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ABSTRACT

We ask, for which n does there exists a k, 1 ≤ k < n and (k, n) = 1, so that k/n has
a continued fraction whose partial quotients are bounded in average by a constant B? This
question is intimately connected with several other well-known problems, and we provide a
lower bound in the case of B = 2. The proof, which is completely elementary, involves a simple
“shifting” argument, the Catalan numbers, and the solution to a linear recurrence.

1. INTRODUCTION

An important question in the theory of quasirandomness, uniform distribution of points,
and diophantine approximation is the following: For which n ∈ Z is it true that there exists an
integer k, 1 ≤ k < n and (k, n) = 1, so that k/n has a continued fraction whose partial quotients
are bounded in average by a constant B? That is, if we write k/n = [0; a1, a2, . . . , am], we
wish to find k so that

t−1
t∑

i=1

ai ≤ B

for all t with 1 ≤ t ≤ m. Denote by F(B) the set of all n for which such a k exists. These sets
are discussed at length in [2] and the related matter of partial quotients bounded uniformly
by a constant appears as an integral part of [6]. This latter question is closely connected with
Zaremba’s Conjecture ([8]), which states that such a k exists for all n > 1 if we take B = 5.

Define the continuant K(a1, a2, . . . , am) to be the denominator of the continued fraction
k/n = [0; a1, a2, . . . , am]. In [3], it is proven that, if Sn(B) is the number of sequences a=
(a1, . . . , am) bounded uniformly by B with K(a) ≤ n and H(B) is the Hausdorff dimension
of the set of continued fractions with partial quotients bounded uniformly by B, then

lim
n→∞

log(Sn(B))
log n

= 2H(B).

Then, in [4], H(2) is calculated with a great deal of accuracy: H(2) ≈ 0.53128. Therefore,
Sn(2), and thus the number of p/q with q ≤ n whose partial quotients are bounded by 2, is
n1.0625...+o(1). (This improves the previous best known lower bound, n≈1.017 computed in [3],
slightly.)

Define S̄n(B) to be the number of sequences a= (a1, . . . , am) with partial quotients
bounded in average by B so that K(a) ≤ n. Clearly, S̄n(B) ≥ Sn(B), so S̄n(2) � n1.0625. In
the next section, we prove something much stronger, however – an exponent of ≈ 1.5728394 –
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thus providing a lower bound in the first nontrivial case. Section 3 discusses the implications
for the density of F(2) and a few open problems.

2. THE PROOF

Theorem 1: For any ε > 0, S̄n(2) � n2 log 2/ log(1+
√

2)−ε.
Proof: The proof consists of two parts: computing the number of positive sequences

of length m bounded in average by 2, and then computing the smallest possible m so that
K(a1, . . . , am) > n and the ai are bounded in average by 2.

First, we wish to know how many sequences (a1, . . . , am) there are with aj ≥ 1 for each
j ∈ [m] and

∑r
j=1 aj ≤ 2r for each r ∈ [m]. Call this number T (m). By writing bj = aj − 1,

we could equivalently ask for sequences (b1, . . . , bm) with bj ≥ 0 for each j ∈ [m] and
∑r

j=1 bj ≤
r for each r ∈ [m]. This is precisely the number of lattice paths from (0, 0) to (m,m) which
do not cross the line y = x, and so T (m) is the mth Catalan number, or (m + 1)−1

(
2m
m

)
=

4m(1−o(1)).
In the following lemmas, we show that K(a1, . . . , am) ≤ n if m ≤ log n(1− o(1))/ log(1 +√

2). Therefore, setting m as large as possible, we have at least

4log n(1−o(1))/ log(1+
√

2) = n2 log 2/ log(1+
√

2)−o(1)

sequences with partial quotients bounded in average by 2 and continuant ≤ n .
We must show that the size of a continuant with partial quotients bounded in average by

B is at most the largest size of a continuant with partial quotients bounded by B.
Lemma 2: If the sequence (a1, . . . , am) of positive integers is bounded in average by B > 1,
then K(a1, . . . , am) ≤ K(B, . . . , B︸ ︷︷ ︸

m

).

