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ABSTRACT

In a well-known result, Ronald Graham found a Fibonacci-like sequence whose two initial
terms are relatively prime and which consists only of composite integers. We generalize this
result to nondegenerate second-order recurrences.

1. INTRODUCTION

It is widely believed that there exist infinitely many primes in the Fibonacci sequence
{Fn} (see [4, p. 17]). In 1964 Ronald Graham [3] proved the surprising result that there exists
a Fibonacci-like sequence {Gn} satisfying Gn+2 = Gn+1 + Gn with initial 33- and 34-digit
terms G0 and G1 containing only composite integers (see [3] with a correction given in [6]).
He found this sequence by means of a covering set of the integers. We will extend Graham’s
result to a very general class of second-order linear recurrences. Izotov [5] has also generalized
Graham’s result to a more restrictive set of second-order linear recurrences having positive
discriminant.

Let w(a, b) denote the second-order linear recurrence satisfying the recursion relation

wn+2 = awn+1 + bwn, (1)

where a, b, and the initial terms w0, w1 are all integers. Associated with w(a, b) is the charac-
teristic polynomial

f(x) = x2 − ax− b (2)

with characteristic roots α and β and discriminant D = a2 + 4b = (α − β)2. The recurrence
w(a, b) is said to be degenerate if ab = 0 or α/β is a root of unity. A special well-studied type
of second-order recurrence is the Lucas sequence u(a, b) satisfying (1) and having initial terms
u0 = 0, u1 = 1. By the Binet formula,

un =
αn − βn

α− β
. (3)

It follows from (3) that
m|n ⇒ um|un (4)

and
un(−a, b) = (−1)n+1un(a, b). (5)

In searching for recurrences w(a, b) having only composite integers as terms, it suffices
to find a recurrence w′(a, b) such that w′n is composite for n ≥ N . Then w(a, b), defined by
wn = w′n+N , contains only composite numbers, where wn can be positive or negative.
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In our subsequent discussion, we will need results about nondegenerate second-order linear
recurrences. Theorem 1 was proved by Parnami and Shorey [7].
Theorem 1: Let w(a, b) be a nondegenerate recurrence. Then there exists a constant N1 such
that

wm 6= wn (6)

whenever m 6= n and max(m,n) ≥ N1.
We observe that the only interesting cases of nondegenerate recurrences w(a, b) having

only composite numbers are those in which gcd(a, b) = gcd(w0, w1) = 1. If gcd(a, b) = d > 1,
then it can be shown by induction that dk|wn for n ≥ 2k. If gcd(w0, w1) = d1 > 1, then d1|wn

for all n ≥ 0. By Theorem 1, there exists a positive integer N such that |wn| > d1, and hence
wn is composite for all n ≥ N .

It is conjectured (see [4, p. 17] or [8, p. 362]) that for infinitely many ordered pairs (a, b)
for which gcd(a, b) = 1, u(a, b) is nondegenerate and |un(a, b)| is a prime for infinitely many
n. However, we shall prove the following theorem:
Theorem 2: Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1. Then
there exists a recurrence w(a, b) for which gcd(w0, w1) = 1 and wn is composite for n ≥ 0.

2. PRELIMINARIES

To prove Theorem 2, we will need results about covering sets and primitive prime divisors
of Lucas sequences. A system of congruences ci (mod mi) (1 ≤ i ≤ k), where 0 ≤ ci < mi and
2 ≤ m1 ≤ m2 ≤ · · · ≤ mk is a covering set for the integers if every integer y satisfies y ≡ ci

(mod mi) for at least one value of i. Given the Lucas sequence u(a, b), p is a primitive prime
divisor of un if p|un, but p 6| ui for 1 ≤ i < n.
Theorem 3: There exists a covering set ci (mod mi) (1 ≤ i ≤ k) of the integers such that
20 ≤ m1 < m2 < m3 < · · · < mk.

Theorem 3 was proved by Choi [2]. In utilizing Theorem 3 in our proof of Theorem 2, we
will be seeking primitive prime divisors of umi(a, b), where mi ≥ 20 is one of the moduli in the
covering set discussed in Theorem 3. Theorem 4 below guarantees that with two exceptions,
we can always find a primitive prime divisor of umi

(a, b).
Theorem 4: Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1. Then un

has no primitive divisor only if n = 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 18, or 30. Moreover, u30(a, b)
has no primitive divisor if and only if a = ±1 and b = −2. In this case, |u30| = 24475 =
52 · 11 · 89.

Theorem 4 is a special case of the results proved by Bilu, Hanrot, and Voutier in [1]. We
will also need to make use of Lemma 1.
Lemma 1: Let w(a, b) be a recurrence for which gcd(a, b) = 1 and let p be a prime such that
p|b and p 6| w1(a, b). Then p 6| wn(a, b) for n ≥ 1.

Proof: This is easily proved by induction upon use of the recursion relation (1).

