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ABSTRACT

We study the equation Fb = Fx(1)+F−x(3)+F−x(4)+ · · ·+F−x(m) with m ≥ 3, 0 < x(1) <
b, and 0 < x(3) < x(4) < · · · < x(m). This equation naturally arises in the generalization
of several problems that have appeared in The Fibonacci Quarterly in the problem sections.
This equation also has intrinsic interest in its own right. The main theorem - the Accident
theorem–states, that under very mild conditions, solutions to this equation cannot happen
by accident; that is, there are no singular solutions, but rather every solution belongs to a
parametrizable class of solutions. Furthermore if m ≥ 4, then b must be even and there are
exactly 9 parametrizable solutions. This is the first major theorem in the literature on identities
in Fibonacci numbers with an arbitrary number of summands whose subscripts have mixed
signs. There are only 2 hypothesii of the accident theorem: We require that for all i, x(i) > 2
and that no proper subset of summands on the right hand side of the equation has a sum
of zero. While the proof of the accident theorem requires many sub-theorems and lemmas,
the basic proof method is to exploit Fibonacci Telescoping lemmas. An example of Fibonacci
Telescoping is illustrated by the following identity which leads to one of the 9 parametrizable
solutions for m ≥ 4 : Fb = Fb−o−3 + F−(b−o−2) + F−(b−o) + · · ·+ F−(b−1) with b even and o an
arbitrary positive odd integer.

1. INTRODUCTION AND SUMMARY

Arising as the generalization of several problems that have appeared in the Fibonacci
Quarterly, the equation

Fn = Fx(1) + F−x(3) + F−x(4) + · · ·+ F−x(m),

0 < x(1) < b, 0 < x(3) < x(4) < · · · < x(m),m ≥ 3,

}
(1.1)

leads to the first major theorem in the literature on identities in Fibonacci numbers with an
arbitrary number of summands whose subscripts have mixed signs.

The first problem related to (1.1) was problem B-799 [1]: Find integers a, b, c, and d
(with 1 < a < b < c < d) that make the following an identity:

Fn = Fn−a + 6Fn−b + Fn−c + Fn−d. (1.2)

The problem editor, when publishing the solution [3], stated that most solvers pulled the answer
out of a hat, with methods that do not seem to generalize. He challenged the readership with
B-804, which replaced 6 in (1.2) with 9342.

Fn = Fn−a + 9342Fn−b + Fn−c + Fn−d (1.3)

235



LINEAR EQUALITIES IN FIBONACCI NUMBERS

The solution to B-804 [2] used identity (1.4) to write (1.5):

Fn = Fn−u+v + (Lu − Lv)Fn−u + Fn−u−v + Fn−2u (1.4)

Fn = Fn−15 + 9342 Fn−19 + Fn−23 + Fn−38. (1.5)

The above problems naturally suggest the following generalizations: Fix an integer m ≥ 3.
Describe all integer (m+1)-tuples— {c 6= 0, a(1), . . . , a(m)} with 0 < a(1) < a(2) < · · · < a(m)
such that for all integer n > 0,

Fn = Fn−a(1) + cFn−a(2) + Fn−a(3) + Fn−a(4) + · · ·+ Fn−a(m). (1.6)

We call m the size of (1.6).
We first reduce (1.6) by letting n = a(2). More specifically define

b = a(2), x(1) = b− a(1), x(i) = a(i)− b, i = 3, 4, . . . ,m. (1.7)

The equation (1.1) is the reduced equation arising from (1.6). The major task left is to solve
the reduced equation (1.1).

The following definitions will be used throughout the paper. A solution of (1.1) is called
large if b and all x(i) are strictly larger than 2. Similarly, a Fibonacci number, Fz, is called
large if |z| > 2. By abuse of notation we will call a subscript large if its absolute value is
greater than 2. A solution of (1.1) is called prime if there is no non-trivial proper sub-identity
(equivalently, if no sum of summands on the right hand side equals zero). More generally, an
arbitrary identity is called prime if there is no non-trivial proper sub-identity. A solution of
(1.1) is called 1-parametrizable if increasing all subscripts by an arbitrary even number also
yields a solution.

Note, that if a solution of (1.1) is 1-parametrizable then the infinite class of identities to
which it belongs can be parametrized with parameter b and constants a(i) as defined by (1.7).
If a solution to (1.1) is not 1-parametrizable then it is called singular. A solution of (1.1) is
called even (or odd) according to the parity of b. In section 2 we solve (1.1) for size 3, illustrate
examples of these concepts and motivate their relevance to the main theorem.

In section 3 we present the main theorem of this paper, The Accident Theorem, which
states that for each m ≥ 3, all large prime solutions of (1.1) are 1-parametrizable; furthermore,
if m ≥ 4 then all large prime solutions occur in one of nine forms and b must be even. Theorem
3.1 is named “the accident theorem” since it shows that a solution to (1.1) cannot happen by
accident but has to be part of a larger class of identities. Section 4 contains three lemmas
useful in the proof of Theorem 3.1 as presented in sections 2 and 5-8.

