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ABSTRACT

The paper begins with a brief review of the generalized Fibonacci polynomials, satisfying
the recurrence : Gpya(z) = 2Gnt1(x) + Gp(z), with arbitrary initial values. After these
introductory remarks, the paper points out that the plethora of identities that abound in the
literature and that are associated with these sequences are based on evenly-spaced values of
the subscripts. As implied in the title, the paper generalizes such identities by stating and
proving various theorems and corollaries, giving identities satisfied by the m!® powers of the
G (z)’s (or special values thereof). In these generalizations, m is fixed, but the different values
of n are arbitrary and therefore not equidistant, in general. Essentially, two main theorems of
this nature are presented in this paper, of which the others are either corollaries or auxiliary
results leading thereto.

1. INTRODUCTION

Problem H-614 in this journal [5], proposed by one of the authors (Melham), stated the
following:

4 14+a2+1 4
FaZ—aBFa2—a4Fa3—a4Fﬂ+a1 + (—l)a ot Fal—a3Fa1—-a4Fas—-a4Fn+az
1+a2 4 14+a2 441 4
=} (71)3 i Fal—a2Fa1—m4Fa2—a4Fn+a3 o (_l)a ARt eda it Fal-—a2Fa1—a.3Fa.2—a3Fn+a4

= Fo1—a2Fs1-03Fa1-a4Fo2-a3Fa2-04F03—-a4 Fintal+a2+a3 404

Using the relation: F_, = (—1)""1F,, we may express this last identity in a nice symmetrical
form:

Fy ot/ {Fa1-0aFa1-a8Far-oc} + Fopaz/{Faz—a1Faz—a3Faz—oa}
+ F:+a3/{Fa3—a1FaS—azFaS—a4}
T F:+a4/{Fa4—a1Fa4—a2Fa4—a3} = Fintal+ae2+a3+ad- {1.1)

In correspondence between the authors, Melham designated the statement of this problem as
a “4-point” identity. The counterparts for 1, 2 and 3 points are the following (respectively):

Futa1 = Frta1 (12)
F3+a1/Fa1-a2 ¢ Fr?-}-az/FaZ—al = Fan+tal+a2 (1-3)
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Fr?+n.1/{Ful—a2Fa1—03} + F-:,'+a2/{Fa2-a1Fa2—as}
+ Ff?,-l»-aa/{Fﬂ--'i—&lFaS—-aZ} = F3n+a1+a2+a.3- (14)

For background information on (1.3), and for a proof of (1.4), see [4]. In their correspondence,
Melham informed Bruckman that he had been unable to prove (1.1).

Bruckman submitted an erroneous solution of H-614 to the Advanced Problems Editor.
Indeed, the Advanced Problems Editor later informed Bruckman that (as of this writing) no
one had been able to submit a complete solution to H-614. Looking at the form of (1.1),
there appears to be nothing of theoretical difficulty in proving the identity, other than one of
computational complication. Someone with an appropriate program (such as Mathematica),
that is able to express products of Fibonacci numbers in terms of other Fibonacci or Lucas
numbers should be able to insert the parameters into such a program and easily verify the
result. Unfortunately, the computations become more laborious for higher powers of the Fi-
bonacci numbers, and it therefore seemed appropriate to attempt a theoretical approach to
the general case. The purpose of this paper, inter alia, (as inspired by the authors’ abortive
efforts), is to indicate a proper solution to H-614 and to obtain a generalization. Indeed, a
more general result is suggested by this problem, namely the following:

m

Z(Fn-{—a.k)m/R(k:m) = an+al+a2+---+am: (1'5)
k=1
where
m
R(k,m) = [[ Fak-ai- . (1.6)
eplert
o

As a matter of fact, a yet more general result in terms of “generalized Fibonacci Polynomials”
applies, of which (1.5) is itself a special case. We will indicate this latter result in the form of
an identity, comprising the third of the (seven) theorems alluded to in the title of this paper.

The generalized Fibonacci numbers have a vast literature attached to them, too extensive
to indicate here. We merely indicate the appropriate definitions. These numbers, which are
in fact, polynomials in the variable z, satisfy the following recurrence relation:

Grt2(z) = Gnt1(z) + Gn(z),n=0,1,2,---. (1.7)

In this paper, z is taken to be a fixed quantity; for this reason, we find it convenient to omit
the argument “(z)” in the notation, and will in fact take the same notation to denote what is
usually indicated as the subscript.

