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ABSTRACT

In this paper we present polynomial generalizations for the Pell sequence and the Fibonacci
sequence together with formulas for those sequences. New combinatorial interpretations are
included.

1. INTRODUCTION

In this paper, in order to find polynomial generalizations and combinatorial interpretations
for the Pell sequence, we consider the identities 36 and 34 of Slater [16] that are respectively:

∞∑
n=0

(−q; q2)nqn2

(q2; q2)n
=

(−q; q2)∞
(q2; q2)∞

(q5; q8)∞(q3; q8)∞(q8; q8)∞ (1.1)

∞∑
n=0

(−q; q2)nqn2+2n

(q2; q2)n
=

(−q; q2)∞
(q2; q2)∞

(q7; q8)∞(q1; q8)∞(q8; q8)∞ (1.2)

where
(a; q)n = (1− a)(1− aq) . . . (1− aqn−1)

n a nonnegative integer.
These identities are the analytic counterparts of the Göllnitz-Gordon partition identities

first found by Göllnitz [8] and then rediscovered by Gordon [7].
We start by following Andrews [2], to provide a polynomial generalization for the Pell

sequence and a combinatorial interpretation for this sequence. We offer a bijection between the
class of partitions that appear in the Göllnitz-Gordon identities and another class of partitions
that can be obtained from the left side of (1.1). New formulas for the two related sequences
are given. Details are in section 3.

A third polynomial generalization including a nice relation between the Pell numbers and
the Fibonacci numbers is given in section 4.

In section 5, by making use of the Rogers-Ramanujan identities, two new combinatorial
interpretations for the Fibonacci numbers are given.

328



POLYNOMIAL GENERALIZATIONS OF THE PELL SEQUENCES ...

2. SOME DEFINITIONS AND RESULTS

The Pell numbers 1, 2, 5, 12,. . . defined by a0 = 1; a1 = 2; an = 2an−1 + an−2 are the
denominators of the sequence of rational numbers:

1
1
,
3
2
,
7
5
,
17
12

,
41
29

,
99
70

, . . . (2.1)

that are the continued fraction convergent to
√

2.
The Gaussian polynomials are defined as follows:[

n
m

]
=

{
(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise.
(2.2)

For more details see Andrews [1].
When dealing with the expression

(1 + x + x2)n (2.3)
we call the coefficients of xj in the expanded form of (2.3) the trinomial coefficients.

It is easy to show that if

(1 + x + x2)n =
n∑

j=−n

(
n

j

)
2

xj+n (2.4)

then (
n

j

)
2

=
∑
h≥0

(−1)h

(
n

h

)(
2n− 2h

n− j − h

)
(2.5)

The following expression (Andrews & Baxter [6]) is a q-analog of the trinomial coefficient
in the same way that the Gaussian polynomial is a q-analog of the binomial coefficient, that
is, its limit, when q approaches 1, is equal to the trinomial coefficient given by (2.6).

T0(m,A, q) =
m∑

j=0

(−1)j

[
m
j

]
q2

[
2m− 2j

m−A− j

]
(2.6)

In order to condense the notation the following expression is defined

U(m,A, q) = T0(m,A, q) + T0(m,A + 1, q) (2.7)

3. POLYNOMIAL GENERALIZATIONS AND COMBINATORIAL
INTERPRETATIONS FOR THE PELL SEQUENCE

3.1 A first polynomial generalization for the Pell sequence
We mentioned that, following Andrews [2] one can introduce a parameter t in the left

hand side of (1.1),

f(q, t) =
∞∑

n=0

(−tq; q2)ntnqn2

(t; q2)n+1
(3.1)

From here a functional equation can be obtained:

(1− t)f(q, t) = 1 + (1 + tq)tqf(q, tq2). (3.2)
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Knowing that the coefficient of tn in the expansion of (3.1) is a polynomial in q, i.e., that

f(q, t) =
∞∑

n=0

Pn(q)tn (3.3)

it is easy to see that

P0(q) = 1
P1(q) = 1 + q and (3.4)
Pn(q) = (1 + q2n−1)Pn−1(q) + q2n−2Pn−2

The whole procedure described above can be easily done with A. Sills’ RRtools Maple
package [15].

The family of polynomials (3.4) appears in Gordon [7]. Pm(q) is interpreted as a generating
function for partitions of the form n = n1 + n2 . . . + nk where n1 ≤ 2m− 1, ni ≥ ni+1 + 2 and
ni ≥ ni+1 + 3 if ni is even.