2. SIZE 3

When m = 3, (1.1) reduces to Fb = Fx(1) + F−x(3), 0 < x(1) < b; 0 < x(3). We have
Lemma 2.1: If {b, x(1), x(2)} is a large solution to (1.1) for m = 3, then either

x(1) = b− 1, x(2) = b− 2, b odd, b ≥ 5

or
x(1) = b− 2, x(2) = b− 1, b even, b ≥ 5.
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Proof: We divide the proof into cases according to the value of x(1). Note, that by (1.1)
x(1) < b.
Case x(1) = b− 1 or x(1) = b− 2 : If x(1) = b− 1 then by (1.1) F−x(3) = Fb −Fx(1) = Fb−2,
and therefore by (1.1) we must have that x(3) is odd with x(3) = b−2. The requirement b ≥ 5
assures that the solution is large. The proof for the case x(1) = b− 2 is almost identical.
Case x(1) ≤ b − 3: But then either F−x(3) ≤ Fb−1, and therefore Fx(1) + F−x(3) ≤ Fb−3 +
Fb−1 < Fb, a contradiction for b, x(i) > 2, or else, F−x(3) ≥ Fb and since x(1) is positive,
Fx(1) + F−x(3) > Fb, a contradiction.
Theorem 2.2: The only solutions to (1.1) for size m = 3 are

x(1) = b− 1, x(2) = b− 2, b ≥ 3 and b odd,

x(1) = b− 2, x(2) = b− 1, b ≥ 4 and b even,

}
(2.1)

b = 3, x(1) = 1, x(2) = −1
b = 4, x(1) = 1, x(2) = −3
b = 4, x(1) = 3, x(2) = −1.

 (2.2)

Proof: If a solution is not large then either b or some x(i) equals 1 or 2. It therefore
suffices to computationally check (1.1) for all integer-3-tuples in the [1, 4]3 cube in R3. A
computer check of these 64 points reveals the 3 solutions mentioned in (2.2) and also the
non-large solutions F3 = F2 + F−1 and F4 = F2 + F−3.

The main focus of this paper is on solving (1.1). Corollary 2.3 shows how solutions of
(1.1) yield solutions to (1.6) using the reduction method defined by (1.7). We do not further
pursue the study of (1.6) in this paper.
Corollary 2.3: All solutions to (1.6) for m = 3 are in one of the following forms:

Fn = Fn−1 + Lb−2Fn−b + Fn−(2b−2), b ≥ 3 and b odd
Fn = Fn−2 + Lb−1Fn−b + Fn−(2b−1), b ≥ 4 and b even
Fn = Fn−1 + 2Fn−4 + Fn−5

Fn = Fn−2 + 2Fn−3 + Fn−4

Fn = Fn−3 + 5Fn−4 + Fn−7

Note that the non-large solutions in (2.2) are singular while the large solutions in (2.1)
are 1-parametrizable. Similarly the following solution of (1.1), for size 4, Fb = Fx(1) +F−x(1) +
F−b, 0 < x(1) < b b odd, x(1) even, is neither prime nor singular and can heuristically be
thought of as factoring into the two identities: Fb = F−b and Fx(1) + F−x(1) = 0. In a similar
manner the solution Fb = F1+F−2+F−b, b odd, shows how non-large non-prime solutions may
be singular. These and similar considerations motivate only considering large prime solutions
to (1.1) in the main theorem.

3. THE ACCIDENT THEOREM

We are now in a position to state the main theorem. First we state some
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Notational Conventions: For the rest of the paper the symbols o, o′, o′′ will stand for
arbitrary, odd, positive integers. If J is a set of integers, then a ≤ J ≤ b means that a ≤ j ≤ b
for all j ∈ J . Similarly the statement that J is odd or even means all members of J are
odd or even respectively. For the rest of the paper equality of sets by convention means
equality of ordered sets. If the string Fx + Fy + · · · + Fz occurs in an equation then this
string either refers to (a) the single summand Fx or (b) the sum Fx + Fz or (c) the sum
Fx +Fx+d +Fx+2d + · · ·+Fx+jd with y = x+d, d 6= 0 and z = x+jd for some positive non-zero
integer j > 1 (d is allowed to be negative). In particular, by convention, throughout this paper,
such a string is assumed non-empty. A string of the form Fx +Fy + · · ·+Fz +Fu is interpreted
as (Fx +Fy + · · ·+Fz)+Fu; similarly a string of the form Fx +Fy + · · ·+Fz +Fu +Fv + · · ·+Fw

is interpreted as (Fx + Fy + · · · + Fz) + (Fu + Fv + · · · + Fw). These conventions allow an
unambiguous interpretation of every string with possibly multiple triple dot notations. Similar
conventions apply to sequences.
The Accident Theorem 3.1: Suppose, for some m ≥ 3, that {b, x(1), x(3), x(4), . . . , x(m)}
is a large prime solution of (1.1). Then this solution is 1-parametrizable. Furthermore either
m = 3 and (2.1) holds or else m > 3, b is even, and this solution is in one of the following 9
forms:
Form 1: Fb = Fb−o−3 + F−(b−o−2) + F−(b−o) + · · ·+ F−(b−1)

Form 2: Fb = Fb−2 + F−b + F−(b+1)

Form 3: Fb = Fb−2 + F−b + F−(b+2) + F−(b+4) + · · ·+ F−(b+o′′+1) + F−(b+o′′+2)

Form 4: Fb = Fb−o−3 + F−(b−o−1) + F−(b−o) + · · ·+ F−(b−1) + F−b + F−(b+1)

Form 5: Fb = Fb−o−3 + F−(b−o−1) + F−(b−o) + · · ·+ F−(b−1) + F−b + F−(b+2) + F−(b+4) +
· · ·+ F−(b+o′′+1) + F−(b+o′′+2),
Form 6: Fb = Fb−o−3 + F−(b−o−2) + F−(b−o) + · · ·+ F−(b−3) + F−b + F−(b+1)

Form 7: Fb = Fb−o−3 + F−(b−o−2) + F−(b−o) + · · ·+ F−(b−3) + F−b + F−(b+2) + F−(b+4) +
· · ·+ F−(b+o′′+1) + F−(b+o′′+2),
Form 8: Fb = Fb−o−4−o′ + F−(b−o−3−o′) + F−(b−o−1−o′) + · · · + F−(b−o−4) + F−(b−o−1) +
F−(b−o) + · · ·+ F−(b−1) + F−b + F−(b+1)

Form 9: Fb = Fb−o−4−o′ + F−(b−o−3−o′) + F−(b−o−1−o′) + · · · + F−(b−o−4) + F−(b−o−1) +
F−(b−o) + · · ·+ F−(b−1) + F−b + F−(b+2) + F−(b+4) + · · ·+ F−(b+o′′+1) + F−(b+o′′+2).

