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ABSTRACT

We derive a formula for the number of components of the iteration graph G(p*) of the
squaring function on the ring Z /ka In particular, if p is not a Wieferich prime, then the
number of components is linear in k, and if p is a Wleferlch prime, then the number of
components is eventually linear in k.

1. INTRODUCTION

If R is any set, a mapping f: R — R induces a directed graph on R whose vertices are the
elements of R and whose directed edges connect each z € R with its image f(z) € R. This
graph, which we denote G(R), is called the iteration graph of the map f. When R is the ring
Z/nZ, we use the abbreviated notation G(n) for the iteration graph.

Iteration graphs provide a nice tool for studying properties of R that respect the mapping
f, and arise in several fields, including number theory (see, e.g., [14] and [4]), group theory
(see, e.g., [3]), and dynamical systems (see, e.g., [7]). In the last decade, a number of people
have studied the iteration graphs arising from homomorphisms of finite abelian groups, in
particular the power maps = — z" (see, e.g., [9], [17], and[5]) and quadratic polynomials on
finite fields (see, e.g., [15] and [12]). Particular attention has been paid to the squaring map on
the prime fields F, (see, e.g., [15] and [13]) and, more generally, the squaring map on the rings
Z/nZ (see, e.g., [2] and [14]). The iteration graphs of the squaring map on the rings Z/nZ are
intimately connected to questions in number theory and are the focus of our interest here. In
particular, we study the decomposition of the iteration graph of the squaring map on Z/nZ
when n = p¥ is the power of a prime. We show that if p is not a Wieferich prime, then the
number of components of G(p*) increases linearly as a function of k. In the exceptional cases,
when p is a Wieferich prime, the number of components is linear in k when k is sufﬁmently
large.

2. PRELIMINARIES

Definition: For each n and a w1th (@,n) = 1, denote by ord(a,n) the order of a modulo 7, i.e.,
the least integer £ such that a®* = 1 (mod n). Since a generates a cyclic subgroup (a) of order‘
ord(a, ) in the abelian group G = (Z/nZ)*, which has order ¢(n), the fraction ¢(n)/ord(a, n)
is equal to the index of the subgroup (a) in G. We will write ind(a, n) = ¢(n)/ord(a, n).

The following theorem about orders of integers modulo powers of a prime p is well known
(see, e.g., Theorem 3.6 of [11]).
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Theorem 2.1: Suppose that p is an odd prime anda > 1 a positive integer relatively prime
to p. Let d = ord(a,p). If p* || a® — 1, then ord(a, p*) = ord(a,p) when k <t and ord(a, p*) =
p¥~tord(a, p) when k > t.

In particular, the sequence of orders {ord(a, p*)}22 ; increases geometrically with ratio P
after an initial constant segment. The case that a = 2 has recieved special attention. Since
ord(2,p) | p—1 and (p,p—1) = 1, it follows that ord(2,p) = ord(2, p?) if and only if 2P~ =
(mod p?). Primes p for which these conditions are true are called Wieferich primes, after
Arthur Wieferich, who proved in 1909 that any prime exponent p that is a counterexample to
the first case of Fermat’s last theorem satisfies this property [16]. To date, there are only two
known Wieferich primes, 1093 and 3511, discovered by W. Meissner [10] and N. G. W. H. Beeger
[1], respectively. It has been verified computationally that there are no other Wieferich primes
less than 1.25 x 10'° [8]. For primes that are not Wieferich primes Theorem 2.1 [8] can be
simplified.

Corollary 2.2: If p is an odd prime that is not a Wieferich prime, then ord(2,pF) =
p*tord(2,p) for all k > 1.

3. COUNTING COMPONENTS

Definition: For each positive integer n, let G(n) denote the directed graph whose vertices
correspond to elements of Z/nZ and whose edges consist of the ordered pairs {(a,a?) | a €
Z/nZ} and let N(n) denote the number of connected components of G(n).

By a straight-forward graph theoretic argument, it is easy to see that every connected
component of G(n) has exactly one cycle, so N(n) also represents the number of cycles in
G(n).

The following theorem about cycles under the squaring map on a finite group G is known
in special cases, see, e.g., Theorem 15 of [9] when G = (Z/pZ)* and Lemma 3 of [17] when
G = (Z/nZ)*, but applies equally well to any finite group G.

Theorem 3.1: If G is any finite group, then an element g € G lies in a cycle under the
squaring map if and only if g has odd order. If g has odd order d, then every element in the
cycle containing g has order d and the length of the cycle containing g is ord(2,d).