Here we concentrate on the alternative combinatorial interpretation. The equation (3.1)
written in the following form:

f(q, t) =
1

1− t

∞∑
n=0

(1 + tq)(1 + tq3) . . . (1 + tq2n−1)tnq1+3+5+···+2n−1

(1− tq2)(1− tq4) . . . (1− tq2n)

tells us that in this sum the coefficient of tNqM is the total number of partitions of M into
exactly N parts in which every odd less than or equal to the largest part appears at least once
and at most twice.

By taking into consideration the factor 1
(1−t) we have proved the following theorem:

Theorem 3.1: Pn(q) is the generating function for partitions into at most n parts in which
every odd less than or equal to the largest part appears at least once and at most twice.

To see what is the relation between this family of polynomials and the Pell sequence we
may replace q by 1 in (3.4). By doing this we get

P0(1) = 1
P1(1) = 2 (3.5)
Pn(1) = 2Pn−1(1) + Pn−2(1)

which is the Pell sequence given at the beginning of section 2.
¿From this observation we get the following combinatorial interpretation for the Pell

sequence which we state as a theorem.
Corollary 3.2: The total number of partitions into at most n parts in which every odd less
that or equal to the largest part appears at least once and at most twice is equal to the Pell
number Pn(1).

In [5] Andrews proved the following explicit formula for the family of polynomials given
by (3.4):

Pn(q) =
∞∑

j=−∞
q16j2+2jU(n, 8j)−

∞∑
j=−∞

q16j2−14j+3U(n, 3− 8j) (3.6)

where U(n, A) = U(n, A, q) given by (2.7).
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Knowing that Pn(1) is the Pell sequence, as we have seen in (3.5), we can get an explicit
formula for this sequence by making use of formula (3.6)

Pn(1) = lim
q→1

Pn(q) = lim
q→1

∞∑
j=−∞

q16j2+2jU(n, 8j)−
∞∑

j=−∞
q16j2−14j+3U(n, 3− 8j)

=
∞∑

j=−∞
lim
q→1

(T0(n, 8j, q) + T0(n, 8j + 1, q)− T0(n, 3− 8j, q)− T0(n, 4− 8j, q))

=
∞∑

j=−∞

[(
n

8j

)
2

+
(

n

8j + 1

)
2

−
(

n

3− 8j

)
2

−
(

n

4− 8j

)
2

]

=
∞∑

j=−∞

[(
n + 1
8j + 1

)
2

−
(

n + 1
8j + 3

)
2

]
It is natural to look for a bijection between the class of partitions defined by Gordon and

the class appearing in theorem 3.1. It is sufficient to define a bijection that takes a partition
of n where the biggest part is 2m−1 or 2m−2, and satisfies the conditions defined by Gordon
into a partition of n in exactly m parts in which every odd less then or equal to the largest
part appears at least once and at most twice. We give one as follows:

Take a partition from the class defined by Gordon. Let the number of parts of that
partition be k. Let the biggest part be 2m − 2 or 2m − 1. Fix the number 2k − 1 from the
biggest part, 2k− 3 from the second biggest part and proceed in the same manner until fixing
one from the smallest part. Note that this is possible since ni ≥ ni+1 + 2 and that, for this
reason and ni ≥ ni+1 if ni is even, if nothing or just one is left out from the biggest part, then
nothing is left out from the second biggest part and similarly for the other parts. If one is left
out we take it as a new part. See the illustration below.
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If the biggest part is ≥ 2k + 1 take two from the part of it that was not fixed, two from
the second biggest part, and so on, until there is a part from which only one (or nothing) can
be taken. If there is one, we take it. From the “taken” twos and possible one we make a new
part for the new partition being formed. If there are still some parts that are left out we form
another part in the same way. The partition obtained satisfies the conditions given in the
theorem 3.1. We observe the following:

1. A partition with m parts is obtained. To see this note that the number left out after
fixing 2k − 1 in the biggest part is minimally 2(m − k) − 1, so we are actually adding m − k
parts.

2. The biggest new-formed part is smaller then or equal to 2k-so there is no need to add
new odd parts.

3. By construction the new parts created form a non-increasing sequence, odd number
can be formed only once -forming it twice would mean taking two ones from the same original
part, which is impossible by construction. This argument also proves that the mapping defined
by this procedure is injective.