Conversely every choice of positive, large, even integer b and every choice of o, o′ and o′′

for which all subscripts are large, yield, for some m > 3, a 1-parametrizable, large, even, prime
solution to (1.1).
Examples: The following solutions to (1.1), for various sizes of m, illustrate the 9 forms.
Form 1: Fb = Fb−10 + F−(b−9) + F−(b−7) + F−(b−5) + F−(b−3) + F−(b−1)

Form 2: Fb = Fb−2 + F−b + F−(b+1)

Form 3: Fb = Fb−2 + F−b + F−(b+2) + F−(b+4) + F−(b+6) + F−(b+7)

Form 4: Fb = Fb−4 + F−(b−2) + F−(b−1) + F−b + F−(b+1)

Form 5: Fb = Fb−4 + F−(b−2) + F−(b−1) + F−b + F−(b+2) + F−(b+3)

Form 6: Fb = Fb−8 + F−(b−7) + F−(b−5) + F−(b−3) + F−b + F−(b+1)

Form 7: Fb = Fb−6 + F−(b−5) + F−(b−3) + F−b + F−(b+2) + F−(b+3)

Form 8: Fb = Fb−6 + F−(b−5) + F−(b−2) + F−(b−1) + F−b + F−(b+1)

Form 9: Fb = Fb−8 + F−(b−7) + F−(b−5) + F−(b−2) + F−(b−1) + F−b + F−(b+2) + F−(b+3).
Certain patterns emerge in the nine forms that will facilitate proving theorem 3.1.
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- Only form 1 has x(i) < b, all i (the all-below-b case).
- In all other forms x(i) ≥ b for some i.
- The forms naturally occur in pairs: The set of x(i) above b, {x(i) : x(i) > b}, equals either
{b + 1}, or {b + 2, b + 4, . . . , b + o′′ + 1, b + o′′ + 2}
- In a similar manner the set of x(i) below b, {x(i) : x(i) < b} equals one of four forms.

Using these observations we now outline the proof of theorem 3.1:
- The case m = 3 is covered in Lemma 2.1.
- (Corollary 4.2)The nine forms, for any even b, and any choice of positive o, o′, o′′, are solutions
of (1.1).
- A solution of (1.1) either has x(i) < b for all i or else there exists some i such that x(i) ≥ b.
- The All below b case: (Theorem 5.6) If all x(i) < b and m > 3 then form 1 holds.
- The Above b case: (Theorem 6.2, Corollary 6.3) If there exists some j0 such that x(j0) = b
then {x(i) : i > j0} equals either

- {x(m)} = {b + 1}, or
- {x(j0 + 1), x(j0 + 2), . . . , x(m− 1), x(m)} = {b + 2, b + 4, . . . , b + o′′ + 1, b + o′′ + 2}.

- (Corollary 6.3(c)) If there exists some i such that x(i) ≥ b then in fact there is some j0 such
that x(j0) = b
- The Below b case: (Theorem 7.4) If there exists some j0 such that x(j0) = b, then {x(i) : i <
j0}, equals either

- {x(1)} = {b− 2} or
- {x(1), x(3), x(4), . . . , x(j0 − 1)} = {b− o− 3, b− o− 1, b− o, . . . , b− 1} or
- {x(1), x(3), x(4), . . . , x(j0 − 1)} = {b− o− 3, b− o− 2, b− o, . . . , b− 3} or
- {x(1), x(3), x(4), . . . , x(j0 − 1)} = {b− o− 4− o′, b− o− 3− o′, b− o− 1− o′, . . . , b− o−

4, b− o− 1, b− o, . . . , b− 1}
- The odd-b case: (Theorem 8.7) For m > 3, there is no large prime odd solution of (1.1).

4. THREE USEFUL LEMMAS

The proof of the accident theorem is greatly simplified by the following three lemmas.
The names given these lemmas will be used in the sequel.
Lemma 4.1 (Fibonacci Telescoping): For any integer z we have

Fz + Fz+1 + Fz+3 + · · ·+ Fz+o = Fz+o+1

Fz − Fz−1 − Fz−3 − · · · − Fz−o = Fz−o−1.

Corollary 4.2: Let b be any even number. Let o, o′ and o′′ be arbitrary positive odd integers.
Then the 9 forms listed in section 3, yield solutions to (1.1).

Proof: We prove that form 9 yields a solution, the proof for the other forms being similar.
By the evenness of b and Lemma 4.1 we have

F(b+1) = F−(b+2) + F−(b+4) + · · ·+ F−(b+o′′+1) + F−(b+o′′+2),

and
F(b−o−3) = Fb−o−4−o′ + F−(b−o−3−o′) + F−(b−o−1−o′) + · · ·+ F−(b−o−4).
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Clearly F(b−o−3) + [F−(b−o−1) +F−(b−o)] + · · ·+F−(b−1) = F(b−o−3) +F(b−o−2) +F(b−o) +
· · · + F(b−3) which equals F(b−2) by Lemma 4.1. Hence the right hand side of form 9 reduces
to F(b−2) + F−b + F(b+1) = Fb as was to be shown.
Lemma 4.3 (Parity Transposition):

(a) Let J be a set of positive integers of the same parity with 2 < J ≤ z. Then
∑

j∈J Fj <
Fz+1

(b) Suppose further that for some k, of the same parity as members of J , with 2 < k ≤ z
that k 6∈ J . Then

∑
j∈J Fj < Fz+1 − Fk.