Proof: If g € G, then ord(¢®) = ord(g)/2 when g has even order and ord(g?) = ord(g)
when g has odd order. If g lies in a cycle, then gzk =g, for some k, and hence g must have
odd order. Conversely, if g has odd order d, then gzk has order d for all k, and since G is finite
g% = g?' for some £ < k. Choose k minimal with this property. Then 1 = g2"—2" = g2*(2**-1)
Since g2° also has order d, it follows that 9@ =0 =1 and g2 = ¢. By minimality of k,
we see that k = k — £, and g2° = g. Thus g lies in a cycle of length k. The cycle length is the
smallest integer k such that g2"~! = 1, and hence the smallest & such that d | 2% — 1. Thus
k = ord(2,d).

For reference below we make the following definition.

Definition: Let G = (Z/nZ)* be the unit group of the ring Z/nZ and define O(n) to be the
set of odd divisors of ¢(n). In particular, O(p*) is the set of odd divisors of p*~1(p — 1).

Our main goal is to generalize to prime powers n = p* the following well-known theorem

for primes n = p (see, e.g., [15]).
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Theorem 3.2: Suppose that n = p. Then the iteration graph G(n) contains ¢(d) ford(2,d)
cycles of length ord(2,d) and one additional cycle of length 1. In particular,

@=1+)Y d(2d) =1+  ind(2,d).

de0(p) .de0(p)

Proof: Clearly, the point 0 is a fixed point of G(n) and the component of 0 contains every
element of Z/pZ that is divisible by p. The remaining elements lie in the unit group G. Since
G is cyclic of order p —1, G contains exactly ¢(d) elements of order d, for each d € O(p). Each
element of order d lies in a cycle of length ord(2,d) consisting of distinct elements of order d,
and it follows that G(n) has exactly ¢(d)/ord(2, d) such cycles. The formula for N(p) follows
immediately. 0O

To generalize 3.2, we make the following definition.
Definition: Define the constant e(p) by

e(p) = ) ind(2,p)ind(2,d)(ord(2, p), ord(2,d)).
de(p)

Theorem 3.3: Suppose that n = p*, where p is an odd prime. If p is not a Wieferich prime,
then the number of cycles in the iteration graph G(n) is

(P*) =1+ ind(2,d) + (k — 1e(p) = N(p) + (k — 1)e(p).

deO(p)

Proof: As in the proof of Theorem 3.2, the point 0 is a fixed point of G(n), and the
remaining cycles lie in the unit group G. By Theorem 3.1 each element g € & of odd order d
lies in a cycle of length ord(2,d).

Since p is an odd prime, G = (Z/p*Z)* is cyclic of order ¢(p*) = p*~1(p — 1). Clearly
O(p*) = {p'd | d € O(p) and 0 < t < k —1}. Since G is cyclic, G contains ¢(p'd) elements
of order p'd, each of which lies in a cycle of length ord(2, ptd). It follows that the number of
cycles in G(n) is

$(p'd) -
Ny =1+ Zordzptd) =1+ Y ind(2,p'd). (1)

deO(p) t=0 de0(p) t=0

Suppose that d € O(p). Since d | p — 1, we know that (p,d) = 1, and there-
fore ¢(p'd) = ¢(p*)¢p(d). On the other hand, ord(2,p'd) = lem(ord(2,pt),ord(2,d)) =
ord(2,p*)ord(2,d)/(ord(2, p*),0rd(2,d)). Since p is not a Wieferich prime, ord(2,p') =
p*~lord(2,p) when ¢t > 1. Thus, if t > 1,

g(p'd) _  pTle(p)dd) .
rd(2,ptd)  pt—lord(2,p)ord(2,d) (p**ord(2,p), 0rd(2, d))
= ind(2, p)ind(2, d)(ord(2, p), ord(2, d)).

ind(2, p'd)

(2)
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It follows that the number of cycles in G(n) is

k—1 k—1
NEF) =1+ > ind(2,p'd) =1+ ind(2,d)+ Y _ > ind(2,p'd)

de0(p) t=0 de0(p) deo(p) t=1
k-1 (3)
=N(p)+Y_ Y ind(2,p)ind(2,d)(ord(2,p),ord(2,d))
t=1 de0(p)

= N(p) + (k — 1)e(p),

as desired. O

The method of proof of Theorem 3.3 can be modified to yield the following result for
Wieferich primes p.

Theorem 3.4: Suppose that n = p*, where p is a Wieferich prime. Choose e minimal such
that ord(2,p°t!) = p ord(2,p®). Then the number of cycles in the iteration graph G(p*) for
k>eis

N(®*) = N(»°) + (k — e)p°e(p).

Note: Observe that Theorem 3.4 reduces to Theorem 3.3 when e = 1.