3. PROOF OF THE MAIN THEOREM

Proof of Theorem 2: It suffices to find a recurrence t(a, b) such that gcd(tn, tn+1) = 1
for all n ≥ 0 and tn is composite for n ≥ N1. Then {wn}n=∞

n=0 is the desired recurrence, where
wn = tN1+n.
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By Theorem 3, there exists a covering set of the integers given by ci (mod mi) (1 ≤ i ≤ k),
where 0 ≤ ci < mi and 20 ≤ m1 < m2 < · · · < mk. By Theorem 4, umi

(a, b) has a
primitive prime divisor pi if it is not the case that both (a, b) = (±1,−2) and mi = 30. If
(a, b) = (±1,−2), then we let pi = 5, which divides u30(±1,−2). Since 5 is a primitive prime
divisor of u6(±1,−2) = ±5, we see that gcd(pi, pj) = 1 for 1 ≤ i < j ≤ k.

We now define t0 and t1 to be integers satisfying the simultaneous system of congruences

t0 ≡ umi−ci
(mod pi), i = 1, 2, . . . , k

t0 ≡ 1 (mod b)
t1 ≡ umi+1−ci

(mod pi), i = 1, 2, . . . , k

t1 ≡ 1 (mod b).

(7)

We note that gcd(pi, b) = 1 for 1 ≤ i ≤ k by Lemma 1, since pi|umi
.

Let P = bp1p2 . . . pk. By the Chinese remainder theorem, there exist unique integers Q0

and Q1 such that t0 ≡ Q0 (mod P ), t1 ≡ Q1 (mod P ), and 0 ≤ Q0, Q1 < P .
Let d = gcd(Q0, Q1). We claim that

gcd(d, P ) = 1. (8)

First we observe that gcd(d, b) = 1, since t0 ≡ Q0 ≡ 1 (mod b) and t1 ≡ Q1 ≡ 1 (mod b).
Suppose that pi|d for some i such that 1 ≤ i ≤ k. Then by (7), pi|umi−ci

and pi|umi−ci+1,
where mi − ci ≥ 1. By (1),

pi|umi−ci+1 − aumi−ci
= bumi−ci−1.

Since pi 6| b, we see that pi|umi−ci−1. Continuing in this manner, we find that pi|u1, which is
a contradiction. Thus, (8) is satisfied.

If d = 1, we let t0 = Q0 and t1 = Q1. If d > 1, let g be the product of all the distinct
primes dividing Q1 but not dividing Q0. If no such primes exist, let g = 1. We now define t0
to be equal to Q0 + gP and t1 to be equal to Q1. Then all the simultaneous congruences in
(7) still hold. Since gcd(d, gP ) = gcd(g,Q0) = 1, it follows that gcd(t0, t1) = 1.

We now demonstrate that for each n ≥ 0, pi|tn for some i such that 1 ≤ i ≤ k. First note
that n = ci + rmi for some i ∈ {1, 2, . . . , k} and some nonnegative integer r. Since t(a, b)
satisfies the same recursion relation as u(a, b), we see from (7) and (4) that

tn = tci+rmi
≡ u(r+1)mi

≡ 0 (mod pi). (9)

It now follows from Theorem 1 that there exists a positive integer N such that tn is composite
for n ≥ N .

To complete the proof, we show that gcd(tn, tn+1) = 1 for n ≥ 0. Suppose that
p|gcd(tj , tj+1) for some j ≥ 0 and some prime p. Then p|tj+1 − atj = btj−1. Suppose further
that p|b. However, p 6| t1, since t1 ≡ 1 (mod b). Thus, by Lemma 1, p 6| tn for any n ≥ 1,
contrary to our assumption about p. Hence, p|tj−1. Continuing, we find that p|gcd(t0, t1),
which again is a contradiction.
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4. DEGENERATE RECURRENCES

For completeness, we now treat the case in which w(a, b) is nondegenerate and gcd(a, b) =
gcd(w0, w1) = 1. Since the characteristic polynomial is quadratic, it follows that α/β can be
an mth root of unity only if m = 1, 2, 3, 4, or 6. If m = 4, then (a, b) is of the form (2s,−2s2),
while if m = 6, then (a, b) is of the form (3s,−3s2). In neither case does gcd(a, b) = 1. If
m = 3, then (a, b) = (±1,−1) and |w(a, b)| is purely periodic with a period of 3, whereas if
m = 2, then (a, b) = (0,±1) and |w(a, b)| has a period of 2. In both these cases, it is easy
to find recurrences w(a, b) having only composite terms. If b = 0, then (a, b) = (±1, 0) and
|w(a, b)| is periodic for n ≥ 1 with a period of 1. Again, it is trivial to construct sequences
w(a, b) having only composite numbers.

The most interesting case occurs when α/β = 1. Then D = 0 and (a, b) = (±2,−1). If
(a, b) = (2,−1), then wn = w0 + n(w1 − w0), and w(a, b) is an arithmetic progression. Since
(w0, w1) = 1 the common difference w1 − w0 is relatively prime to the initial term w0. If
(w0, w1) = (1, 1) or (−1,−1), then wn = ±1 for n ≥ 0, and w(a, b) has no composite terms.
If w1 − w0 6= 0, then |w(a, b)| contains infinitely many primes by Dirichlet’s theorem on the
infinitude of primes in arithmetic progressions. Thus, there exists no recurrence w(2,−1)
containing only composite numbers when gcd(w0, w1) = 1.
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