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1. INTRODUCTION

The concept of a composition of a graph was introduced by Arnold Knopfmacher and
M.E. Mays in [2] and denotes a partition of the vertices such that the induced subgraph
on each part is connected. Alternatively, a partition can be viewed as the set of connected
components of a subgraph including all the vertices of the graph but only a subset of the edges.
Most attention hitherto has been devoted to counting the numbers of compositions of various
families of graphs, usually by finding some ad hoc recurrence relation based on their structure.
We shall develop a more systematic method of analysis of how the composition of the union of
two graphs can be obtained from the compositions of the two subgraphs. This provides new
proofs giving greater insight into some known results (ladder graphs and wheel graphs), a new
result on 3×n grid graphs, and a general result for the cartesian product of an arbitrary graph
and a path with n vertices.

All graphs considered will be finite and undirected, with no loops or multiple edges. If
G is a graph, then V (G) denotes its vertex set and E(G) denotes its edge set, where each
edge can be thought of as an unordered pair of vertices. We shall, however, also use the more
symbolic notation x–y to denote the edge between vertices x and y. The cartesian product
A × B has vertex set V (A) × V (B), and {(a1, b1), (a2, b2)} is an edge if and only if a1 = a2

and {b1, b2} ∈ V (B), or {a1, a2} ∈ V (A) and b1 = b2.
Since any composition of the graph is a partition of the vertex set, it defines an equivalence

relation. Vertices x and y that are in the same part in a given composition will therefore simply
be said to be related, written x ∼ y. It is convenient to define a distance function associated
with any composition of a connected graph G. If x and y are vertices of G, then d(x, y) denotes
the minimum number of additional edges of G that must be incorporated into the composition
in order for x and y to become related (that is, d(x, y) is the length of the shortest path in G
joining their equivalence classes). For example, if x ∼ y, then d(x, y) = 0, and if x and y are
adjacent in G but x 6∼ y, then d(x, y) = 1.

In general, more than one subset of E(G) may define the same composition of G. (For
example, with the cycle Cn having n vertices and n edges, E(G) obviously defines the compo-
sition with only one part, as does any subset of E(G) containing n − 1 edges.) However, we
shall say that an edge x–y belongs to a particular composition if its two endpoints are in the
same part, that is, if x ∼ y. Thus the edges belonging to a given composition of G form the
largest subset of E(G) defining that composition.

The number of compositions of a graph G will be denoted by C(G). Suppose graph
G = A ∪ B, where E(A) ∩ E(B) = ∅, so A ∩ B is a null graph. The problem is to determine
C(G) from C(A) and C(B). If Pn denotes the path with n vertices, then C(A × Pn) can be
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found by iteration, since A × P1 ' A, and A × Pn = (A × Pn−1) ∪ B for n > 1, where B is
obtained from A by inserting an extra vertex of degree one adjacent to each vertex of A.

In this section, we discuss some easy cases, most of which are familiar, but derive new
proofs of two known formulae. The first result appears in [2, Theorem 3].
Proposition 1.1: Suppose G = A ∪ B, as above. If A ∩ B = ∅, or if A ∩ B is a singleton,
then C(G) = C(A)C(B).

It follows immediately that attention may be restricted to connected graphs, and that
inserting an extra vertex of degree one adjacent to any vertex doubles the number of com-
positions. Thus every tree with n vertices, including the path Pn, has 2n−1 compositions [2,
Theorems 1 and 5].

The result for Pn can also be seen immediately by noting that every subset of the edge set
defines a different partition of the vertices. This naive approach is also effective when counting
compositions of the cycle Cn: every subset of the edge set defines a distinct composition,
except, as remarked above, for the (n−1)-element subsets, which define the same composition
as the whole edge set. Thus the total number of compositions of Cn is 2n − n, as stated in [2,
Theorem 7]. It follows that the characteristic polynomial of the recurrence relation for C(Cn)
is (λ− 2)(λ− 1)2, though a direct proof is probably difficult.
Proposition 1.2: If W ∗n denotes the broken wheel (or fan) graph with n vertices, where n ≥ 2,
then C(W ∗n) = F2n−1, the (2n− 1)th Fibonacci number.

Proof: The broken wheel W ∗n consists of a path Pn−1 (the incomplete periphery of the
wheel) together with one other vertex (the hub) adjacent to every vertex on the periphery.
Thus W ∗2 = P2, and W ∗n = W ∗n−1 ∪ B, where B = P3 = b1 − b2 − b3, since the extra vertex
(b2) is adjacent to the hub b1 and to the last vertex b3 on the periphery.

Broken wheel, developing clockwise. Primed labels
refer to the previous iteration.