Proof: Asin Theorem 3.3, (1) can be used to compute N(p*), however we must modify
(2). For 1 < t < e we obtain ord(2,p’) = ord(2,p) and for t > e we obtain ord(2,p’) =
p'~®ord(2, p), and therefore

p*~1(ord(2,p),ord(2,d))ind(2,p)ind(2,d) if1<t<e, and

: oy _
ind(2,p"d) = { p®~1(ord(2, p),ord(2,d))ind(2, p)ind(2,d) ift>e.

As in (3), we have

k—1 e—1 k—1
NEF) =1+ Y ind@ (@'d) =1+ > ind(2,('d)+) > ind(2(p'd))

de0(p) t=0 t=0 deO(p) t=e de0(p)
k-1
=N@9)+ Y, Y p°'ind(2,p)ind(2,d)(ord(2,p), ord(2,d))
t=e deO(p)

= N@@®) + (k — e)p* '¢(p),
as desired. O

Corollary 3.5: If p is not a Wieferich prime, then N(p*) increases linearly as a function of
k. If p is a Wieferich prime, N(p*) is linear for k sufficiently large.
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4. COMPUTATIONS

In this final section we offer several examples of Theorem 3.3 and Theorem 3.4 at work.
In particular, we compute N(3%) and N(19*) using Theorem 3.3 and N (1093*) and N (3511%)
using Theorem 3.4. Since 1093 and 3511 are the only known Wieferich primes, these are the
only cases for which Theorem 3.4 is known to be required. We conclude the paper with a table
of N(p*) for all primes p < 1000. The distribution of the values of N(p) and €(p) is interesting
and merits further study. Some of the computations in this section were performed using the
discrete mathematics computation package Gap [6].

Example 1: If n = 3%, then N(n) =k + 1.
Proof: Observe that O(3) = {1}. Thus, the number of cycles in G(3) is simply
: ¢(1)
1 2:1)= —_— = 2,
tHad(Eh) = 1% e

Since €(3) = (ord(2,p), ord(2,d))ind(2,p)ind(2,d) = 1, Theorem 3.3 implies that G(3¥) has
de0(3)

2+(k—1)=k+1cycles. O

Example 2: If n = 19%, then N(n) = 9k — 5.

Proof: Observe that O(19) = {1, 3,9}. Thus, the number of cycles in G(19) is

M) ) . 4O _,

1+ind(2,1) +ind(2,3) +ind(2,9) =1+ ord(2,1) + ord(2,3) + ord(2.9)

Moreover €(19) = > (ord(2,p),ord(2,d))ind(2,p)ind(2,d) = 1+ 2+ 6 = 9. It now follows
de0(19)

from Theorem 3.3 that G(19*) has 44 (k—1)-9=9k — 5 cycles. 0O

The next two examples give N (p") for each of the two known Wieferich primes p = 1093
and p = 3511.
Example 3: If n = 1093%, then N(n) = 307 + 304947(k — 2), for k > 2.

Proof: Since ord(2,1093) = ord(2,1093%2) = 364, while ord(2,1093%) = 397852 =
1093 - 364, we know that e = 2. Since 1092 = 22 .3 .7 .13, we obtain O(1093) =
{1,8,7,13,21,39,91, 273}, and therefore

€(1093) = Y ind(2,1093)ind(2, d)(ord(2, 1093), ord(2, d))
de0(1093)
—=3.1-(364,1)+3-1-(364,2)+3-2-(364,3)+3-1-(364,12)
+3-2-(364,6)+3-2-(364,12) +3-6- (364,12) + 312 - (364,12)
=3+6+6+12+ 12+ 24+ 72+ 144 = 279.
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By (1):

N(1093%) =1+ )" ind(2,d) + > ind(2,1093d)

dEO(1093) de©(1093)
=1+ ) ind(2,d)+ > ind(2,1093)ind(2, d) (ord(2, 1093), ord(2, d))
d€O(1093) d€O(1093)

=1+ 27 + €(1093) = 307.

Finally, by Theorem 3.4,

28 ifk=1:
N(1093%) = ?
( ) { 307 + 304947(k — 2) if k > 2,

as desired. [
Example 4: If n = 3511%, then N(n) = 892 + 3131812(k — 2), for k > 2.