Depending on the initial conditions, generally taken to be the given values of Gy and
G, different sequences are generated. If we take Go = 0, G; = 1, the resulting sequence
is sometimes called the sequence of “generalized Fibonacci numbers of the first kind”, and is
usually denoted as {Up }; if we take Go = 2, G; = =, the resulting sequence is sometimes called
the sequence of “generalized Fibonacci numbers of the second kind”, and is usually denoted
as {V,}. As we soon discover by repeated application of the recurrence in (1), the Uy’s and
V,.’s are monic polynomials in z; the degree of U, is n — 1, while V;, has degree n (assuming
n > 1). Note that by setting = = 1, U, and V,, reduce to the “ordinary” Fibonacci numbers
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F, and Lucas numbers Ly, respectively. It is easily found that we may express Gy in terms
of the U,’s, as follows:
Gn = GiUp +GoUp—1. (1.8)

These sequences may also be extended “backwards”, defining them for negative subscripts by
means of the recurrence in (1). For example, we readily verify that U_, = U; = 1. Indeed, we
may show the following, for all integers n > 0:

U= (1", Vig=(-1)"Va (1.9)
In this paper, for the sake of typographical clarity, we will find it convenient to denote

Gy Un, Vi, Fr, Ly as G(n), U(n), V(n), F(n) and L(n), respectively. Given these definitions,
we may readily obtain the following explicit (Bingt) formulas, valid for all integers n:

Un) = (@" —B")/(a—B), V(n)=a"+p", (1.10)
where
a = a(z) = (z + DY?)/2, B = B(z) = (z — D'/?)/2, (1.11)
and
D=D(z)=(a—p)=2"+4. (1.12)

Some useful identities satisfied by the U(n)’s and G(n)’s are given next, without proof;
they occur in the literature and may easily be verified by a variety of methods:

U(n+1)U(n—1) —U%n) = (-1)" (1.13)

G(m +n) = G(m + 1)U(n) + G(m)U(n — 1). (1.14)

As previously asserted, the aim of this paper is to state and establish some theorems that
are satisfied by the m'™® powers of the generalized Fibonacci numbers. Theorems 2, 5 and 7
apply to the most general numbers G(n); the remaining theorems apply only to the U(n). In
the sequel, we are given a set of distinct “points” a1, az, @3, ..., Om (i.e. given integers);
also, m and n are integers, with m > 0 (except as indicated).

Unlike the plethora of identities in the literature for the U(n)’s and V(n)’s that deal with
equidistant, or equally spaced points, the theorems presented in this paper are more general, in
that they apply to non-equidistant points. In this respect, they bear some resemblance to com-
parable known theorems from the finite calculus, expressed as so-called “divided differences”
of polynomials.

2. STATEMENT OF THE FIRST THREE THEOREMS

Theorem 1: Given an integer m > 2, and distinct integers ai, az, az, **, @m, then, for all
integers n:
m
S ()™ U™ (n + ax)/Pk,m) =0 (2.1)
k=1
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m
where P(k,m) = | | U(ax — a;). (2.2)
j=i
J#
Theorem 2: Given the hypothesis of Theorem 1:

> (-1)*G™2(n + ax)/P(k,m) = 0. (2.3)

k=1
Theorem 3: Given the hypothesis of Theorem 1 (but with m > 1):

Z U™(n+ag)/P(k,m)=U(mn+a1+az+az+-+anm). (2.4)
k=1

Note that by setting £ = 1 in (2.4), we obtain (1.5) as a special case; furthermore, for specific
values of m, we obtain (1.1) (the solution of H-614), (1.2), (1.3) and (1.4).

These theorems are generalizations of the special case obtained where, e.g. we take a; =
k — 1, whick results in recurrences involving “generalized Fibonomial coefficients”. Some
additional introductory remarks and definitions are needed at this point, to make the exposition
clearer.