We classify the compositions of W ∗n according as the last vertex on the periphery is or is
not related to the hub, and denote the corresponding numbers of compositions by C0(W ∗n) and
C1(W ∗n) respectively. At each iteration the previous b2 becomes the new b3 (the last vertex
on the periphery). Each composition of W ∗n−1 in which b1 and b3 were related leads to one
composition of W ∗n in which b1 and b2 are related and one in which they are not, whereas each
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composition in which b1 and b3 were unrelated leads to one of the former and two of the latter.
The resulting partitions of B in Wn may be tabulated thus:

b1 ∼ b3 b1 6∼ b3
b1 ∼ b2 {{b1, b2, b3}} {{b1, b2}, {b3}}
b1 6∼ b2 {{b1, b3}, {b2}} {{b1}, {b2, b3}} and {{b1}, {b2}, {b3}}

This leads to the vector recurrence relation(
C0(W ∗n)
C1(W ∗n)

)
=
(

1 1
1 2

)(
C0(W ∗n−1)
C1(W ∗n−1)

)
for n > 2, whence (

C0(W ∗n)
C1(W ∗n)

)
=
(

1 1
1 2

)n−2(
C0(W ∗2 )
C1(W ∗2 )

)
.

Since clearly C0(W ∗2 ) = C1(W ∗2 ) = 1, and since C(W ∗n) = C0(W ∗n) + C1(W ∗n), we have

C(W ∗n) = ( 1 1 )
(
C0(W ∗n)
C1(W ∗n)

)
= ( 1 1 )

(
1 1
1 2

)n−2( 1
1

)
.

The result now follows by standard diagonalization techniques [1, p. 347] and Fibonacci
identities. (The characteristic polynomial of the transition matrix M is λ2 − 3λ + 1 and its
eigenvalues are 1

2 (3 +
√

5), the square of the golden ratio, and its conjugate surd.)
The transition matrix M is familiar from Arnold’s cat map [1, p. 678] and elsewhere. An

alternative proof is based on the recurrence relation C(W ∗n) = 3C(W ∗n−1) − C(W ∗n−2), which
can be obtained directly. In fact, it can be shown that the same recurrence applies if, at each
stage, the copy of P3 is adjoined to an arbitrary edge on the boundary of the previous graph,
instead of always being adjoined to the “last spoke” in the broken wheel.
Proposition 1.3: If L2n denotes the ladder graph with 2n vertices, which is isomorphic to
P2 × Pn, then

C(L2n) =
(3 +

√
10)n − (3−

√
10)n

√
10

.

Ladder graph.
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Proof: The proof is similar to that of Proposition 1.2, and is sketched only briefly. An
alternative proof using recurrence relations is given in [2, Theorem 9]. For n > 1, the graph
L2n is obtained from L2n−2 by adjoining b1−b2−b3−b4, with b1 and b4 replacing the endpoints
of the last rung of L2n−2 and b2−b3 becoming the last rung of L2n. Compositions are classified
according as the endpoints of the last rung are or are not related. The transition matrix is
therefore obtained from the following table giving the numbers of compositions in each case:

b1 ∼ b4 b1 6∼ b4
b2 ∼ b3 2 3
b2 6∼ b3 3 4.

It follows as in Proposition 1.2 that

C(L2n) = ( 1 1 )
(

2 3
3 4

)n−1( 1
1

)
,

which leads to the final result. (The characteristic polynomial of the transition matrix is
λ2 − 6λ− 1 and its eigenvalues are 3±

√
10.)

The results of this section can be generalized to the situation where B = Pm for any
integer m ≥ 3, and its endpoints are identified with two adjacent points in A. The arguments
need not be repeated, but the transition matrix for iterating the procedure is

M =
(

2m−2 −m+ 2 2m−2 − 1
2m−2 − 1 2m−2

)
and the coefficients in the expression for C(A ∪ B) are the column sums 2m−1 −m + 1 and
2m−1 − 1. We now pass to the situation where A ∩B can be more than just a pair of points.

2. THE GENERAL RESULT

Suppose a general graph G is expressed as a union G = A∪B, with E(A∩B) = ∅. If ∼G

is the relation associated with some composition of G, then the restriction of ∼G to the vertex
set of A does not necessarily define a composition of A, since one or more of the equivalence
classes of the restriction may not be connected if edges from A only are used. However, there
is a unique composition of A defined by all edges ai–aj belonging to the composition of G
(that is, such that ai ∼G aj), and similarly for B. We shall say that the given composition of
G is valid for this unique pair of compositions (the largest from which it can be obtained).

