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ABSTRACT

For each integer n > 0,0(n) denotes the sum of all positive divisors of n;b(n) denotes
the exponent (> 0) of the largest power of 2 dividing n, and then 0d(n) := n2~%(®), For each
integer n > 0, g(n) denotes the number of partitions of n into distinct parts; and go(n) denotes
the number of partitions of n into distinct odd parts. Conventionally, ¢(0) = go(0) := 1. It is
here demonstrated that the composite function ¢ o 0d can be expressed additively in-terms of
the functions g, go.

1. INTRODUCTION

Recall that P := {1,2,3,...}, N:=PU {0} and Z := {0,41,42,...}. Then, for each
n € P, o(n) denotes the sum of all positive divisors of n; b(n) denotes the exponent (> 0) of
the largest power of 2 dividing n, and then 0d(n) := n2~4™),

For each n € N, g(n) denotes the number of partitions of n into distinct parts, and go(n)
denotes the number of partitions of n into distinct odd parts. Conventionally, g(0) = go(0) := 1.

In some ways the restricted partition functions ¢(-) and go(-) are better described by their
generating functions:

[0+ =3 ()" (L1)
and ' "= _
H(l 4+ g2 = iqg(n)x”, lz] < 1. (1.2)
1 n=0

In this note we prove the following theorem, which shows how to evaluate the multiplicative
function o in terms of the restricted partition functions g(-), go(-).

Theorem 1.1: For each n € P, if n is odd, then

on) = > (-1 jg(G)ao(n — ) (13)
and, for each m € I, =
2m
a(0d(m)) =y " (~1)jq(j)go(2m — 3). (1.4)
j=1

2. PROOF OF THEOREM 1.1

Our point of departure is a famous identity due to Euler (2, p. 277, viz.,
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which is valid for each complex number z such that |z| < 1. Clearly, (2.1) and (1.1) imply

o

= Z g(n)z"™

1

Now, with D, denoting differentiation with respect to z, operate on both sides of the foregoing
identity with =D, to get

2n—1

Z(gﬂ_ilf 1 H z2n 1 Z”‘q n)z". (2.2)

It follows easily that

2n—1

Z (271?':2:: — = Zcr([ld(n))x"’.
n=1

Hence, in view of the fact that 0d(2n + 1) = 2n + 1, for each n € N, we multiply both sides of
(2.2) by the infinite product [J(1 — z2"~1), and subsequently appeal to (1.2) to get

> o@m+ 1)z 4+ Y " o(0d(2m)) 2™
m=0 m=1
= E a(0d(n))z"
n=1
= _ IZn—l) Z nq(n)xn
n=1 n=1
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X {i(Zk)q(Zk)z% + Z(zk + 1)g(2k + 1) 2’““}

k=1 k=0
= i gl iqo(2m — 2k)(2k + 1)q(2k + 1)

m=0 k=0

== il gl kiqo (2m — 2k + 1)(2k)q(2k)
m= =1

3 Izmi?o 2m — 2K) (2K)a(2K)

- i " mz_lqﬂ(zm — 2k — 1)(2k + 1)g(2k + 1).
m=1 k=0
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Equating coefficients of like powers of z, we thus prove our theorem. (Note that in (1.4)
0d(2m) = 0d(m), for each m € P.)

The formulas of Theorem 1.1 do not provide an efficient way to obtain o(n) for large n
because they require computation of too many terms. But, for smaller values of n one can
first compute the desired values of the functions g(-) and go() by recurrences for these [1, pp.
- 1-2], and subsequently o(n).

3. HISTORICAL COMMENTS

It certainly seems fair to say that Euler would not have been surprised by Theorem
1.1. However, it seems equally fair to say that he was not in possession of tools to establish
recurrences for the functions g(-), go(-). For, derivation of these depends on a couple of special
cases of the celebrated triple-product identity [2, pp. 282-283]:

o o]
[ -+t )1+t =Y a1,
—00

n=1

which is valid for each pair of complex numbers ¢, = such that ¢ # 0 and |z| < 1. This identity
was first stated and proved by Gauss about 25 years after Euler’s death (1783). E.g. see [2,
p. 296].

Finally, we observe that Theorem 1.1 provides yet another link between multiplicative
number theory (since o(-) is known to be multiplicative) and additive number theory (since
the functions g(-) and go(-) play substantial roles in the theory of partitions of natural numbers).
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