Given n > 1, the “generalized Fibonacci factorials” are defined as follows: [n!|y = U(1)
U(2)---U(n). Also, the “generalized Fibonomial coefficient” (%),; is defined as follows: (%), =
(o /{[ku[(n — k)Y]u}, provided 0 < k < n. We may also define (3),, = (%), = 1, and note
that (1), = (," k)U’ properties that are shared with the “ordinary” binomial coefficients. It is
not difficult to show that these coefficients are, in fact, polynomials in z, and that their degree
is k(n - k). The ordinary binomial coefficients satisfy the recurrence: (}) + (kil) = ’;i;),
the “generalized Fibonomial” counterpart of this is the following recurrence:

U(n+1—k)(:|)U+U(k)(kil)U: (’;ii)u (2.5)

For an excellent discussion on generalized binomial coefficients see [1].

If we now set ax = k — 1 in (2.3), we obtain the following recurrence, after a change of
parameters and some manipulations:

m+1

1
3 (’”: ) (—1)*E+D/2Gm (0 L m 41 — k) =0. (2.6)
k=0 : U

This is a better-known relation, involving consecutive values of the G-function (m + 2 such
values, for m‘® powers of the function). For a generalization of (2.6), first given by Dov Jarden,
but not required for our purposes, see (3) in [6].

We may arrive at (2.6) independently, by a different method. The first step in this method
consists in proving (2.6) for G(n) = U(n). If we expand U™(n) in terms of powers of o and S,
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we obtain an expression whose typical terms are of the type a(™=)7g"7 for j =0,1,---,m.
By the theory of equations, the characteristic polynomial P,,(E) for consecutive-indezed values
of U™(n) is given by the following product:

m

Pn(E) = [[(E - a™ip). (2.7)

=0

Here, F is the unit right-shift operator of finite calculus, operating on the arguments of the
function U™ (n); that is, P (E)(U™(n)) = 0. For example, we find that P;(E) = E? —zE —1,
which implies the recurrence (1.7) (for G(n) = U(n)); for m = 2, we obtain: Py(E) =
E? — (224 1)E? — (22 + 1)E + 1, which implies the recurrence:

U(n+3)— (22 + )U%(n+2) — (z2+ 1)U (n + 1) + U3(n) =0, ete.

Note that P, (F) is a polynomial of degree m + 1, which implies that there exist m + 2

appropriate rational functions C4, Cy,. .., Cp42, such that for all integers n:
m+2
> CkU™(n+k) =0. (2.8)
k=1
This, in turn, impiies that for a given sequence of m+ 2 distinct integers a1, a2, , Gmy2,
there exist appropriate rational functions Dy, Da, -+ - , Dy, 42, such that for all integers n:
m+2
Z DU™(n+ ax) = 0. (2.9)
k=1

This will therefore be assumed as our starting point in the proof of Theorem 1, in the
sequel. In fact, as we may show, the “rational functions” indicated in (2.8) and (2.9) are really
polynomials, and the more general recurrence indicated in (2.6) holds for consecutive values
of the arguments.

The following recurrence follows readily from (2.7):
Ppta(E) = (E — a™)(E — B™MYE + ™) (E + ™ +?)Pn(E), or equivalently :
Pris(E) ={E* = V(m+4)E+ (-1)"HE? + V(m + 2)E + (1)} P (E).

Using this, we could independently derive (2.6) as a general result in its own right (with
G(n) = U(n)), noting that the operand of Pp44(E) is U™**(n) rather than U™ (n). However,
we proceed directly to prove the more general Theorem 1; we will show that this is, in turn,
equivalent to Theorem 2, from which (2.6) will follow as a Corollary.

3. PROOF OF THEOREM 1

We will express the theorem in terms of m — 2, rather than m, in order to display it
in a slightly more elegant form. Given m > 2, we begin by postulating the existence of m
appropriate quantities Ay, Aa, -+, A, such that for all integers n:

iAkUm_z(n +ag) =0. (3.1)

k=1
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Our task is to show that Ay = (—1)*¢ /P(k, m), which will establish Theorem 1 in its symmetric
form. Our comments in the last part of the previous section indicate that our postulation is
appropriate. Note that the Ay’s are functions of ay, a2, -+ ,am, as well as of z. Then (3.1)
implies the following relations: '

m—2 m
Z (m B 2) (_1)3' ZAka(m_z"j)“"ﬁj“k =i

j=0 J k=1

This will be satisfied if we set each of the inner sums equal to zero. This gives us a set of
m — 1 equations in m unknowns. The values Ay, As,--+, A;—1, say, may be expressed as
functions of A,,. Thus, we may fix A,,, trusting that we may obtain the other quantities by
multiplying by an appropriate homogeneity constant. In other words, we may solve for the
ratios Ay /Am, Aa/Am, -+, Am—1/Am. The system may be put into the following matrix form:

a(m—2)a1 alm—2)as alm—2)as e a(m—2)am \ ( Ay \ (0\
a(m—3)a1 Bo a(m“3)afﬁaa a(m—-'i)ﬂsﬂﬂs win a(m—3)“mﬁam Ag 0
a{m—4}a1ﬁ2a1 a(m—4)&zﬁ2a2 a(m—4)ﬂsﬁ2“3 e a(m_4)“mﬂ2“m A3 0
a® ﬁ(m_s)a] aazﬁ(m%)az aasﬁ(m—-'i)aa e aﬂ-mﬁ(m_a)“m Ap_a 0

6(m—2)m ﬁ(m—Z)az ﬁ(m—2)ﬂ3 - ﬁ(m—z)um Am—1 0

v o 0 0 i YAn ) \ 4n ) \1)

The m*m matrix above is invertible, as we now show. Its determinant is equal to (1/A,,) times
the determinant of the (m —1)*(m — 1) matrix that is the minor of the final term. Such minor
is of “modified” Vandermonde type, hence (for distinct values aj,az,--- ,ay), is invertible.
Therefore, there is a unique solution for the ratios Agx/A,,. The inverse of the m*m matrix
above need not be determined in its entirety; we only need to determine its final column.

The following result is known about Vandermonde matrices. Suppose

1 1 1
Zl 22 R zn n
W = . . . p 3 and let Q(k,n+1)=H(zk~zj)-
1 - 2 2 e =1
(zl)n—l (Z2)n—1 e (zn)‘n—l i#k
Then
1/Q(1,n+1)
*
wl= 1/Q(2,ﬂ+ 1)

1/Q(n+1,n+1)
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where only the final column is shown. In the case of our problem, we obtain terms such as
% % — % % which simplify to: (—1)% D/?U(a; —a;). After some additional manipulation
(left for the reader to verify) , we determine the following result:

Ai/Am = —U(ax — am)P(m,m)/{U(am — ax) P(k,m)} (for 1 <k <m—1)
= (=1)****m P(m,m)/P(k,m).

Fixing A,, as (—1)%m/P(m,m), we thus conclude that Ay = (—1)*/P(k,m) (1 <k <
m). O

4. PROOF OF THEOREM 2

Clearly, Theorem 2 would imply Theorem 1, since the U(n)’s are a special case of the
more general G(n)’s. What is more interesting is that Theorem 1 implies Theorem 2, i.e. the
two theorems are equivalent, as we will now show.

We note that the P(k,m)’s in the statement of Theorem 1 are independent of n. Hence,
setting n = 1: o (—1)%* U™ %(1 + ax)/P(k,m) = 0. From (1.7), U(1 + ax) = zU(ax) +
U(—1 + ax). Substituting this into the last expression, we obtain:

- Z_ (m N 2) g2 3 (—1)™ U™ (a)U (—1 + ag) / P (K, m).
i=0 J k=1

This must be true for all values of x; we therefore argue that the inner sums in the last
expression must vanish; that is:

3 (-1 U™ 2 (ax)UY (-1 + ax) /P(k,m) =0, j=0, 1, -+, m—2. (4.1)
k=1
Now from (1.14), we have: G(n + ax) = G(n + 1)U(ax) + G(n)U(-1 + ax); hence, after
simplification, :

m m—2
S (1) G™2(n + a)/Pk,m) = 3 (’” N 2) G™ i (n+1)
k=1 j=0 J
Gj (n) Z(_l)ﬂk Um_z_j(ak)Uj(_l e ak)/P(ks m) = 0:
k=1

by (4.1). Thus, Theorem 1 implies Theorem 2 and vice-versa. Since Theorem 1 is true, so is
Theorem 2. O

5. PROOF OF THEOREM 3
We begin by assuming the generic putative identity:

U(ml + T2 + "'+$m)=ZBkUm(‘Tk)’ (51)
k=1
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to be solved for the unknown expressions By.

Why such an identity should hold in the first place is a question whose answer is not
immediately clear; yet, as we will show, we may determine appropriate By’s that satisfy (5.1),
which will automatically validate our assumption on an ad hoc basis.