The procedure in counting compositions of G without duplication will therefore be to
consider all pairs of compositions of A and B, and count the resulting composition of G only
if it is valid. The examples in the previous section illustrate the method (considering whether
pairs of vertices in A ∩ B are or are not related in A), but in general unrelated pairs need to
be further subdivided, depending on the distance between their equivalence classes.

We therefore classify each pair of vertices {ci, cj} in A ∩B into one of these three types:

(0) dA(ci, cj) = 0(i.e., ci ∼A cj); (1) dA(ci, cj) = 1; (2) dA(ci, cj) ≥ 2.
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Note that {ci, cj} is of type (1) if and only if ci 6∼A cj and there exist adjacent vertices ai and
aj in A such that ci ∼A ai and cj ∼A aj . (Naturally, the edge ai–aj cannot belong to the
composition of A in question.) In all the examples above, the only pairs of vertices that arose
were themselves adjacent in A, so had to be of type (0) or (1).
Proposition 2.1: Suppose G = A ∪ B and we have a valid composition of G arising from
compositions of A and B. If a pair (ci, cj) of vertices in A ∩ B is of type (1), then ci and cj
remain unrelated in G. Furthermore, if every pair of vertices in A ∩ B is of type (0) or (1)
and if the composition of G is valid, then the restriction of ∼G to V (A) is ∼A.

Proof: First, if (ci, cj) is of type (1), then from the definition there exist adjacent vertices
ai and aj in A such that ci ∼A ai and cj ∼A aj , so a fortiori ci ∼G ai and cj ∼G aj . If
ci ∼G cj , then by transitivity ai ∼G aj . Since the composition of G is valid, it follows that
the edge ai–aj belongs to the composition of A, which contradicts the definition of type (1).

Next, if the restriction of ∼G to V (A) is not equal to ∼A, then there must be a pair
of vertices in A, say x and y, that are related in G but not in A. Thus there must be a
path from x to y made up of edges belonging to the compositions of A or B (not both, since
E(A ∩B) = ∅). At least one edge must belong to the composition of B, since x 6∼A y. In this
path, starting from x, let ci be the first vertex such that all edges (if any) from x to ci belong
to the composition of A, but the edge from ci to the next vertex belongs to the composition of
B. Define cj similarly, starting from y. Then ci and cj must be in A ∩B, and clearly x ∼A ci
and y ∼A cj , whence ci 6∼A cj . From the hypothesis it follows that the pair (ci, cj) is of type
(1). However, since x ∼G y, we have by transitivity that ci ∼G cj , which contradicts the first
part of the proposition.

In contrast to Proposition 2.1, if a pair {ci, cj} is of type (2) in A and ci ∼B cj , then the
resulting composition of G may still be valid, in spite of the fact that ci and cj do become
related under G, and the restriction of ∼G to V (A) is different from ∼A. Since this change
will in general affect other pairs in A∩B, the validity of the resulting composition of G cannot
be determined without investigating all pairs originally of type (2) in A.

An estimate of the number of cases needing to be considered (taking into account all
compositions of A) may be obtained as follows. Suppose A∩B has p vertices and has q edges
coming from E(A), and let q′ = 1

2p(p − 1) − q. For any given composition of A, each of the
q pairs of adjacent vertices in A ∩ B must be of type (0) or type (1), whereas the q′ pairs of
non-adjacent vertices can be of any one of the three types. Thus the total number of cases to
be considered is at most 2q3q′

. This is not a good bound, since the transitivity of the relation
∼A ensures that the types for different pairs are not all independent.

The general result may be summarized as follows, using the notation above.
Theorem 2.2: Let C0(A), . . . , Ck−1(A) denote the numbers of compositions of A in the k cases
determined by the possible types of pairs of vertices in A∩B, and for each case r = 0, 1, . . . , k−1
let Mr denote the number of valid compositions of G obtained by considering all compositions
of B. Then C(G) = M0C0(A) + · · ·+Mk−1Ck−1(A).
Corollary 2.3: If Gn = A × Pn for n = 1, 2, 3, . . . , then C(G) = zMn−1w1, where z is the
1× k row vector (1 . . . 1),w1 is a k× 1 column vector, and M is a k× k matrix. Hence C(Gn)
satisfies a kth order recurrence relation, and if M is a diagonalizable matrix, then C(Gn) is a
linear combination of the nth powers of the eigenvalues of M .