Proof of part (a): Since j > 2, the lemma trivially follows from the following well known
identities (e.g. [4]): F1 + F3 + F5 + · · ·+ Fo = Fo+1, F2 + F4 + F6 + · · ·+ Fo−1 = Foa− 1. Part
(b) trivially follows from part (a).
Lemma 4.4: (Alternating Fibonacci Telescoping) If all summands are large then Fo−Fo−1 +
Fo−2 − Fo−3 · · · < Fo−1.

Proof: A straightforward induction shows that −F2 + F3 − F4 + · · ·+ Fo = Fo−1, o odd
with strict equality. Consequently an alternating sum that avoids small subscripts must have
strict inequality.

5. THE ALL-BELOW-b CASE

Throughout this section we assume that for some integers n, z, u(1), u(3), . . . , u(n), that

Fz = Fu(1) + F−u(3) + F−u(4) + · · ·+ F−u(n) is a large prime even identity.

with u(1) < z, u(3) < u(4) < · · · < u(n) < z, n ≥ 3

}
(5.1)

Lemma 5.1:
(a) There exists some j such that u(j) = z − 1
(b) It is not possible for both u(1) = z − 1 and u(n) < z − 1.
Proof of (a): Assume to the contrary that u(i) ≤ z − 2 for all i. Then the odd u(i) are

bounded above by z − 3. After transposing negative summands from the right side of (5.1)
to the left side we have an equation of the form Fz +

∑
i∈K≤z−2 Fi = Fu(1) +

∑
i∈J≤z−3 Fi

for some sets of integers, J, K, of odd and even parity respectively. Applying Lemma 4.3
we obtain Fz ≤ Fz +

∑
i∈K≤z−2 Fi = Fu(1) +

∑
i∈J≤z−3 Fi ≤ Fz−2 + Fz−2 which is false for

even z > 2. This contradiction shows our original assumption false and completes the proof of
Lemma 5.1(a).

The proof of Lemma 5.1(b) is almost identical to the proof of Lemma 5.1(a) and hence
omitted.
Remark: The above argument could have, without serious loss of detail, been succinctly
stated as follows: ‘Proof of part (a): If we assume to the contrary that u(i) ≤ z − 2, then
a parity transposition shows Fz +

∑
i∈K Fi = Fu(1) +

∑
i∈J≤z−3 Fi < Fz−2 + Fz−2(∗).’ The

definitions and upper bounds for the sets J and K are clear from context. In the sequel we
will use similar shorter forms for proofs.
Lemma 5.2:

(a) If for some p ≥ 3, 0 = F−u(3) + · · · + F−u(p) + Fz−o, u(i) ≤ z − o + 1, then
u(p) = z − o + 1

240



LINEAR EQUALITIES IN FIBONACCI NUMBERS

(b) If for some p ≥ 3, Fz−(o+1) = F−u(3) + · · · + F−u(p), u(i) ≤ z − (o + 1) + 1 then
u(p) = z − (o + 1) + 1.

Proof of (a): Assuming to the contrary that the even u(i) are bounded by z − o − 1
and applying a parity transposition to the equation in the statement of Lemma 5.2(a) we infer
Fz−o ≤ Fz−o +

∑
i∈J Fi =

∑
i∈K≤z−o−1 Fi < Fz−o(∗). This contradiction shows that the

largest u(i) is in fact z− o+1. The proof is completed by noting that by (5.1) the largest u(i)
occurs at i = p. (The proof of part (b) is almost identical and hence omitted).
Lemma 5.3: We cannot have both u(1) = z − 1 and u(n) = z − 1.

Proof: Assume to the contrary. Substituting, u(1) = z − 1 and u(n) = z − 1 into (5.1)
yields

0 = F−u(3) + F−u(4) + · · ·+ F−u(n−1) + Fz−3 (5.2)

For 3 ≤ i ≤ n − 1, we have u(i) ≤ z − 2, since u(i) ≤ u(n − 1) < u(n) = z − 1. Applying
Lemma 5.2(a) to (5.2) shows that u(n − 1) = z − 2 and therefore by the evenness of z,
F−(z−3) + F−u(n−1) = Fz−3 − Fz−2 = −Fz−4. Hence simplifying (5.2) yields

Fz−4 = F−u(3) + · · ·+ F−u(n−2), u(i) ≤ z − 3.

If n− 2 ≥ 3 then we may apply Lemma 5.2(b) showing u(n− 2) = z − 3.
Subtracting Fz−4 from both sides of this last equation yields 0 = F−u(3)+ · · ·+F−u(n−3)+

Fz−5, u(i) ≤ z − 4. If n − 3 ≥ 3 then we may again apply Lemma 5.2(a) showing that
u(n− 3) = z− 4. We also have, Fz−5 +F−(z−4) = −Fz−6. If n− 4 ≥ 3 we may transpose Fz−6

to the left side and again apply Lemma 5.2(b) showing that u(n− 4) = z − 5.
This process may be continued inductively yielding u(j) = z−(n+1−j), for j = 3, 4, . . . , n.

Substituting these values back into (5.2) and using the assumption u(1) = z − 1 we have
Fz = Fz−1 +(Fz−1−Fz−2 +Fz−3 . . . ). But by the Alternating Fibonacci Telescoping, Lemma
4.4, the right side of this last equation is strictly bounded above by Fz−1 + Fz−2 = Fz a
contradiction. This contradiction shows that our original assumption that both u(1) and u(n)
equal z − 1 is false and completes the proof.

For future reference we note that we have proven
Corollary 5.4: Equation (5.1) implys (5.2) is not possible.
Lemma 5.5: If (5.1) holds then

(a) u(n) = z − 1
(b) If n > 3 then u(1) < z − 2.
(c) If n > 3 then u(i) ≤ z − 3 for i = 3, 4, . . . , n− 1.
Proof of (a): By Lemma 5.1(a), u(j) = z− 1 for some j. By (5.1) either j = 1 or j = n.

