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ABSTRACT

Write N = pαq2β1
1 · · · q2βk

k , where p, q1, . . . , qk are distinct odd primes and p ≡ α ≡ 1
(mod 4). An odd perfect number, if it exists, must have this form. McDaniel proved in 1970
that N is not perfect if all βi are congruent to 1 (mod 3). Hagis and McDaniel proved in 1975
that N is not perfect if all βi are congruent to 17 (mod 35). We prove that N is not perfect if
all βi are congruent to 32 (mod 65). We also show that N is not perfect if all βi are congruent
to 2 (mod 5) and either 7|N or 3|N. This is related to a result of Iannucci and Sorli, who
proved in 2003 that N is not perfect if each βi is congruent either to 2 (mod 5) or 1 (mod 3)
and 3|N .

1. INTRODUCTION

Write
N = pαq2β1

1 · · · q2βk

k , (1.1)

where p, q1, . . . , qk are distinct odd primes, α, β1, . . . , βk ∈ N, and p ≡ α ≡ 1 (mod 4). Euler
proved that an odd perfect number, if it exists, must have the form (1.1). Let O denote the
set of odd perfect numbers. In the case β1 = · · · = βk = β, Hagis and McDaniel [3, p. 27]
conjectured that N 6∈ O. This conjecture was already proved for β = 1 in 1937 [7] and for
β = 2 in 1941 [5]. More recently, the conjecture has been proved for some larger values of β,
including β = 3, 5, 6, 8, 11, 12, 14, 17, 18, 24, and 62 (see [1]). We now describe some infinite
classes of β for which the conjecture is known to hold. Write

γi := 2βi + 1, 1 ≤ i ≤ k. (1.2)

The assertion
d|γi for all i ⇒ N 6∈ O (1.3)

was proved for d = 3 by McDaniel [6] in 1970, and for d = 35 by Hagis and McDaniel [3]
in 1975. In particular, this proves the conjecture for the infinite classes β ≡ 1 (mod 3) and
β ≡ 17 (mod 35).

In Theorem 2 (see Section 3), we prove (1.3) for d = 65, which in particular proves the
conjecture for all β ≡ 32 (mod 65). When d is a product of two primes > 3, the only values
of d for which (1.3) is known are now d = 35, 65. There are no prime values d > 3 for which
(1.3) is known.
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Recently, Iannucci and Sorli [4] extended the result of McDaniel [6] by proving that

(3|N and gcd(γi, 15) > 1 for all i) ⇒ N 6∈ O. (1.4)

(This has an important application to bounds for the number of prime factors in odd perfect
numbers.) We can prove the following related results:

(3|N and 7|γi for all i) ⇒ N 6∈ O, (1.5)

(7|N and 5|γi for all i) ⇒ N 6∈ O, (1.6)

(5|N and 77|γi for all i) ⇒ N 6∈ O, (1.7)

(3|N and 143|γi for all i) ⇒ N 6∈ O, (1.8)

(13|N and 55|γi for all i) ⇒ N 6∈ O. (1.9)

Of the last five assertions, we prove here only (1.6); see Theorem 1. Our proofs, like the proofs
of McDaniel et. al., depend on the following result of Kanold [5]:

(N ∈ O and d|γi for all i) ⇒ d4|N. (1.10)

2. PRELIMINARIES

Let σ(n) denote the sum of the positive divisors of n. Assume for the purpose of contra-
diction that N ∈ O, so that, as in [4, eq.(2)],

2N = σ(N) = σ(pα)
k∏

i=1

σ(q2βi

i ). (2.1)

Define, for prime q and integer d > 1,

f(q) := fd(q) = σ(qd−1) = (qd − 1)/(q − 1) (2.2)

and
h(q) := hd(q) = σ(qd−1)/qd−1. (2.3)

If d|γi for all i, then for all i,
fd(qi) divides fγi

(qi), (2.4)

so fd(qi) divides N by (2.1) - (2.2). Since α is odd,

(p + 1)/2 divides σ(pα), (2.5)

so (p + 1)/2 divides N by (2.1). As in [4, p. 2078], it is easily seen that for odd primes r > q
and integers a, b, c with a > 1, c > b > 1,

hc(q) > hb(q) > ha(r) ≥ (r + 1)/r. (2.6)
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Moreover, for odd prime u ≤ p,

ha(u)(p + 1)/p ≥ ha(p)(u + 1)/u, (2.7)

since ha(x)−1(x + 1)/x is an increasing function in x for x > 1.
Let S denote the set of prime divisors of N . Suppose that d|γi for all i. Then by (2.1)

and (2.6),

2 =
σ(N)

N
=

σ(pα)
pα

k∏
i=1

hγi
(qi) ≥

p + 1
p

k∏
i=1

hd(qi) =
p + 1

p

∏
s∈S
s 6=p

hd(s). (2.8)

Let T be any subset of S containing a prime u satisfying the condition that u ≤ p if p ∈ T .
We claim that

p + 1
p

∏
s∈S
s 6=p

hd(s) ≥
u + 1

u

∏
t∈T
t6=u

hd(t). (2.9)

In the case p 6∈ T , (2.9) follows because

∏
s∈S
s 6=p

hd(s) ≥
∏
t∈T

hd(t) ≥
u + 1

u

∏
t∈T
t6=u

hd(t);

in the case p ∈ T , (2.9) follows from (2.7).
Our objective is to find a set T = T (d, u) as above such that

u + 1
u

∏
t∈T
t6=u

hd(t) > 2. (2.10)

In view of (2.8) - (2.9), this will provide the desired contradiction to the assumption that
N ∈ O.