Proof: Let B denote the graph obtained from A by inserting a new vertex of degree
one adjacent to each vertex in A. Then G1 = A × P1 ' A, and Gn ' Gn−1 ∪ B for n > 1,
where the intersection consists of the new vertices in B being identified with an isomorphic
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copy of A in Gn−1. In order for the iteration to proceed, the compositions of Gn must be
classified into cases as well. Let mrs denote the number of case r compositions of Gn that
arise from case s compositions of Gn−1, and let M = (mrs). If wn denotes the column vector
(C1(Gn) · · ·Ck(Gn))′, then wn = Mwn−1 for all n, by Theorem 2.2, so wn = Mn−1w1.

Clearly C(Gn) =
∑k

r=1 Cr(Gn) = zwn, and the result follows. The consequences are standard
results from linear algebra [1, p. 347].

3. TWO APPLICATIONS

We illustrate the general result with two applications of Theorem 2.2 and Corollary 2.3
to illustrate the distinction between types (1) and (2). The first is a straightforward example
on wheel graphs, and the second is a more intricate application to 3× n grid graphs.
Proposition 3.1: If Wn denotes the wheel graph with n vertices, then C(Wn) = L2n−2−n+1
for n ≥ 4, where Lk denotes the kth Lucas number.

Proof: The wheel graph Wn is obtained from the broken wheel W ∗n by adjoining the
missing edge on the periphery. To avoid having multiple edges, we consider it only for n ≥ 4.
We apply Theorem 2.1 with A = W ∗n and B = b2–bn, say. For every composition of A in
which {b2, bn} is of type (0) or (1), the relationship between b2 and bn is unchanged in Wn

(related or unrelated, respectively), and the final composition of Wn is the same as the original
composition of W ∗n . On the other hand, every composition of A in which {b2, bn} is of type
(2) gives rise to two compositions of Wn, one in which b2 and bn are related in b, and one in
which they are not. Thus, in the obvious notation,

C(Wn) = C0(W ∗n) + C1(W ∗n) + 2C2(W ∗n) = C(W ∗n) + C2(W ∗n).

Since C(W ∗n) = F2n−1 by Proposition 1.2, it is sufficient to find C2(W ∗n), so suppose
dA(b2, bn) = 2, that is, the distance between their equivalence classes is 2 or more. Then
neither b2 nor bn can be related to the hub b1, so their equivalence classes must be of the form
{b2, . . . , bi} and {bj , . . . , bn}, where 2 ≤ i < i+ 1 < j ≤ n. The remaining equivalence classes
form a composition of the broken wheel graph W ∗j−i with b1 at the hub, and bi+1, . . . , bj−1 on
the periphery. Thus

C2(W ∗n) =
n−2∑
i=2

n∑
j=i+2

C(W ∗j−i) =
n−2∑
i=2

n−i∑
k=2

C(W ∗k )

=
n−2∑
k=2

n−k∑
i=2

C(W ∗k ) =
n−2∑
k=2

(n− k − 1)F2k−1.

A straightforward induction (or a more elegant analysis using generating functions) shows that
this last sum is F2n−3 − n+ 1, and leads to the final result

C(Wn) = C(W ∗n) + C2(W ∗n) = F2n−1 + F2n−3 − n+ 1 = L2n−2 − n+ 1.

227



COMPOSITIONS OF UNIONS OF GRAPHS

The characteristic polynomial for the recurrence relation for C(Wn) is therefore

(λ2 − 3λ+ 1)(λ− 1)2 = λ4 − 5λ3 + 8λ2 − 5λ+ 1,

though a direct proof is unlikely to be illuminating, if one can be found. An implicit formula
for C(Wn) appears in [2, Theorem 8].
Theorem 3.2: Let G3,n denote the 3×n grid graph P3×Pn. Then C(G3,n) = c1α

n−1
1 + · · ·+

c5α
n−1
5 , where the approximate numerical values of the constants are as follows:

r cr αr

1 0.157907 −0.221357
2 0.000396095 0.191796
3 3.82152 19.3717
4 0.0100861− 0.0126952i 1.82895− 1.23229i
5 0.0100861 + 0.0126952i 1.82895 + 1.23229i

3× n Grid Graph.