By Lemmas 5.1(b) and 5.3, j 6= 1. Hence j = n.
Proof of (b): First, by Lemma 5.5(a) and Lemma 5.3, u(1) 6= z− 1. Next, if contrary to

Lemma 5.5(b), u(1) = z−2 then by Lemma 5.5(a) and (5.1), Fz = Fu(1)+F−u(n) = Fz−2+Fz−1

is a strictly proper sub-equation of (5.1) violating primality, since n > 3. Hence our original
assumption is false and u(1) < z − 2 as required.

Proof of (c): Assume to the contrary that u(n − 1) = z − 2. By Lemmas 5.5(a), (b),
u(n) = z − 1 and u(1) ≤ z − 3 respectively. Applying a parity transposition to (5.1) yields

Fz +
∑
i∈J

Fi = Fu(1) +
∑

i∈K≤z−3

Fi + Fu(n−1) + Fu(n) < Fz−3 + Fz−1 = Fz(∗).
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We conclude for 3 ≤ i ≤ n− 1 that u(i) ≤ u(n− 1) < z − 2 as required.
We apply Lemmas 5.1 - 5.5, to deal with the all-below-b case of the main accident theorem.

Theorem 5.6 (the all below-b-case): Suppose for some m ≥ 3 that {b, x(1), x(3), x(4), . . . ,
x(m)} is a prime, large, even solution to (1.1). Suppose further that x(i) < b, all i. Then (for
some positive odd integer o), {x(1), x(3), x(4), . . . , x(m)} = {b−o−1, b−o, b−o+2, . . . , b−1}

Proof: Applying Lemma 5.5(a) with n = m, z = b, u(i) = x(i) shows x(m) = z − 1.
If m = 3 then Fx(1) = Fb − F−x(3) = Fb − Fb−1 = Fb−2 and we are done. If m > 3 then
subtracting Fz−1 = Fb−1 from both sizes of (1.1) yields

Fb−2 = Fx(1) + F−x(3) + F−x(4) + · · ·+ F−x(m−1).

By Lemma 5.5(b)-(c), x(i) < b− 2 for all i. Therefore since m− 1 ≥ 3 then we may again
apply Lemma 5.5(a) with n = m− 1, z = b− 2, u(i) = x(i), showing that x(m− 1) = z− 1 =
b−3. If m−2 ≥ 3 we may subtract Fb−3 from both sides, apply again Lemma 5.5(b)-(c) to show
that x(i) < b− 4 and then apply again Lemma 5.5(a), with z = b− 4, u(i) = x(i), n = m− 2,
showing that x(m− 2) = b− 5. We may continue this process inductively showing that

Fb = Fx(1) + F−(b−o) + F−(b−o+2) + · · ·+ F−(b−3) + F−(b−1).

Hence by Fibonacci Telescoping, x(1) = b− o− 1 completing the proof of Theorem 5.6.

6. THE ABOVE-b CASE

In this section we show that if in (1.1), x(i) ≥ b, for some i, then in fact {x(i) : x(i) > b}
equals either {b + 1} or {b + 2, b + 4, . . . , b + o′′ + 1, b + o′′ + 2}.

Throughout this and the next section we assume that for some integers n, z, u(k), k =
1, 3, 4, . . . , that

Fz = Fu(1) + F−u(3) + F−u(4) + · · ·+ F−u(n) is a large, prime, even identity, with
u(1) < z; u(3) < u(4) < · · · < u(n), n ≥ 3, with u(i) ≥ z for some i ≥ 3,

}
(6.1)

Lemmas 6.1: If (6.1) holds then
(a) For some j, u(j) > z.
(b) Sup u(j)− z is odd; the supremum occurs at j = n
(c) Suppose u(n) = z + o. If o ≥ 3 then u(n− 1) = z + o− 1.
(d) Suppose u(n) = z + o, o ≥ 3, and u(n− 1) = z + o− 1. Then u(n− 2) < z + o− 2.
Proof of (a): If, to the contrary u(j) ≤ z for all j, then by (6.1) u(i) = z for some

i ≥ 3 and hence, by (6.1) u(n) = z. Applying a parity transposition to (6.1) yields Fz + Fz +∑
i∈K≤z−2 Fi = Fu(1) +

∑
i∈J≤z−1 Fi < Fz−1 + Fz(∗).

Proof of (d): If to the contrary u(n) = z+o, u(n−1) = z+o−1, and u(n−2) = z+o−2
then applying a parity transposition yields Fz + Fz+o > Fz + Fz+o−1 +

∑
i∈J≤z+o−3 Fi =

Fu(1) +
∑

i∈K Fi + Fz+o−2 + Fz+o ≥ Fz+o + Fz+o−2, a contradiction for o ≥ 3.
The proofs of parts (b) and (c) are almost identical to the proofs of parts (a) and (d) and

hence omitted.
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Theorem 6.2 (The above-b-case): Suppose b, x(1), x(3), x(4), . . . , x(m),m ≥ 4, is a large,
prime, even solution of (1.1). Suppose further that x(i) ≥ b for some i 6= 2. Then either

x(m) = b + 1 (6.2)

or else for some positive integer j,

x(m) = b + o′′ + 2, x(m− 1) = b + o′′ + 1, x(m− 2) = b + o′′ − 1, . . . , x(m− j) = b + 2 (6.3)

Proof: Applying Lemma 6.1(b), with z = b, u(j) = x(j), n = m, shows that x(m) = b+o.
If o = 1 then (6.2) is satisfied and we are done. If o > 1 then since o is odd, o ≥ 3. Applying
Lemma 6.2(c), with z = b, u(j) = x(j), n = m, shows x(m − 1) = b + o − 1; similarly
applying Lemma 6.2(d) shows that x(m− 2) < b + o− 2. Since b is even and o is odd we have
F−x(m) + F−x(m−1) = F−(b+o) + F−(b+o−1) = F−(b+o−2). Hence (1.1) reduces to

Fb = Fx(1) + F−x(3) + F−x(4) + · · ·+ F−x(m−2) + F−(b+o−2).

