271093) and P.N.S.F. (2002A11) of P.R. China.

REFERENCES

- [1] P. Borwein and T. Erdélyi. *Polynomials and Polynomials Inequalities*. Springer-Verlag, New York, 1995.
- [2] R.L. Duncan. "Applications of Uniform Distribution to the Fibonacci Numbers." *The Fibonacci Quarterly* **5** (1967): 137-140.
- [3] Fengzhen Zhao and Tianming Wang. "Generalizations of Some Identities Involving the Fibonacci Numbers." *The Fibonacci Quarterly* **39** (2001): 165-167.
- [4] L. Kuipers. "Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution Mod 1 of the Sequence of the Logarithms of the Fibonacci Numbers." *The Fibonacci Quarterly* 7 (1969): 465-466.
- [5] N. Robbins. Applications of Fibonacci Numbers. Kluwer Academic Publishers, 1986, pp. 77-88.
- [6] Wenpeng Zhang. "Some Identities Involving the Fibonacci Numbers." *The Fibonacci Quarterly* **35** (1997): 225-229

AMS Classification Numbers: 11B37, 11B39