Proof: We prove the Lemma by a “shifting” argument. That is, we perform induction
on the size of the entry aj such that aj > B and j is as small as possible. If a= (a1, . . . , am)
contains no at > B, we are done, because increasing the partial quotients can only increase
the continuant. If there is some at > B, let t ≥ 2 be the smallest such index. We consider
two cases: (i) at ≥ B + 2 or at−1 < B, and (ii) at = B + 1, ak = B for s ≤ k ≤ t − 1 for
some 2 ≤ s ≤ t− 1, and as−1 < B. (Clearly, a6= (B,B, . . . , B, B + 1, at+1, . . . , am), since this
sequence is not bounded in average by B. Therefore we may assume s ≥ 2.)
Case (i):

Let b = (b1, . . . , bm) = (a1, . . . , at−1 + 1, at − 1, . . . , am). We show that K(b) > K(a).
First, note that

r∑
j=1

bj =

{ ∑r
j=1 aj if r 6= t− 1

1 +
∑t−1

j=1 aj if r = t− 1.
.

Since at ≥ B+1,
∑t−1

j=1 aj ≤ tB−B−1, so 1+
∑t−1

j=1 aj ≤ (t−1)B, and b is bounded in average
by B. Second, note that it suffices to consider the case of t = m, since, if K(b1, . . . , bj) >
K(a1, . . . , aj) for 1 ≤ j ≤ t, then K(b) > K(a). (That is, K(·) is monotone increasing.)
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Let qj = K(a1, . . . , aj) and q′j = K(b1, . . . , bj). (We use the convention that qj = 0 when
j < 0 and q0 = 1.) Clearly, qj = q′j if j < t − 1. When j = t − 1, we have q′t−1 > qt−1 by
monotonicity. When j = t,

qt = atqt−1 + qt−2 = at(at−1qt−2 + qt−3) + qt−2 = (atat−1 + 1)qt−2 + atqt−3,

and

q′t = (btbt−1 + 1)q′t−2 + btq
′
t−3

= ((at − 1)(at−1 + 1) + 1)qt−2 + (at − 1)qt−3

= qt + qt−2(at − at−1 − 1)− qt−3.

Since at ≥ at−1 + 2 and qt−2 > qt−3, we have

q′t ≥ qt + qt−2 − qt−3 > qt.

Case (ii):
Now, assume that at = B + 1, ak = B for s ≤ k ≤ t − 1 for some 2 ≤ s ≤ t − 1,

and as−1 < B. Then define b= (b1, . . . , bm) by letting bj = aj if j 6= s − 1 and j 6= t;
bs−1 = as−1 + 1; and bt = at − 1. Again, we may assume that t = m. Then

r∑
j=1

bj =
{ ∑r

j=1 aj if r = t or r < s− 1

1 +
∑r

j=1 aj if s− 1 ≤ r ≤ t− 1.

For any r such that s− 1 ≤ r ≤ t− 1,

r∑
j=1

aj =
t∑

j=1

aj −
t∑

j=r+1

aj ≤ Bt− (B(t− r − 1) + (B + 1)) ≤ Br − 1.

Therefore,
∑r

j=1 bj ≤ Br for all r ∈ [t], and we may conclude that b is bounded in average by
B.

Define Fk as follows: F0 = 0, F1 = 1, and, for k > 1, Fk = BFk−1 +Fk−2. Then it is easy
to see by induction that

K(B, . . . , B︸ ︷︷ ︸
k

, x) = Fk+1x + Fk.