If o = 3 then x(m) = b+ o = b+3, x(m− 1) = b+ o− 1 = b+2, and (6.3) is satisfied with
o′′ = 1 and j = 1. If o ≥ 5 then since 0 < x(1) < b and x(3) < x(4) < · · · < x(m−2) < b+o−2,
we may again apply Lemmas 6.1(c)-(d), with z = b, u(i) = x(i), i = 1, 3, 4, ...,m−2, u(m−1) =
b + o− 2, n = m− 1, showing that x(m− 2) = b + o− 3 and x(m− 3) < b + o− 4.

We may inductively continue this process of combining the last 2 terms on the right
side and applying Lemmas 6.2(c)-(d) until x(m − j) = b + 2 for some j. We then have,
x(m) = b + o, x(m − 1) = b + o − 1, x(m − 2) = b + o − 3, . . . , x(m − j) = b + 2. Letting
o′′ = o− 2 completes the proof of theorem 6.2.

Using Theorem 6.2 we can immediately derive important properties of the subscripts
“below” and “above” b.
Corollary 6.3: If, in (1.1), x(i) ≥ b for some i, then for some integer j0,

(a)
∑

k∈J F−x(k) = Fb+1 with J = {j0 + 1, j0 + 2, . . . ,m},
(b) If k is not in J then x(k) ≤ b.
(c) x(j0) = b.
(d) {x(1), x(3), x(4), . . . , x(m)} = S1 ∪ {x(j0)} ∪ S2 with S1 = {x(j) : j < j0} and

S2 = {x(j) : j > j0} with Fx(1) +
∑

j∈S1−{x(1)} F−x(j) = Fb−2, and
∑

j∈S2 F−x(j) = Fb+1 and
x(j0) = b. (Note: The set S1 − {x(1)} may be empty.)

Proof: Part (a) follows by applying Fibonacci telescoping to (6.3). Part (d) follows
from parts (a)-(c) since applying part (a) and using the evenness of b, we infer that Fx(1) +∑

j∈S1−{x(1)} F−x(j) = Fb − F−b −
∑

i∈S2 F−x(i) = 2Fb − Fb+1 = Fb−2. We have left to prove
parts (b) and (c).

Proof of (b): The hypothesii of theorem 6.2 imply either (6.2) or (6.3). If (6.2) holds
then by (1.1), x(k) ≤ b, for k ≤ m−1 as required. If (6.3) holds then by (1.1), x(k) ≤ b+1 for
k ≤ j0. Therefore to prove x(k) < x(j0) ≤ b, for k ≤ j0, it suffices to assume to the contrary
that x(j0) = b + 1 and derive a contradiction. By part (a) we can rewrite (1.1) as

Fb = Fx(1) + F−x(3) + F−x(4) + · · ·+ F−x(j0+1) + F−x(j0) + Fb+1. (6.4)

Applying a parity transposition to (6.4) yields Fb + Fb+1 > Fb +
∑

k∈K≤b Fi =
∑

k∈L Fk +
Fb+1 + Fb+1 > 2Fb+1(∗).
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Proof of (c): If we assume to the contrary that x(j0) < b, then applying a parity
transposition to (6.4) yields Fb+1 = Fb+Fb−1 > Fb+

∑
k∈L≤b−2 Fk = Fx(1)+

∑
k∈L Fk+Fb+1 >

Fb+1(∗).

7. THE BELOW-b CASE

In this section we completely describe the structure of the set S1 defined in corollary 6.3.
Recall

Fx(1) +
∑

j∈S1−{x(1)}

F−x(j) = Fb−2. (7.1)

Define k = inf{i : S1 ≤ x(i)}. By Lemma 6.3(d) if k = 1 then x(1) = b − 2. Accordingly
for the rest of this section we assume k ≥ 3 (Note: When k ≥ 3, k = j0 − 1.)
Lemma 7.1: If x(i) ≤ b− 3, for 1 ≤ i ≤ k then

{x(1), x(3), x(4), . . . , x(k)} = {b− o− 3, b− o− 2, b− o, . . . , b− 3}. (7.2)

Proof: We apply theorem 5.6 with b replaced by b − 2, and m replaced by k. The
hypothesii of theorem 7.1 are satisfied since

- The requirement of theorem 5.6 that m ≥ 3 is satisfied because we assume k ≥ 3
- b− 2 is even because b is even
- x(1) ≤ b− 3 = (b− 2)− 1 by assumption
- The inequalities 2 ≤ x(i) ≤ b− 3, imply 5 ≤ b or b− 2 > 2 as required
- a violation of primality in 7.1 would imply a corresponding violation of primality in

(1.1).
The conclusion of theorem 5.6 (with b replaced by b− 2) is (7.2). This completes the proof of
Lemma 7.1.

Accordingly for the rest of this section we assume

x(i) ≥ b− 2 for some i, 1 ≤ i ≤ k. (7.3)

Lemma 7.2:
(a) x(i) = b− 1 for some i.
(b) It is not possible for x(1) = b− 1 = x(k).
(c) It is not possible for x(1) = b− 1 and x(j) ≤ b− 2, for 3 ≤ j ≤ k.
(d) x(k) = b− 1.
Proof of (a): If to the contrary, x(i) ≤ b − 2, for all i then by (7.3) x(i) = b − 2 for

some i. We cannot have i = 1 since the equation Fx(1) = Fb−2 coupled with k ≥ 3 implies
a violation of primality in (7.1). We conclude x(i) = b − 2 for some i ≥ 3 and therefore by
(1.1), i = k and x(j) ≤ b − 3 for j < k. Applying a parity transformation to (7.1) yields
Fb−2 + Fb−2 +

∑
i∈J Fi = Fx(1) +

∑
i∈K≤b−3 Fi < Fb−3 + Fb−2 ≤ Fb−2 + Fb−2(∗).