The inversion mapping is defined similarly: Take a partition defined by conditions in the
theorem 3.1. that has m parts. We let one copy of all odd parts fixed. Let the biggest of
the fixed parts be 2k − 1. Now, each of the remaining parts is transformed in the following
manner: The biggest remaining part is divided in a way that two is added to the biggest fixed
part, two to the second biggest part, etc. If the number divided is odd we add one to some
fixed part at the end. Note that according to the partition definition the biggest remaining
part cannot be bigger than 2k, so it can be divided among the fixed parts. The second biggest
part (and all remaining) is divided in the same manner, always starting by adding two’s to the
biggest fixed part.

It is obvious that the resulting partition satisfies Gordon’s conditions. Its biggest part
is, by construction, smaller than or equal to 2k − 1 + 2(m − k) and bigger than or equal to
2k − 1 + 2(m− k)− 1 = 2m− 2, the last −1 on the left side corresponding to the case when
m− k = 1 and the collected part is one.
3.2 A second polynomial generalization for the Pell sequence

By considering, now, a two variable function f34(q, t) associated with equation 34 of Slater
[16] given in (1.2)

f34(q, t) =
∞∑

n=0

(−tq; q2)ntnqn2+2n

(t; q2)n+1
(3.7)

and following the same steps used to get (3.2) we may obtain the functional equation

(1− t)f34(q, t) = 1 + (1 + tq)tq3f34(q, tq2) (3.8)

and by replacing f34(q, t) with
∞∑

n=0

Dn(q)tn

in (3.7) we can get

D0(q) = 1;
D1(q) = 1 + q3 (3.9)
Dn(q) = (1 + q2n+1)Dn−1(q) + q2nDn−2(q)
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To find a combinatorial interpretation for this family of polynomials we can write (3.7) in the
following form:

∞∑
n=0

(−tq; q2)ntnqn2+2n

(t; q2)n+1
=

1
(1− t)

∞∑
n=0

(1 + tq)(1 + tq3) . . . (1 + tq2n−1)tnq(2+1)+(4+1)...(2n−2+1)+(2n+1)

(1− tq2)(q − tq4) . . . (1− tq2n)

which tells us that in this sum the coefficient of tNqM is the total number of partitions of
M into exactly N parts in which the largest part is odd, appearing only once, and every odd
smaller than the largest part and greater than or equal to 3 appears at least once and at most
twice.

By considering the factor 1/(1− t) and that for q = 1

D0(1) = 1
D1(1) = 2 (3.10)
Dn(1) = 2Dn−1(1) + Dn−2(1)

which is the Pell sequence, we have proved the following:
Theorem 3.3: The total number of partitions into at most n parts in which the largest part
is odd, greater than or equal to 3, appearing only once, and every odd smaller than the largest
part and greater than or equal to 3 appears at least once and at most twice is equal to the
Pell number Dn(1).

For the family of polynomials (3.9) an explicit formula in terms of the q-trinomial coeffi-
cients can be also found in Andrews [5]:

Dn(q) =
∞∑

j=−∞
q16j2+6jU(n, 8j + 1)−

∞∑
j=−∞

q16j2−10j+1U(n,−8j + 2). (3.11)

From which we have, again, the following formula for the Pell numbers:

∞∑
j=−∞

[(
n

8j + 1

)
2

+
(

n

8j + 2

)
2

−
(

n

−8j + 2

)
2

−
(

n

−8j + 3

)
2

]

=
∞∑

j=−∞

[(
n

8j + 1

)
2

−
(

n

8j + 3

)
2

]
(3.12)

This formula was proved in [14] by making use of an identity of Lebesgue that is also included
in Slater’s list.

It is an easy matter to give a bijection between the two distinct interpretations for the
Pell sequence given in the corollary 3.2 and the theorem 3.3.

In the class of partitions described in the theorem 3.3 every odd part larger than or equal
to 3 appears at least once and at most twice. We can subtract 2 from just one copy of each
of those odd parts. By doing this we obtain a partition in the class described in theorem 3.2.
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It is clear that this procedure can be inverted. Note that now the largest part obtained is
necessarily odd.

We illustrate this in the table 2 where in the first column we have the partitions as
described by the corollary 3.2, and in the second one those described by the theorem 3.3.

Table 2

We observe that to get the partitions in column one we took n = 3 in (3.4) getting

P3(q) = 1 + q + q2 + q3 + 2q4 + 2q5 + q6 + q7 + q8 + q9

and the ones in column two by taking n = 3 in (3.9) getting:

D3(q) = 1 + q3 + 2q4 + q5 + q6 + q7 + q8 + q9 + q10 + q11 + q12 + q15.
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3.3 New formulas for two related sequences
Motivated by this formula it was possible to find and prove, by induction, the following

two formulas: the first one gives us the sequence Sn of the partial sums for the Pell numbers
and the second the numerators Nm of the sequence of rational numbers given in 2.1.