Proof: Since G3,n = P3 × Pn, we have A = P3 = a1 − a2 − a3, using the notation of
Corollary 2.3. The graph B that is adjoined at the nth stage is a tree with six vertices (in the
shape of a letter E), whose end vertices b1, b2, b3 replace those in the last row of G(3, n−1), and
whose other vertices b4, b5, b6 form the last row of G(3, n), as shown. The possible partitions
of the intersection {b1, b2, b3} fall into six cases, which are listed below, including the type for
each pair of vertices, and the resulting equivalence classes:

Case {b1, b2} type {b1, b3} type {b2, b3} type Parts
I 0 0 0 {b1, b2, b3}
II 0 1 1 {b1, b2}, {b3}
III 1 1 0 {b1}, {b2, b3}
IV 1 1 1 {b1}, {b2}, {b3}
V 1 2 1 {b1}, {b2}, {b3}
VI 1 0 1 {b1, b3}, {b2}

Note that the partitions in cases IV and V have the same parts, and can only be distinguished
by the type of the pair {b1, b3} of end vertices. Also note that cases IV and VI can arise
in G3,n only for n > 1, as they are not compositions of P3 itself, so the initial vector w1 =
(1, 1, 1, 0, 1, 0)′, with zeros in positions 4 and 6.
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The transition matrix is

M =


2 3 3 4 5 3
3 4 5 6 6 5
3 5 4 6 6 5
2 1 1 2 0 4
2 5 5 6 8 2
1 0 0 0 0 2

 ,

whose entries were verified using Mathematica. In general, a column of M can be obtained
by taking the partition of {b1, b2, b3} for a particular case, combining it with each of the 16
compositions of B, then listing the distinct final compositions that result, as well as their
restrictions to {b1, b2, b3} and {b4, b5, b6}. Those whose restrictions to {b1, b2, b3} differ from
the initial partition of {b1, b2, b3} are duplicates and must not be counted (except for one in
case V , where there is a type 2 pair of vertices). The remaining compositions can be grouped
into cases according to their restrictions to {b4, b5, b6} (which replaces {b1, b2, b3} for the next
iteration), and the number in each case gives the required entry in the matrix.

Unfortunately, since in both case IV and case V the restrictions of the compositions to
{b1, b2, b3} or {b4, b5, b6} are trivial, inspection of the unrestricted final composition is required
to distinguish them. First consider columns 4 and 5, where the initial partition of {b1, b2, b3}
is trivial. The entries in row 1 count final compositions in which b4, b5, b6 are all related.
There are four of these whose restriction to {b1, b2, b3} is trivial, giving m14 = m15 = 4 so
far. There is one final composition whose restriction is {{b1, b3}, {b2}} : this is valid in case
V when {b1, b3} is type 2 but not in case IV , so m15 increases to 5 but m14 stays at 4. In
rows 2, 3 and 6 the difference of type between cases IV and V is irrelevant, so mr4 = mr5 for
r = 2, 3, 6. In rows 4 and 5, when b4, b5, b6 are unrelated in the final composition, there are
six for which {b4, b6} is of type 2 (i.e., case V ), and two for which {b4, b6} is of the same type
as {b1, b3} (i.e., the case remains the same). Thus m44 = 0 + 2,m45 = 0 + 0,m54 = 6 + 0, and
m55 = 6 + 2. Now consider any other entry in rows 4 and 5, say in column s. By inspection
of the unrestricted composition, it is easy to see whether the equivalence classes of b4 and b6
can be linked with one extra edge or require more than one, i.e., whether the pair {b4, b6} is
of type 1 or 2, i.e., whether the final composition falls into case IV or case V , i.e., whether it
should be counted towards m4s or m5s.

Once M has been established, the remaining calculations are straightforward linear alge-
bra, carried out using Mathematica. The characteristic polynomial is

(λ+ 1)(λ5 − 23λ4 + 75λ3 − 91λ2 − 6λ+ 4) = (λ+ 1)p(λ), say.

The eigenvalues of M are −1 together with the zeros α1, . . . , α5 of p(λ), which is irreducible
over the rationals. The constants c1, . . . , c5 come from the diagonalization process.

The powers of −1 do not appear in the formula for C(G3,n), since their coefficient is zero;
presumably the eigenvalue −1 simply reflects the symmetry between cases II and III. It is also
noteworthy that p(λ) is not only irreducible over Q, it is not even solvable by radicals, being of
prime degree and having exactly two non-real zeros [3, Lemma 14.7] so there is no expression
for C(G3,n) in terms of surds. This is markedly dissimilar to the examples in the previous
section. However, there is one similarity, in that the formula is again dominated by one of the
eigenvalues, in this case α3, as is easily seen by inspection of the magnitudes of the eigenvalues
and their coefficients. From an inspection of the coefficients of p(λ) it is apparent that direct
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determination of the fifth order recurrence relation satisfied by the sequence {C(G3,n)} would
be a daunting task.

The accuracy of the formula was checked by comparing its values for n = 1, 2, 3, 4 with
the actual number of compositions of G3,n, obtained by listing and counting them individually
(the computation for n = 4 taking over four hours). The largest difference is less than 10−10,
and is obviously due solely to round-off errors. The values are as follows:

n 1 2 3 4
C(G3,n) 4 74 1434 27080.
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