Making the substitution z; = aj+n, where n is fixed, will generate a form that resembles
the statement of Theorem 3; accordingly, it is sufficient to establish the theorem for n = 0.
Note that the substitutions of ax + n for ay (for all k) leave P(k,m) unchanged.

Note that (5.1) involves only U(n)’s, rather than the more general G(n)'s. Because the
putative sum is not identically zero, as was the case with (3.1), we cannot expect that the
proper cancellations occur to make (5.1) work for G(n)’s. In any event, it is easy to come
up with counterexamples to Theorem 3 (once proven), if we attempt to change the ¥U(n)’s in
Theorem 3 to G(n)’s .

Expressing the U’s in their Bingt form, we obtain the following system of equations from
the assumed form of (5.1):

3> (T)(_l)j Y Byalm-iorgies — pim=D/2{gom _ gom},

§=0 k=1

where s, = a1 + a2 + -+ - + ay,. We further assume that the By’s are such that the following
m-+1 identities hold:

m m
ZBkamak =D(m—1)/2asm; ZBkd(m_j)“"ﬁj“" =0,0<j<m;
k=1 k=1 E

Z Bkﬁma" — (—1)“‘_11)("‘_1)/2;63"*.
k=1 .
There are m + 1 equations in m unknowns (the Bg’s); to overcome this difficulty, we introduce

a “dummy” variable, say By, 41, equal to zero. We may then express the foregoing system in
matrix form:

a™a1 ™Az a™mes . o™Mam 1 By
a(m—l)alﬁm a(m—l)agﬂaz a(m—l)a;;ﬁa;; L a(m—l)amﬁam 1 By
& E ; E . . B
ma] masz mag . My 1 m
5 8 g g ;
a’m
0
— pim=1)/2 :
0
(_1)m—1ﬁsm
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The square matrix in the foregoing is seen to be of “modified” Vandermonde type, say Z =
(pr:5), where pr.; = a™% (2;)¥~2, and z; = (B/a)%; here, we set @my1 = 0, hence zmiq = 1.
Thus Z is invertible. In order to solve for the By’s, we only need to know the first and last
columns of Z~!. Suppose Z~! = (gx.;); using known results about Vandermonde matrices, we
find the following:

gk:1 = (_l)ma_makﬂm+1/{sz(k1m+1)}1 Ql:m+1 = a”mak/Q(k:m'F 1)= k=1,2,:-+ ,m+1,

where

m—+1

Tm41 = 2122 *** ZmZm+1 = 2122 " Zm = T, and Q(k,m+1) = H (zk — ;).
k=1
k#j

We may now solve for the By’s:

By = o*m D™ D2 (—1)™(a/B)* 0~ ™ M 41 /Q(k, m + 1) (5.2)
_ ﬁst(m—l)ﬂ(_l)ma—mag/Q(k’m + 1)’ k=1,2,-- ,m.

We also require that (—1)™D™-V/2{asmy 1 — B*m}/Q(m + 1,m + 1) = 0; since, as we
see, Tm+1 = (B/c)®™, this last condition follows at once. Our next task is to simplify the
expressions in (5.2). Now 2z —z; = z;{(8/@)* % — 1} = —f% a~% DY/2U(a;, — a;); therefore,
Q(k,m + 1) = (—1)™D™/2gsm=exq~mox P(k m + 1), where P(k,m + 1) is defined by (2.2).
Then from (5.2) and our last results, after simplification, By = U(ax)/P(k,m+1) = 1/P(k,m)
(since U(ag — am+1) = U(ax)). It only remains to show that these solutions are consistent and
satisfy our assumptions; this task is left for the reader to verify. This completes the proof of
Theorem 3. 0O

6. COROLLARY OF THEOREM 3

In (2.6), we gave a corollary to Theorem 2, obtained by setting ax = k — 1 (also making
some other changes of parameter, and simplifying). Making the same substitutions in Theorem
3, and simplifying the result, we obtain the following corollary of Theorem 3:

[mY = U((m + 1)n +m(m+1)/2) = f: (’:’) (-1)kE-D2gmAln Lo — k). (6.1)
k=0 u

In fact (6.1) is an instance of (5) in [6]. We indicate some special cases of (6.1), obtained by
setting m = 1, 2, 3, 4, along ‘with a shift of indices:

U2n+1) =U%n+1)+U*(n) (6.2)
zU((3n) = U3(n+1) +zU3(n) —U*(n —1) (6.3)