Sn =
∞∑

j=−∞

[(
n

8j + 2

)
2

−
(

n

8j + 4

)
2

]
(3.13)

where
S1 = 1, S2 = 3, Sn = 2Sn−1 + Sn−2 + 1; n ≥ 3 (3.14)

and

Nn =
∞∑

j=−∞

[(
n

8j

)
2

−
(

n

8j + 4

)
2

]
(3.15)

where
N1 = 1, N2 = 3, Nn = 2Nn−1 + Nn−2; n ≥ 3. (3.16)

4. FIBONACCI NUMBERS AND A THIRD POLYNOMIAL
GENERALIZATION FOR THE PELL SEQUENCE

The following identity can be found in Göllnitz [8]:
∞∑

n=0

(−q; q2)nqn2+n

(q2; q2)n
=

∞∏
n=1

1
(1− q8n−1)(1− q8n−5)(1− q8n−6)

. (4.1)

Here we note that, by introducing the variable t in the following manner (again by use of
Sills [15]),:

F (q, t) =
∞∑

n=0

(−tq; q2)ntnqn(n+1)

(t; q2)n+1
(4.2)

recurrent relation can be obtained:

T0(q) = 1
T1(q) = 1 + q2

Tn(q) = (1 + q2n)Tn−1 + q2n−1Tn−2(q)

where we are taking

F (q, t) =
∞∑

n=0

Tn(q)tn.

Therefore we have a theorem involving Pell numbers:
Theorem 4.1: The total number of partitions into at most n parts in which the largest part
is even, each even smaller than the largest part appears at least once and the odd’s are distinct
is equal to the Pell number Tn(1).

What is nice about this theorem is the fact that for the Fibonacci numbers Fn defined by
F0 = 0; F1 = 1 and Fn = Fn−1 + Fn−2, n ≥ 2 we have proved in [12] (Theorem 3.3) that:
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“The total numbers of partitions into at most n parts in which the largest part is even
and every even smaller than the largest part appears at least once is equal to F2n+1”. This
tells us that by adding the restriction “distinct odd’s” we move from Fibonacci with odd index
F2n+1 to the Pell numbers Tn(1).

5. FIBONACCI NUMBERS FROM THE
ROGERS-RAMANUJAN IDENTITIES

The following polynomial generalization of the Fibonacci sequence has been used by Schur
[17] to prove the Rogers-Ramanujan identities (see also Andrews [2[).

F0(q) = 1
F1(q) = 1 (5.1)
Fn(q) = Fn−1 + qnFn−2(q)

which can obtained from the second of the Rogers-Ramanujan identities (Rogers [9]), that is:

∞∑
n=0

qn2+n

(q; q)n
=

∞∏
n=1

1
(1− q5n−2)(1− q5n−3)

,

by defining the following two variable function:

f(q, t) =
∞∑

n=0

t2nqn(n+1)

(t; q)n+1
. (5.2)

Considering that for q = 1 (5.1) is the Fibonacci sequence and that (5.1) can be written
in the form:

∞∑
n=0

t2nq1+1+2+2+...+n+n

(1− t)(tq; q)n
(5.3)

it is easy to see that we get a new combinatorial interpretation for the Fibonacci numbers that
is stated in the following theorem:
Theorem 5.1: The total number of partitions into at most n parts in which every integer less
than or equal to the largest part appears at least twice is equal to the Fibonacci number Fn.

In [10] we find, also, a two variable function similar to (5.2) related to the first Rogers-
Ramanujan identity (Rogers [9]) given by:

f1(q, t) =
∞∑

n=0

t2nqn2

(t; q)n+1
=

∞∑
n=0

Pn(q)tn (5.4)

from which we get
(1− t)f1(q, t) = 1 + t2qf1(q, tq).

Knowing this functional equation one can get the following recurrence relation for Pn(q):

P0(q) = 1
P1(q) = 1 (5.5)
Pn(q) = Pn−1 + qn−1Pn−2(q).
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To get one more combinatorial interpretation for the Fibonacci numbers we observe that,
for q = 1, (5.5) is the Fibonacci sequence and that from the first sum in (5.4) we have the
following nice result:
Theorem 5.2: The total number of partitions in which the side of the Durfee squares equals
to the largest part and the largest part plus the number of parts is at most n is equal to Fn.
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