Proof: Since ord(2,3511) = ord(2, 3511%) = 1755, while ord(2,3511%) = 6161805 =
3511 - 1755, we obtain e = 2. Since 3510 — 9 . 3% .5.13, we find O(3511) =
{1,3,5,9,13,15,27,39, 45, 65,117, 135, 195, 351, 585, 1755}, and therefore

5(3511) = Z ind(2, 3511)ind(2, d)(ord(?, 3511), ord(2, d))
de0(3511)

=2-1-(1755,1) +2-1-(1755,2) +2-1- (1755,4) + 2 - 1 (1755,6) + 2 - 1 - (1755, 12)
+2-2-(1755,4) +2-1- (1755,18) + 22 (1755,12) + 2- 2 . (1755, 12)

+2-4-(1755,12) + 26 (1755,12) + 2 - 2- (1755,36) + 2 8 - (1755, 12)
+2-6-(1755,36) + 2 24 (1755,12) + 2 - 24 - (1755, 36)
=2+2+2+6+6+4+18+12+12+ 24+ 36+ 36 + 48 + 108 + 144 + 432

= 892
By (1):
N(3511%) =1+ Y ind(2,d) + > ind(2,3511d)
de0(3511) de©(3511)
=1+ Y ind(2,d)+ > ind(2, 3511)ind(2, d)(ord(2, 3511), ord(2, d))
den(3511) deO(3511)

=1+ 86+ ¢(3511) = 979.
Finally, by Theorem 3.4,

87 ifk=1;

N(8511%) =
3511 { 979 + 3131812(k — 2) if k> 2,

as desired. 0O
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P | N5 P N(p*) p | N(p¥) P N(p¥) p | N(pF)
3 k+1 149| bBE—2 47| 8% 557 3k 769 | 6k—3
5 k41 151 200k—191 ||349| 15k—9 ||563| op—3 773|  9k—5
7T | 4k—1 ||157| 45k—39 ||353| 12k—9 ||569| EK—2 787 | 9k-3
11 3k 163 | 81k—75 ||359| 4k—1 |[571| 315k—300 ||797| 3k41
13 3k 167  4k—1 367 | 22k—16 ||577| 36k—32 809 | 10k—7
17 2k 173 | 7Th—2 373 | 21k—6 ||587 3k 811 | 729k ~714
19 | 9k=5 ||179| ok+1 379 | 189k—168 || 593 | 20k—17 821 | 205k—192
23 | 4k—1 |[181| 45k—36 ||383| 6k~2 ||599| 12k—5 823 | 16k—7
29 | 8k+1 ||191| 10k—14 389 | 9k—5 ||601| 480k—471 ||s27| ok_2
31 | 30k—24 ||193] k-3 397 | 135k—126 || 607 | 10k—4a 829 | 27k—17
37 | 9k—5 ||197| 17Tk—11 ||401| 50k—46 ||613| 81k—67 839 | 4k—1
41 | 10k—7 |[199| 28k—19 ||409| 54k—45 ||619| 21k—14 853 | Ok—2
43 | 27k-20 [|211| 63k-47 ||419| 9k—3 ||631|1372k—1335 ||857| 6k—3
47 | 6k—2 ||223| 30k-24 ||421| 105k—89 ||641| sHOE—47 859 | 63k—48
53 | 5k—2 |[|227| ok-3 431 | 110k—98 || 643 | 27k—21 863 | 22k—10
59 3k 229 | 27k-21 (433 |162k—157 || 647| 16k—17 877| 75k—56
61 | 15k—9 ||233| 16k—13 ||439| 108k—89 || 653 3k 881 | 272k—266
67 | 9k—3 |[|239| 18k—s 443 | 23k—10 ||659| ok+1 883 | 441k—417

71 12k-5 241 | 150k—144 449 6k—2 661 | 165k—150 887 4k—1
73 | 40k-36 251 | 315k-310 457 | 54k—48 673 | 294k—28T7 907 93k-70

79 | 22k—16 257 16k—14 461 15k—8 677 5Tk—53 911 | 410k—368
83 5k—1 263 4k—1 463 | TOk—54 683 | 2139k—2100 919 | 408k—389
89 16k—13 271 82k—T0 467 9k+1 691 81k—65 929 10k—7
97 6k—3 277 27k—20 479 6k—2 701 T5k—65 937 | 256k—243
101 | 25k-21 281 36k—29 487 | 244k—237 || 709 9k-3 941 15k—-8
103 | 16k—T 283 27k—20 491 | 51k—40 719 6k—2 947 | 21k-9
107 3k 293 9k+1 499 | 2Tk-—21 727 | 228k-219 953 | 378k—368
109 | 81k—76 307 | 135k—121 503 | 12k-5 733 45k—39 967 | B84k—65
113 12k—-8 311 | 124k-109 509 | 19k+1 739 | 135k—121 971 | 115k—102
127 | 234k—220 || 313 T8k—T2 521 | 50k—42 743 12k—-5 977 | 10k-T7
131 13k—5 317 3k+1 523 | 27k-18 751 | 190k—178 983 4k—1
137 | 18k-—14 331 | 1089k—1074 || 541 | 135k—123 || 757 | 189k—168 991 | 298k—274
139 9k~2 337 | 224k-217 547 | 147k—119 || 761 30k-24 997 | 27k-—21

Table 1. Values of N(p*) for primes p < 1000.
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