(22 +1)UMEn+2) =Un+2) + (22 + DU (n + 1) — (x> + )U*(n) - U*(n —1) (6.4)
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z(z® + 1)(z* + 2)U(5n) =U%(n + 2) + z(z% + 2)US(n + 1) — (z® + 1)(z? + 2)U5(n)
—z(z? + 2)U%(n — 1) + U%(n — 2). (6.5)

In turn, even more special cases are obtained by setting z = 1 in (6.2)-(6.5):

F(@2n+1)=F*n+1)+ F*(n) (6.6)

F(3n) = F¥(n+1)+ F3(n) - F3(n—1) (6.7)

2F(4n+2) = F¥(n +2) + 2F*(n+ 1) — 2F*(n) — F*(n - 1) (6.8)
6F(5n) = F°(n +2) +3F°(n+1) — 6F°(n) — 3F%(n— 1) + F%(n — 2). (6.9)

The known identities (6.6)-(6.9) have been the impetus for other investigations in this journal.
See, for example, [2] and [3].

7. FOUR ADDITIONAL THEOREMS

As we will now show, Theorems 1 and 2 may be further generalized, and are corollaries
of the following theorems:

Theorem 4: Given the hypotheses of Theorem 1,

> (~1)7* U™ % (n + a)/P(k,m) = 0, Gl
k=1

i=12,---,[m/2].
Theorem 5: Given the hypotheses of Theorem 1,

m

> (—1)**G™ % (n + ay)/P(k, m) = 0, (7.2)
k=1

j=1:27"'1[m/2}'

As we see, Theorem 1(2) would follow from Theorem 4(5) by setting j = 1. Theorem 5 follows
from Theorem 4 in the same way that Theorem 2 followed from Theorem 1; consequently, we
will omit its proof and only indicate the proof of Theorem 4.

Proof of Theorem 4: We begin with the statement of Theorem 3 (see (2.4)). Now the
following recurrence relation holds for all n and m, as easily shown:

U(n+m) — V(m)U(n) + (—1)"U(n — m) = 0. {T:3)

Therefore, we see that 7 {U™(1 + ax) — V(m)U™(ax) + (—=1)™U™(1 + az)}/P(k,m) =
U(mn+m+ sm) — V(m)U(mn + sp) + (—~1)™U(mn — m + s5,) = 0, by (7.3). Define

Hp(a) =Um(1+a)+ (-1)™U™(~1+a). (7.4)
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It is easily shown that the Hp,’s satisfy the following recurreuce:
Hpy1(a) = zU(a)Hp(a) + Ula + 1)U(a — 1)Hpy—1(a). (7.5)

We determine the following initial values: Ho(a) = 2, Hi(a) = zU(a), Ha(a) = (2 +2)U%(a)+
2(—1)¢, etc. By induction or otherwise: Hy,(a) = Egméz] @im(—1)72U™=2% (a), where ¢; , is a
function of j,m (and z), but is independent of a. Tt is not important at this stage to determine
the ¢}, m, except for j = 0. Using the recurrence ir (7.5), we find that @ m+1 = To,m+Po,m-1,
with the initial values ¢ =2 and @p1 =2 .

Hence, po.m = V(m). Tt follows that Hy(a) = V(m)U™ )+ @ m(-1)72U™ % (a).
This implies the following: > ;- E[mﬂ] ©jm(—1)7* U™ % (ay)/P(k,m) = 0. Therefore,

E[m/2] Qim 3 opey (—1)72xU™=2 (a)/P(k, m) = 0. This last relation must be an identity true
for all x; therefore, the inner sums must vanish identically, for j = 1,2,---,[m/2]. Now
replacmg ar by n+ ay for k = 1,2,---,m, leaves the P(k,m) invariant, and this is the
statement of Theorem 4. O

As we show next, there are two more theorems of an even more general nature than those
thus far indicated. Both of these theorems generalize Theorem 3.