3. THEOREMS AND PROOFS

We begin with a lemma. Recall that S is the set of prime divisors of N .
Lemma: If N ∈ O and 13|γi for all i and gcd(p + 1, 21) = 1, then 13 ∈ S and W ⊂ S, where

W ={53, 79, 131, 157, 313, 443, 521, 547, 677, 859, 911, 937,

1093, 1171, 1223, 1249, 1301, 1327, 1483, 1613, 1847}

is the set of primes ≡ 1 (mod 13) less than 1850.
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Proof: By (1.10) with d = 13, we have 13 ∈ S. (Bold font is used to keep track of primes
confirmed to lie in S.)

A list of primes
r1, r2, . . . , rn (3.1)

is called a d-chain (or simply a chain) if r1 ∈ S and ri+1|fd(ri) for each i < n, where fd is
defined in (2.2). In this proof, we take f = fd with d = 13. If ri 6= p for each i < n, then every
prime in the chain (3.1) lies in S, by (2.4). An example of a chain is

13, 264031, (882..981),79. (3.2)

Here (882..981) is a 64-digit prime whose center digits can be easily retrieved by factoring
f(264031). By hypothesis, the first and third primes in (3.2) cannot be p, because they
are ≡ 6 (mod 7). The second and fourth primes cannot be p since they are ≡ 3 (mod 4).
We know 13 ∈ S, so 264031 ∈ S because 264031|f(13). Similarly, (882..981) ∈ S since
(882..981)|f(264031). Finally, 79|f((882..981)), so the chain (3.2) confirms that 79 ∈ S.

None of the following chains can have p preceding its terminal prime rn, and so each chain
confirms that rn (in bold) lies in S:

13,53;
13, 264031, (882..981),157;
79, (551..681),1249;
79, (551..681), 50909,499903;
499903,1483;
499903, 32579, (313 and 937);
937,599;
599, 847683(443 and 1613);
599, 45137, 6397, (677 and 911);
937, (111..851), 14561,42304159;
42304159,3251;
42304159, (766..419), (46073), (976..861),859;
3251,131;
1483, (301..587),1223;
1223, 920011,2081;
2081, (547 and 1171);
157, (281..937), 5669, 168247, (395..237),1327;
859, (183..471),2029;
499903, 32579, (468..021).

Next consider the pair of chains{
313, (240..891), 9907, 1847;
1249, (555..427),1847.
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The two chains in the pair have no common primes except the terminal prime 1847. Thus,
while p might precede 1847 somewhere in one chain or the other, p cannot precede 1847 in
both chains. Hence (at least) one chain in the pair does not have an occurrence of p preceding
1847, and that chain confirms that 1847 ∈ S. We now can form the single chains

1847,521;
521, (317..359),1951;
1951, (193..027), 4759,1301.

It remains to show that 1093 ∈ S. This is accomplished with the following pair of chains:


2029, 65677, 18038593, 1093;
(468..021), 138581, (648..279), (112..139), 1873, (110..713), (582..641),

(578..461),1093.

Theorem 1: Suppose that 5|γi for all i, and N ∈ O. Then gcd(N, 21) = 1 and p ≡ 1
(mod 12).

Proof: By (1.10) with d = 5, we have 5∈ S.
Suppose for the purpose of contradiction that p ≡ 2 (mod 3). Then by (2.5), 3 ∈ S. As

in (2.2), write f = fd with d = 5. Since f(3) = 112, (2.4) implies that 11 ∈ S. Since 5|γi for
all i and 54|N by (1.10), then, in the notation of (2.3) with d = 5, we obtain the contradiction

2 = σ(N)/N > h(3)h(5)h(11) > 2.05 . (3.3)

This proves that p ≡ 1 (mod 12).
We have seen that 5 ∈ S. We now confirm additional primes in S by using d-chains as in

the Lemma, but with d = 5 instead of d = 13. The chains

5, (11 and 71);
11, 3221, (195..931),41;

confirm that 11, 71, and 41 lie in S, since neither 5 nor 3221 can equal p (as p ≡ 1 (mod 12)).
Employing many such chains, we can construct a large set Y of primes in S consisting of 5
together with most of the primes ≡ 1 (mod 5) which are < 104. The set Y and the long list
of chains used to construct Y may be found at [2].

Suppose that 7|N . With T = Y ∪ {7}, we arrive at the contradiction (2.10) with u =
61, d = 5. Thus 7 - N . The same argument shows that 3 - N (alternatively, 3 - N follows from
(1.4)). This completes the proof of Theorem 1.
Theorem 2: If 65|γi for all i, then N 6∈ O.

Proof: Assume for the purpose of contradiction that 65|γi for all i and N ∈ O. From
(1.10), we know that 13 ∈ S. Let Y be as in the proof of Theorem 1, and let W be as defined
in the Lemma. In view of Theorem 1, the hypotheses of the Lemma are satisfied, and so
Y ∪W ⊂ S. With

T = Y ∪W ∪ {13},
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we obtain the desired contradiction (2.10) with u = 61, d = 65. This completes the proof of
Theorem 2.
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