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ABSTRACT

We ask, for which n does there exists a k, 1 < k < n and (k,n) = 1, so that k/n has
a continued fraction whose partial quotients are bounded in average by a constant B? This
question is intimately connected with several other well-known problems, and we provide a
lower bound in the case of B = 2. The proof, which is completely elementary, involves a simple
“shifting” argument, the Catalan numbers, and the solution to a linear recurrence.

1. INTRODUCTION

An important question in the theory of quasirandomness, uniform distribution of points,
and diophantine approximation is the following: For which n € Z is it true that there exists an
integer k, 1 < k < nand (k,n) = 1, so that k/n has a continued fraction whose partial quotients
are bounded in average by a constant B? That is, if we write k/n = [0;a1, a9, ... ,a,], we
wish to find k so that

for all t with 1 <t < m. Denote by F(B) the set of all n for which such a k exists. These sets
are discussed at length in [2] and the related matter of partial quotients bounded wuniformly
by a constant appears as an integral part of [6]. This latter question is closely connected with
Zaremba’s Conjecture ([8]), which states that such a k exists for all n > 1 if we take B = 5.

Define the continuant K (a1, az,... ,a,;) to be the denominator of the continued fraction
k/n = [0;a1,az2,...,ay]. In [3], it is proven that, if S, (B) is the number of sequences a=
(a1,...,am,) bounded uniformly by B with K(a) < n and H(B) is the Hausdorff dimension
of the set of continued fractions with partial quotients bounded uniformly by B, then

n—oo  logn

— 2H(B).

Then, in [4], H(2) is calculated with a great deal of accuracy: H(2) ~ 0.53128. Therefore,
Sn(2), and thus the number of p/q with ¢ < n whose partial quotients are bounded by 2, is

n!:0625.+o(1) " (This improves the previous best known lower bound, n~'°!7 computed in [3],
slightly.)
Define S,(B) to be the number of sequences a= (ai,...,a,) with partial quotients

bounded in average by B so that K(a) < n. Clearly, S,,(B) > S,,(B), so S, (2) > n*%2° In
the next section, we prove something much stronger, however — an exponent of ~ 1.5728394 —
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thus providing a lower bound in the first nontrivial case. Section 3 discusses the implications
for the density of F(2) and a few open problems.

2. THE PROOF

Theorem 1: For any € > 0, S,,(2) > n2loa2/loa(1+v2)—c,

Proof: The proof consists of two parts: computing the number of positive sequences
of length m bounded in average by 2, and then computing the smallest possible m so that
K(ay,...,am) > n and the a; are bounded in average by 2.

First, we wish to know how many sequences (a,... ,a,) there are with a; > 1 for each

€ [m] and 377_; a; < 2r for each r € [m]. Call this number T'(m). By writing b; = a; — 1,
we could equivalently ask for sequences (b1, ... , by,) with b; > 0 for each j € [m] and 377_, b; <
r for each r € [m]. This is precisely the number of lattice paths from (0,0) to (m,m) which
do not cross the line y = x, and so T(m) is the m*® Catalan number, or (m + 1)~} (27;”) =
gm(1—o(1))

In the following lemmas, we show that K(aq,...,a;,) < nif m <logn(l —o(1))/log(1l+
\/5) Therefore, setting m as large as possible, we have at least

plogn(1-0(1))/log(1+v2) _ , 2log2/log(1+v2)—o(1)

sequences with partial quotients bounded in average by 2 and continuant <n . O
We must show that the size of a continuant with partial quotients bounded in average by
B is at most the largest size of a continuant with partial quotients bounded by B.

Lemma 2: If the sequence (ai,... ,a.) of positive integers is bounded in average by B > 1,
then K(ay,... ,am) < K(B,...,B).
~—

Proof: We prove the Lemma by a “shifting” argument. That is, we perform induction
on the size of the entry a; such that a; > B and j is as small as possible. If a= (a1,... ,am)
contains no a; > B, we are done, because increasing the partial quotients can only increase
the continuant. If there is some a; > B, let t > 2 be the smallest such index. We consider
two cases: (i) az > B+2or a;—1 < B,and (ii) as = B+ 1, ap = B for s < k <t —1 for
some 2 < s <t—1,and as_; < B. (Clearly, a# (B, B,... ,B,B+1,a41,... ,ay), since this
sequence is not bounded in average by B. Therefore we may assume s > 2.)

Case (i):
Let b = (b1,... ,bp) = (a1,... ,a4—1 + 1,0, — 1,... ,a,,). We show that K(b) > K(a).

First, note that
Zb > = aj ifr#t—1
= - 1+Z Ya; ifr=t—1.

Since a; > B+1, 22;11 a; <tB—B-1,so0 1+Z§;11 a; < (t—1)B, and b is bounded in average
by B. Second, note that it suffices to consider the case of ¢ = m, since, if K(b1,...,b;) >
K(ai,...,a;) for 1 < j <t, then K(b) > K(a). (That is, K(-) is monotone increasing.)
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Let ¢; = K(a1,... ,a;) and ¢; = K (b1, ... ,b;). (We use the convention that ¢; = 0 when
j<0and go = 1.) Clearly, ¢; = ¢; if j <t —1. When j =t —1, we have ¢;_; > ¢;—1 by
monotonicity. When j = ¢,

Gt = arqi—1 + qt—2 = ar(@—1G—2 + G—3) + Gr—2 = (arar—1 + 1)q—2 + a1qs—s,

and

qr = (bebe—1 4+ 1)q; o + brq;_3
= ((at = 1)(as—1 +1) + 1)gi—2 + (ar — 1)qs—3
=q+q-2(a —a—1—1) — qs.