Proof of (b): If we assume to the contrary, then Fb−2 = Fb−1 +F−x(3) + · · ·+F−x(k−1) +
Fb−1. Applying a parity transposition to this equation we obtain Fb−1 + Fb−1 +

∑
i∈J Fi =

Fb−2 +
∑

i∈K≤b−2 Fi < Fb−2 + Fb−1, a contradiction.
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Proof of (c): If we assume to the contrary that x(1) = b− 1 and x(j) ≤ b− 2, for j ≥ 3,
then subtracting Fb−2 from both sides of (7.1) yields 0 = Fb−3 +F−x(3) +F−x(4) + · · ·+F−x(k).
The result now follows from corollary 5.4.

Proof of (d): By definition if i ∈ S1, x(i) < b. By (1.1) the largest x(i) occurs at i = k
or i = 1. The result now follows from (a)-(c).

We continue studying the possible structure of S1. By Lemma 7.2(d), there is a largest
integer, p, 1 ≤ p ≤ k − 2 such that

{x(k), x(k − 1), . . . , x(k − (p− 1)} = {b− 1, b− 2, . . . , b− p}. (7.4)

Clearly, if k − (p − 1) > 3 then by the maximality of p, x(k − p) ≤ b − p − 2. Similarly, if
k− (p−1) = 3 then x(1) ≤ b−p−2 since if we assume to the contrary that k− (p−1) = 3 and
x(1) = b−p−2, then substituting (7.4) into (7.1) yields Fb−2 = Fb−1−Fb−2 +Fb−3−Fb−4 . . .
which by Lemma 4.5 is not possible. We now complete the study of the structure of S1 by
considering three cases according to the parity of p and the size of k − (p− 1).
Lemma 7.3: Suppose (7.4) holds. Then

(a) If p is even and k − (p− 1) = 3 then

{x(1), x(3), x(4), . . . , x(k)} = {b− o− 3, b− o− 1, b− o, . . . , b− 1}. (7.5)

(b) If p is even and k − (p− 1) > 3 then for some positive integer j,

{x(1), x(3), x(4), . . . , x(j), x(j + 1), x(j + 2), . . . , x(k)}
= {b− o− 4− o′, b− o− 3− o′, b− o− 1− o′, . . . , b− o− 4, b− o− 1, b− o, . . . , b− 1}

}
.

(7.6)(c) p cannot be odd.
Proof of (a): Using the assumptions we have

Fx(1) = Fb−2 − [F−x(k) + F−x(k−1) + · · ·+ F−x(k−(p−1))], by (7.1),
= Fb−2 − [(Fb−1 − Fb−2) + (Fb−3 − Fb−4) + · · ·+ (Fb−(p−1) − Fb−p)], by (7.4),
= Fb−2 − Fb−3 − Fb−5 − Fb−7 − · · · − Fb−(p+1),

= Fb−(p+2), by Fibonacci Telescoping.

Letting o = p + 1 yields (7.5) .
Proof of (b): Proceeding as in the proof of part (a) we have

Fx(1) + F−x(3) + F−x(4) + · · ·+ F−x(k−p) = Fb−(p+2). (7.7)

First we show that x(j) ≤ b − (p + 3) for 3 ≤ j ≤ k − p. By the maximality of p in (7.4) we
have x(j) ≤ b − (p + 2) for 3 ≤ j ≤ k − p. Furthermore, if x(k − p) = b − (p + 2) exactly
then (7.7) would imply a violation of primality in (7.1) and hence a corresponding violation of
primality in (1.1). We conclude x(j) ≤ b− (p + 3).

Next we show that x(1) ≤ b − (p + 3). On the one hand if x(1) = b − (p + 2) then
(7.7) implies a violation of primality; on the other hand if x(1) ≥ b − (p + 1), then a parity
transposition applied to (7.7) shows Fx(1) +

∑
i∈J Fi =

∑
i∈K≤b−(p+2) Fi < Fb−(p+1) ≤ Fx(1),

a contradiction. We conclude x(1) ≤ b− (p + 3).
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Since x(i) ≤ b − (p + 3) for all i we may apply Theorem 5.6 to (7.7) with b − (p + 2)
replacing b. We conclude that for some even q, x(1) = (b− p− 2)− q, x(3) = (b− p− 2)− q +
1, x(4) = (b− p− 2)− q + 3, . . . , x(k − p) = (b− p− 2)− 1. Define o and o′ by the equations
(b− p− 2)− q = b− o− 4− o′ and b− o− 4 = b− p− 3. Since b, q, and p are assumed even it
follows that o and o′ are odd. Combining these results with (7.4) yields (7.6).

Proof of (c): We assume to the contrary that (7.4) holds with p ≥ 1, p odd and derive
a contradiction. For notational convenience we first assume p ≥ 3. Then

0 = [F−x(k)−Fb−2+F−x(k−1)+· · ·+F−x(k−(p−1)]+F−x(k−p)+F−x(k−p−1)+· · ·+F−x(3)+Fx(1),

by (7.1),

= [Fb−1 − Fb−2 + (−Fb−2 + Fb−3) + (−Fb−4 + Fb−5) + · · ·+ (−Fb−(p−1) + Fb−p)]+
+ F−x(k−p) + F−x(k−p−1) + · · ·+ F−x(3) + Fx(1), by (7.4),

= [Fb−3 − Fb−4 − Fb−6 − · · · − Fb−(p+1)] + F−x(k−p) + F−x(k−p−1) + · · ·+ F−x(3) + Fx(1)

= Fb−(p+2) + F−x(k−p) + F−x(k−p−1) + · · ·+ F−x(3) + Fx(1), by Fibonacci Telescoping.