Theorem 6: Given the hypotheses of Theorem 1:

U1+ ag)U™ (04) /P, ) = Ulsm + ), (7.6)
k=1

j=01172:"':m

Proof of Theorem 6: Let 8; denote the expression in the left member of (7.6) (treating
m as a constant). We note, using Theorem 3, that

8o = U(sm); Om = U(sm + m). (7.7)
We also note the following, from (1.13):
U2+ ax)U(ax) — U2(1 +ax) = (1)1, (7.8)

Now consider the expression z; + 6;_1, assuming 1 < j < m. Using (1.7), this becomes:

in'l(l +ap)U™ ¥ (ax){zU (1 + ax) + Uax) }/ Pk, m)
k=1

= f: U(2 + ap)U7 (1 + ax)U™ (ax)/P(k,m).

k=1

Using (7.8), we see that x8; + 6;_1 = Y pey Ui=1(1 + ap)Um™—3- ‘(ak){Ug(l + ax) —
(-1)**}/P(k,m) = 35 1U’+1(1+Gk)Um =Yg/ Pk, m) — Yy (~1) U7~ (1+ay ) U™
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(ag)/P(k,m) = 841 — 0, the latter result obtained from (4.1) (with j replaced by m —1 — 7).
Therefore, we see that the 6;’s satisfy the following recurrence relation:

9j+1$m9j+9j—l: j$1,2,"' ,m—l. (79)

Essentially, this recurrence is the same as (1.7). Now using the boundary conditions of (7.7),
we conclude that 8; = U(s,, + j); note that this is also true for j = 0 and j = m, which is the
statement of Theorem 6. [

Theorem 7: Given the hypotheses of Theorem 1,

6™ (n+ ax)/P(k,m)

k=1

= D2 {a™"om(G(1) — BG(0)™ — B (G(1) - aG(0))™}. (7.10)

Proof of Theorem 7: Note that if G(n) = U(n), we obtain: G(1) — 8G(0) = G(1) —
aG(0) = 1, and the expression in the right member of (7.10) simplifies to U(mn + s,,), which
is Theorem 3. Thus, Theorem 7 is a generalization of Theorem 3.

Let H denote the left member of (7.10). From (1.14), we see that H = 3 }" ,{G(n +
1)U{ax) + G(n)U(ar — 1)}/ P(k,m) = 377 (7)G™ I (n+ 1)G7 (n) 34, U™ (ak) U7 (ax—
1)/P(k,m). Vsing Theorem 6 (with j replaced by m — j and the a’s reduced by 1), we obtain:
H=371, (T)Gm-f(n +1)G(n)U(8m — j). Then by (1.10) and (1.12),

H = D-1/2 537 (M)G™ (n + 1)Gi(n){asnt — fon=i} = D71/2{asn (G(n+ 1) — BG(n))™
—B°(G(n + 1) — a?(n))™}. Now using (1.8), we may easily show that G(n +1) — BG(n) =
a™{G(1) - BG(0)} and G(n+1) — aG(n) = f*{G(1) — aG(0)}. We then see that H simplifies
to the expression indicated in (7.10). [

Corollary of Theorem T7:

i V™(n +ag)/P(k,m) = Dm=D/2{gmntem _ (_1)mgmntom) (7.11)

k=1

= D™2U(mn + s,) if m is even, or DUy (mp + s,,) if m is odd.

Proof: We set G(n) = V(n) in Theorem 7, noting that V(1) — BV(0) = z — 28 = D/?
and V(1) —aV(0) =z —2a=-D¥}. O

8. CONCLUSION
The two main theorems of this paper are Theorems 5 and 7. Clearly, these theorems are
far-reaching and of greater generality than the usual identities involving generalized Fibonacci

and Lucas numbers that abound in the literature (involving equidistant points). These two
theorems lead to a variety of identities, some of which may not be familiar, even to long-time
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readers of this journal. For example, if we set j = [m/2] in Theorem 5, we obtain the following
special case:

Z(gl)[mleaka—ﬂm/Z] (n+ ag)/P(k,m) = 0. (8.1)
k=1

If m is even , say m = 2r, this becomes: Zi;l(—l)mk/P(k,Qr) = 0; if ay = k — 1, this may
be further specialized, after some manipulation, to the following:

2r—1

2r—1 _1\rk+k(k—1)/2 _
Z( . )U( 1) 0. (8.2)

k=0

If, in the other hand, we set m = 2r +1 in (8.1), we obtain: 32" (—~1)"%*G(n+ay)/P(k, 2r +
1) = 0; if ax = & — 1, this may be simplified to the following:

2y
2 (21:) (-1 E-02em ) = 0. (8.3)
U

k=0

Further research along these lines seems to be indicated.
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