Since a; > a1 + 2 and ¢;_o > g:_3, we have

q > q+ G2 — q—3 > G

Case (ii):

Now, assume that a; = B+ 1, ap = B for s < k <t —1 for some 2 < s < t—1,
and as—1 < B. Then define b= (by,...,b,,) by letting b; = a; if j # s —1 and j # ¢;
bs_1 =as_1+1; and by = a; — 1. Again, we may assume that t = m. Then

ib {Z§:1aj ifr=torr<s—1
=7 L1+ e dfs—1<r<t-1.

For any r such that s — 1 <r <t —1,

r t t
> aj=>aj— > a;<Bt—(Bt—r-1)+(B+1))<Br—1.
j=1 j=1 j=r+1

Therefore, 22:1 b; < Br for all r € [t], and we may conclude that b is bounded in average by
B.
Define Fy, as follows: Fy =0, F} = 1, and, for k > 1, Fj, = BFj_1 + Fx_o. Then it is easy
to see by induction that
K(B, .. ,B,QZ) = Fippix + F.
N——

k

Also,
K(y,c1,...,¢) =yK(er, ... ,¢0) + K(ca, ... cp). (1)

Taking k =t — s, we deduce
K(as_l, - ,at) = as_l((B + 1)Fk+1 + Fk) + (B + 1)Fk + Fy_1,

and

K(bs—1,...,b;) = (as—1 + 1)(BFpy1 + Fy) + BFy, + F.1
= K(as—lv s 7at) + (B - as—l)Fk—l-l
> K(as—1,...,a¢) + Frq1.
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If s = 2, we are done. Otherwise, we use that

K(bs—2y... b)) =as_oK(bs—1,... ,b;) + K(bs,... ,bt)
> oK (g1, 5 a1) + Fyp1 + b K (b, bi—1) + K (bsy ... ,by_s)
=as_oK(as_1,...,a¢) + Fry1 + K(as, ... ,a;) — K(as,... ,a_1)
= K(as—2,...,a).

Now, inductive application of (1) to the continuants K (bs—j,...,b), 3 < j < s — 1, yields
K(b) > K(a), since as_; = bs_; in this range.

By repeating cases (i) and (ii) as appropriate, we will eventually reach a sequence of partial
quotients bounded by B, and at each stage we never decrease the corresponding continuant.
The result therefore follows. O

It remains to find a bound on K(B,...,B).

Lemma 3: If B>1, K(B,... ,B) < (3(B+ VB?+14))
N——

m

m—+1

Proof: We proceed by induction. The case m = 0 is trivial. Suppose it is true for all
m < M. Then, by (1),

K(B,...,B)=BK(B,... ,B)+ K(B,...,B)
— — —
M M—1 M—2

M-1

<5l ¢BT@)M+ (Lm+vErea)

2

M-—1
1 1 1
< <§(B+\/B2+4)> (—B2+§B\/B2+4+1)

(ds+vEea) o

3. THE DENSITY OF F(2)

Corollary 4: There is a constant C and a subset S of the positive integers such that log|S N
[n]|/logn > log2/log(1 4 v/2) — o(1) ~ 0.786 so that, for each n € S, there ewists a k € [n],
(k,n) =1 so that k/n has partial quotients bounded in average by 2.

Proof: Let U be the set of all reduced fractions p/q, 1 < p < ¢, whose partial quotients
a= (a1, as,... ,a,) are bounded in average by 2 and such that a’ = (as, ... ,a,,) is bounded in
average by 2. The number of such a with K(a) < n is at least twice the number of sequences

/

a’ = (ag,...,an) bounded in average by 2 with K(a') < n/3, because, if [a'] = p/q, then
K(a) =a1q+p < 3K(a’') <n. (The fact that a’ is bounded in average by 2 implies that [1, a’]
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and [2,a’] are also.) Then, since every rational has at most two representations as a continued
fraction, the number of elements of U whose denominator is < n is at least S, 3(2), which is

at least n21082/los(1+v2)—o(1) et § be the set of denominators of fractions appearing in U.
If p/q = [a] is in U, then [a’] = (¢ — a1p)/p, so p is the continuant of a sequence whose partial
quotients are bounded in average by 2. Therefore, S, /3(2) < SN [n]?, and we may conclude
that log|S N [n]|/logn > log2/log(1 ++v/2) —o(1). O

Attempts by the author to find a generalization of the above result to F(B) by applying
much more careful counting arguments when B > 2 have failed thus far. It would also be
interesting to (i), calculate the Hausdorfl dimension of the set of reals in [0, 1) whose partial
quotients are bounded in average by B, and (ii), draw a connection, similar to that of the
“uniform” case, between this quantity and the asymptotic density of F(B).
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