By the assumed maximality of p in (7.4), {x(j) : j ≤ k − p, x(j) even} ≤ b − p − 3 for
3 ≤ j ≤ p. Hence applying a parity transposition to the last equation yields Fb−p−2+

∑
i∈J Fi =∑

i∈K≤b−p−3 Fi < Fb−p−2(∗). An almost identical proof applies if p = 1.
We may summarize the results of this section as follows:

Theorem 7.4 (The below-b-case): Suppose for some m ≥ 3 that b, x(1), x(3), x(4), . . . , x(m)
is a prime, large, even solution of (1.1). Suppose further that for some i, x(i) ≥ b. Then there
is a unique subscript j0, with x(j0) = b. Define S1 = {x(i) : i < j0} and k = sup S1. Then
either k = 1, and x(k) = b− 2 or else one of (7.2), (7.5) or (7.6) must hold.

8. THE ODD-b CASE

In sections 5-7 we have completely described all large, even, prime solutions of (1.1).
We have shown that these solutions are described by the 9 forms presented in the accident
theorem. It remains to deal with the case that b is odd. We now prove a sequence of lemmas;
each lemma asserts that no odd solution exists in some special case. The lemmas together
exhaust all possible cases.
Lemma 8.2: There is no large prime solution of (1.1) with b odd, m > 3, and x(i) < b, all i.

Proof: Assume to the contrary that there is such a solution. By (1.1) x(1) ≤ b − 1 and
{x(i) : x(i) odd} ≤ b− 2. We now consider 3 cases.
Case x(1) = b−1 and x(i) = b−2 for some i: The sub-equation Fb = Fx(1) +F−x(i) violates
primality since m > 3.
Case x(1) = b− 1 and {x(i) : x(i) odd, i ≥ 3} ≤ b− 4: A parity transposition of (1.1) shows
Fb +

∑
i∈J Fi = Fx(1) +

∑
i∈K≤b−4 Fi < Fb−1 + Fb−3(∗).

Case x(1) ≤ b− 2 and {x(i) : x(i) odd, i ≥ 3} ≤ b− 2: The proof is almost identical to the
previous case and hence is omitted.
Lemma 8.3: There is no large prime solution of (1.1) with b odd, m > 3, and x(i) = b, for
some i.
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Proof: Clear. If such a solution did exist then the sub-identity Fb = F−b would violate
primality.
Lemma 8.4: There is no large prime solution of (1.1) with b odd, m > 3, and x(m) = b + o.

Proof: We assume to the contrary and derive a contradiction. First, {x(i) : x(i) odd } ≤
b + o − 1. Next, by Lemma 8.3 x(i) 6= b for all i. Performing a parity transposition on
(1.1) and applying Lemma 4.3(b) shows Fb + Fb+o +

∑
i∈J Fi = Fx(1) +

∑
i∈K≤b+o−1 Fi <

Fb−1 + (Fb+o − Fb) < Fb+o a contradiction.
To deal with the final case in Lemma 8.6 we first need an additional Lemma.

Lemma 8.5: If Fp = Fx(1)+F−x(3)+F−x(4)+· · ·+F−x(n) with 2 < x(1) < n, 2 < x(3) < x(4) <
· · · < x(n), x(n) and p odd, x(n) > p, n ≥ 4, then x(n−1) = x(n)−1 and x(n−2) < x(n)−2.

Proof: First we prove that x(n− 1) = x(n)− 1. If we assume to the contrary then upon
applying a parity transposition to the equation in the statement of Lemma 8.5 we conclude
Fx(n) < Fx(1)+Fx(n)+

∑
i∈J Fi < Fp+

∑
i∈K≤x(n)−3 Fi < Fp+Fx(n)−2 ≤ 2Fx(n)−2 < Fx(n)(∗).

Next we prove that x(n − 2) < x(n) − 2. If we assume to the contrary then F−x(n) +
F−x(n−1) + F−x(n−2) = 2Fx(n)−2 and {x(i) : i ≤ n − 3} ≤ x(n) − 3. Applying a parity
transposition yields 2Fx(n)−2 + Fx(1) +

∑
i∈J Fi < Fp +

∑
i∈K≤x(n)−3 Fi < Fp + Fx(n)−2 ≤

2Fx(n)−2(∗).
Lemma 8.6: There is no large prime solution of (1.1) with b odd, m > 3, and x(m) = b+o+1.

Proof: Assume x(m) = b + o + 1. First, applying Lemma 8.5 with b = p, n = m, yields
x(m−1) = b+o and x(m−2) < b+o−1. Substituting F−x(m) +F−x(m−1) = Fb+o+1−Fb+o =
Fb+o−1 into (1.1) yields Fb = Fx(1) + F−x(3) + F−x(4) + · · ·+ F−(b+o−1).

If (o− 1) ≥ 2, we can again apply Lemma 8.5 with b = p, n = m− 1, yielding x(m− 2) =
b + o− 2 and x(m− 3) < b + o− 3. Consequently F−(b+o−1) + F−x(m−2) = F−(b+o−3).

This process continues inductively until we reach some r such that x(m) = b+o+1, x(m−
1) = b + o, x(m− 2) = b + o− 2, . . . , x(m− r) = b + 1. But then by Fibonacci telescoping we
have F−x(m−r) +F−x(m−r+1) + · · ·+F−x(m−1) +F−x(m) = F−(b+1) +F−(b+3) + · · ·+F−(b+o) +
F−(b+o+1) = Fb . Since x(1) < b we have not used all subscripts and therefore have violated
primality. We conclude that our original assumption that x(m) = b + o + 1 was incorrect.
Theorem 8.7: For m > 3, there is no large, odd, prime solution of (1.1).

Proof: Clear. The hypothesii of Lemmas 8.2-8.4 and 8.6 completely exhaust all possibil-
ities.
Remark: The proof of the accident theorem is complete.
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