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ABSTRACT

Some identities of Chebyshev polynomials are deduced from Waring’s formula on sym-
metric functions. In particular, these formulae generalize some recent results of Grabner and
Prodinger.

1. INTRODUCTION

Given a set of variables X = {x1, x2, . . . }, the kth (k ≥ 0) elementary symmetric polyno-
mial ek(X) is defined by e0(X) = 1,

ek(X) =
∑

i1<...<ik

xi1 . . . xik
, for k > 1,

and the kth (k ≥ 0) power sum symmetric polynomial pk(X) is defined by p0(X) = 1,

pk(X) =
∑

i

xk
i , for k > 1.

Let λ = 1m12m2 . . . be a partition of n, i.e., m11 + m22 + . . . + mnn = n, where mi ≥ 0
for i = 1, 2, . . . n. Set l(λ) = m1 + m2 + . . . + mn. According to the fundamental theorem of
symmetric polynomials, any symmetric polynomial can be written uniquely as a polynomial of
elementary symmetric polynomials ei(X) (i ≥ 0). In particular, for the power sum pk(x), the
corresponding formula is usually attributed to Waring [1, 4] and reads as follows:

pk(X) =
∑

λ

(−1)k−l(λ) k(l(λ)− 1)!∏
i mi!

e1(X)m1e2(X)m2 . . . , (1)

where the sum is over all the partitions λ = 1m12m2 . . . of k.
In a recent paper [3] Grabner and Prodinger proved some identities about Chebyshev

polynomials using generating functions, the aim of this paper is to show that Waring’s formula
provides a natural generalization of such kind of identities.

Let Un and Vn be two sequences defined by the following recurrence relations:

Un = pUn−1 − Un−2, U0 = 0, U1 = 1, (2)
Vn = pVn−1 − Vn−2, V0 = 2, V1 = p. (3)
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Hence Un and Vn are rescaled versions of the second and first kind of Chebyshev polynomials
Un(x) and Tn(x), respectively:

Un+1 = Un(p/2), Vn = 2Tn(x).
Theorem 1: For integers m,n ≥ 0, let Wn = aUn + bVn and Ω = a2 + 4b2 − b2p2. Then the
following identity holds

W 2k
n + W 2k

n+m =
k∑

r=0

θk,r(m)Ωk−rW r
nW r

n+m, (4)

where

θk,r(m) =
∑

062j6k

(−1)j k(k − j − 1)!
j!(k − r)!(r − 2j)!

V r−2j
m U2k−2r

m .

Note that the identities of Grabner and Prodinger [3] correspond to the m = 1 and
implicitly m = 2 cases of Theorem 1 (cf. Section 3).

2. PROOF OF THEOREM 1

We first check the k = 1 case of (4):

W 2
n + W 2

n+m = VmWnWn+m + U2
mΩ. (5)

Set α = (p +
√

p2 − 4)/2 and β = (p−
√

p2 − 4)/2 then it is easy to see that

Un =
αn − βn

α − β
, Vn = αn + βn,

it follows that
Wn = aUn + bVn = Aαn + Bβn,

where A = b + a/(α − β) and B = b− a/(α − β). Therefore

VmWnWn+m + U2
mΩ = (αm + βm)(Aαn + Bβn)(Aαn+m + Bβn+m)

+
(

αm − βm

α − β

)2

(a2 + 4b2 − b2p2),

which is readily seen to be equal to W 2
n + W 2

n+m.
Next we take the alphabet X = {W 2

n ,W 2
n+m}, then the left-hand side of (4) is the power

sum pk(X). On the other hand, since

e1(X) = W 2
n + W 2

n+m, e2(X) = W 2
nW 2

n+m, ei(X) = 0 if i > 3,
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the summation at the right-hand side of (1) reduces to the partitions λ = (1k−2j 2j), with
j ≥ 0. Now, using (5) Waring’s formula (1) infers that

W 2k
n + W 2k

n+m

=
∑

062j6k

(−1)j k(k − j − 1)!
j!(k − 2j)!

(VmWnWn+m + U2
mΩ)k−2j(W 2

nW 2
n+m)j

=
∑

062j6k

k−2j∑
i=0

(−1)j k(k − j − 1)!
j!i!(k − 2j − i)!

V k−2j−i
m U2i

mΩi(WnWn+m)k−i

Setting k − i = r and exchanging the order of summations yields (4).

3. SOME SPECIAL CASES

When m = 1 or 2, as U1 = 1, V1 = p and U2 = p, V2 = p2 − 2 the coefficient θk,r(r) of
Theorem 1 is much simpler.
Corollary 1: We have

θk,r(1) =
∑

062j6r

(−1)j k(k − 1− j)!
(k − r)!j!(r − 2j)!

pr−2j , (6)

θk,r(2) =
∑

062j6k

(−1)j k(k − j − 1)!
j!(k − r)!(r − 2j)!

(p2 − 2)r−2jp2k−2r. (7)

We notice that (6) is exactly the formula given by Grabner and Prodinger [3] for θk,r(1),
while for θk,r(2) they give a more involved formula than (7) as follows:
Corollary 2: (Grabner and Prodinger [3]) There holds

θk,r(2) =
∑

06λ6k

(−1)λp2k−2λ k(k −
⌊

λ
2

⌋
− 1)!2d

λ
2 e

(k − r)!λ!(r − λ)!

bλ
2 c−1∏
i=0

(2k − 2
⌈

λ

2

⌉
− 1− 2i). (8)

In order to identify (7) and (8), we need the following identity.
Lemma 2: We have

j/2∑
i=0

(−1)i (k − i− 1)!2j−2i

(j − 2i)!i!

=
(k − bj/2c − 1)!

j!
2dj/2e

bj/2c−1∏
i=0

(2k − 2dj/2e − 1− 2i). (9)
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Proof: For n ≥ 0 let (a)n = a(a+1) . . . (a+n−1), then the Chu-Vandermonde formula [2,
p. 212] reads:

2F1(−n, a; c; 1) :=
∑
k>0

(−n)k(a)k

(c)kk!
=

(c− a)n

(c)n
. (10)

Note that n! = (1)n, so using the simple transformation formulae:

(a)2n =
(a

2

)
n

(
a + 1

2

)
n

22n, (a)2n+1 =
(a

2

)
n+1

(
a + 1

2

)
n

22n+1,

and

(a)N−n =
(a)N

(a + N − n)n
= (−1)n (a)N

(−a−N + 1)n
,

we can rewrite the left-hand side of identity (9) as follows:
(k−1)!

( 1
2 )m(1)m

2F1(−m,−m + 1
2 ;−k + 1; 1) if j = 2m,

(k−1)!

( 1
2 )

m+1(1)m
2F1(−m,−m− 1

2 ;−k + 1; 1) if j = 2m + 1,

which is clearly equal to the right-hand side of (9) in view of (10).
Now, expanding the right-hand side of (7) by binomial formula yields

∑
062j6k

(−1)j k(k − j − 1)!
j!(k − r)!(r − 2j)!

r−2j∑
i=0

(
r − 2j

i

)
p2i(−2)r−2j−ip2k−2r.

Writing λ = r − i, so λ ≤ r ≤ k, and exchanging the order of summations, the above quantity
becomes ∑

06λ6k

(−1)λp2k−2λ k

(k − r)!(r − λ)!

∑
06j6k/2

(−1)j (k − j − 1)!2λ−2j

(λ− 2j)!j!
,

which yields (8) by applying Lemma 2.
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