Also,
K(y, c1, . . . , cr) = yK(c1, . . . , cr) + K(c2, . . . , cr). (1)

Taking k = t− s, we deduce

K(as−1, . . . , at) = as−1((B + 1)Fk+1 + Fk) + (B + 1)Fk + Fk−1,

and

K(bs−1, . . . , bt) = (as−1 + 1)(BFk+1 + Fk) + BFk + Fk−1

= K(as−1, . . . , at) + (B − as−1)Fk+1

≥ K(as−1, . . . , at) + Fk+1.
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If s = 2, we are done. Otherwise, we use that

K(bs−2, . . . , bt) = as−2K(bs−1, . . . , bt) + K(bs, . . . , bt)
≥ as−2K(as−1, . . . , at) + Fk+1 + btK(bs, . . . , bt−1) + K(bs, . . . , bt−2)
= as−2K(as−1, . . . , at) + Fk+1 + K(as, . . . , at)−K(as, . . . , at−1)
= K(as−2, . . . , at).

Now, inductive application of (1) to the continuants K(bs−j , . . . , bt), 3 ≤ j ≤ s − 1, yields
K(b) ≥ K(a), since as−j = bs−j in this range.

By repeating cases (i) and (ii) as appropriate, we will eventually reach a sequence of partial
quotients bounded by B, and at each stage we never decrease the corresponding continuant.
The result therefore follows.

It remains to find a bound on K(B, . . . , B).

Lemma 3: If B ≥ 1, K(B, . . . , B︸ ︷︷ ︸
m

) ≤
(

1
2 (B +

√
B2 + 4)

)m+1
.

Proof: We proceed by induction. The case m = 0 is trivial. Suppose it is true for all
m < M . Then, by (1),

K(B, . . . , B︸ ︷︷ ︸
M

) = BK(B, . . . , B︸ ︷︷ ︸
M−1

) + K(B, . . . , B︸ ︷︷ ︸
M−2

)

≤ B

(
1
2
(B +

√
B2 + 4)

)M

+
(

1
2
(B +

√
B2 + 4)

)M−1

≤
(

1
2
(B +

√
B2 + 4)

)M−1 (
1
2
B2 +

1
2
B

√
B2 + 4 + 1

)

=
(

1
2
(B +

√
B2 + 4)

)M+1

.

3. THE DENSITY OF F(2)

Corollary 4: There is a constant C and a subset S of the positive integers such that log |S ∩
[n]|/ log n ≥ log 2/ log(1 +

√
2) − o(1) ≈ 0.786 so that, for each n ∈ S, there exists a k ∈ [n],

(k, n) = 1 so that k/n has partial quotients bounded in average by 2.
Proof: Let U be the set of all reduced fractions p/q, 1 < p < q, whose partial quotients

a= (a1, a2, . . . , am) are bounded in average by 2 and such that a′ = (a2, . . . , am) is bounded in
average by 2. The number of such a with K(a) ≤ n is at least twice the number of sequences
a′ = (a2, . . . , am) bounded in average by 2 with K(a′) ≤ n/3, because, if [a′] = p/q, then
K(a) = a1q +p ≤ 3K(a′) ≤ n. (The fact that a′ is bounded in average by 2 implies that [1,a′]
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and [2,a′] are also.) Then, since every rational has at most two representations as a continued
fraction, the number of elements of U whose denominator is ≤ n is at least S̄n/3(2), which is

at least n2 log 2/ log(1+
√

2)−o(1). Let S be the set of denominators of fractions appearing in U .
If p/q = [a] is in U , then [a′] = (q− a1p)/p, so p is the continuant of a sequence whose partial
quotients are bounded in average by 2. Therefore, S̄n/3(2) ≤ |S ∩ [n]|2, and we may conclude
that log |S ∩ [n]|/ log n ≥ log 2/ log(1 +

√
2)− o(1).

Attempts by the author to find a generalization of the above result to F(B) by applying
much more careful counting arguments when B > 2 have failed thus far. It would also be
interesting to (i), calculate the Hausdorff dimension of the set of reals in [0, 1) whose partial
quotients are bounded in average by B, and (ii), draw a connection, similar to that of the
“uniform” case, between this quantity and the asymptotic density of F(B).
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