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ABSTRACT

The Fibonacci series represents the simplest series whose successive members obey a
periodic 3-term relation, wherein the coefficients and the period are all equal to 1. Here the
most general case where these parameters are all arbitrary is treated. For a series of quantities
or elements, related by a periodic 3-term recurrence relation between adjacent elements, it is
shown that there is also a 3-term invariant recurrence relation between corresponding elements
within adjacent periods. Application to the numerators and denominators of the convergents
of a periodic continued fraction follows naturally.

1. THEOREM
Given a periodic 3-term recurrence relation between the elements E; of the form:
ik =b;E;_1 +a;E;_o (1)

or, equivalently:
airo2 b0 + biroEiy1 — cipaFEiye =0, (2)

where the a;, b;, c; are constants which repeat with period n, such that a;4, = a;,b;i1, =
bi, Citn = C; then

CE(T+2)n+s - BE(T+1)n+s + AETTL+S7 (3)
where A, B, C are constants for all integer values of r, s.

(Illustrative examples are provided in a later section of this paper).
2. PROOF

Let M(a;,b;, —c;) be the tridiagonal array composed of the quantities a;,b;, —c;, and
let D;,, be the associated tridiagonal determinant whose first row is (b;, —¢;) and last row
(@mybm). From the m — [ + 1 equations (1) for ¢ = I,m in m — [ + 3 unknowns by backward

elimination successively of the m — [ unknowns F,,_1, ..., E; one obtains
;" (ci) Em = DimEi—1 + aiDiy1 mEp—2 (4)
or, putting Il =1,m =n
CE, = Dy ,Ey+a1Ds,E_q, (5)
where C' = I17(¢;). Similarly from the m — [ equations (1) with ¢ =1+ 1,m in m — [+ 2
unknowns by successive forward elimination of the m — [ — 1 unknowns FEj, ..., F,,_o one
obtains
0% (—ai)Er—1 = DiyimEm—1 — e Dip1,m—1Em (6)
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or, puttingl =1,m =n )
A EO = DQ,nEn—l - CnDQ,n—lEn; (7)

where A = I} (—a;) = (—1)""'II}(a;). From the periodicity of the a;, b;, ¢; it follows imme-
diately, by full n-cycle shifts of the indices i, from (5), by a shift of » + 1 cycles, that

CE(T+2)TL = Dl,nE(r+1)n + alDQ,nE('H»l)nfl (8)

and from (6), by a shift of r cycles, that

A/Ern = D2,nE(7‘+1)n—1 - CnDZ,nflE(r—}—l)n' (9)
Hence, by elimination of E(,41),—1 between (8) and (9)
CE(T‘+2)TL == BE(T+1)7’L + AE’M’L; (]_O)

where B = D1, +aic, Doy 1 and A = a1 A’ = (—=1)" "I} (a;). Clearly A and C are invariant
under any re-ordering of the a; and ¢;. It remains to be shown that B is invariant under any
cyclic shift of the a;, b;, c;. Subjecting B to a single cyclic shift of ¢ to ¢ + 1 and n to n + 1,
using cp4+1 = c1

By = D3 pny1 +azcni1D3 0, (11)

where ; s signifies the result of increasing all the indices on the a;, b;, ¢; by an amount s. Now
expansion of Dy ;1 gives

D3 pi1 =b1Dsp +a1¢, Do 1 (12)
while similarly,
D1, = b1 D2, + aze1 D3, (13)
and thus it follows that
By =Dy +aicyDyyp1 = B. (14)

A result similar to (13) holds for an arbitrary cyclic shift s giving
By=By ,=--=B,=8 (15)

and (3) is therefore valid for all r,s = 0,1,2..., thus proving the theorem. For consistency
in application of the above results D; ; = b;, D; ;1 = 1,D; ;_o = 0. Since the indexing of the
ai, b;, c; and E; is arbitrary, then (3) is valid also for negative values of r and s, provided the
recurrence relations (1) are satisfied. Thus it is evident from (15) that a triplet obeying (3)
may be considered to begin anywhere within a period.

3. COROLLARY

A direct consequence of the above theorem is that, any sequence satisfying a recurrence
relation of period unity, such as for example the Fibonacci and Lucas sequences, F; and
L,,, also satisfies a recurrence relation of arbitrary period n. For each such value of n, the
relation (3) holds with constants A,,, B,,, C,,, which are independent of the initial values Ey, F
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and therefore are the same for all sequences with the same a;,b;,c;. For the specific case
a; =b; =c¢; =1 (all i), then A, = (=1)""! and C,, = 1. The expression (14) for B,, can be
most easily evaluated using the representations Fj, = (o™ — ")/v/5, L, = (a" + ") where
a=(1++5)/2, 3= (1—-+/5)/2 with a8 = —1. Using the results

(a2n+s _ /BQTL—FS) — (an + ﬁn>(an+s _ ﬁn—i—s) _ (aﬁyz(as _ ﬁs)

(@™ 4 527F) = (@ + ) (@17 + 1) — (af)" (o + 57)

it follows that B,, = L,,. In the particular case of the Fibonacci sequence for which Fy = 0,
putting s = 0 recovers the well-known result F5, = L,F, as a special case of the more
general theorem. However, for the Lucas sequence with Ly = 2 the corresponding result is
Lon = (Ly)? 4 2(=1)""1.

4. APPLICATIONS

An immediate application of the result (10) is to the accelerated evaluation of high series
members of the sequence F; starting from lower members. Such a situation applies to the
higher approximants of a periodic continued fraction. A typical continued fraction of the form
(employing an obvious notation)

F:bo+a1/b1+a2/bg+--- (16)

has successive approximants which may be written F; = A;/B; whose numerators A; and
denominators B; separately satisfy a 3-term recurrence relation of the form (1) with ¢; =1

Ay =biAi1 4+ a;Ai—o (17)
B; =b;B;—1+a;B;_» (18)
with, for consistency,
Ag=byg,A_1=1,Byg=1,B_1 =0. (19)
Setting [ = 1 in (4)
Am = bODl,m + alD2,m = DO,m (20)
Bm = Dl,m = DO,mfl;l = Amflgl (21)

thus recovering results given by Perron[3]. A general periodic continued fraction may consist
of a non-periodic part followed by a periodic part, as in

F:bo+a1/b1+~--+ak/Rk, (22)

where
Ry, = by + aps1/bp1 + -+ + Qpyn /Ric (23)

repeats with period n, so that ag4, = ar and bgy, = bx. When Ry = F' and there is no
non-periodic part the continued fraction is said to be purely periodic, otherwise it is mixed
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periodic. Periodic continued fractions occur in the development of quadratic surds such as
S = P 4+ QvR where P and Q are rational with @ non-zero and R is a positive integer, not
a perfect square. These give rise to simple continued fractions where a; = 1, ¢; = 1 and the
b; are positive integers. Then in the recurrence relation (3) C' = 1 and A = (—1)""! with
B a positive integer. The evaluation of high order periodic approximants is of interest in the
solution of Diophantine equations of the Pell type. A different (2-term) recurrence relation,
connecting only two adjacent periods, and which applies to the numerators and denominators
of approximants to only purely periodic continued fractions, has been given also by Perron [4].
Putting | = n in (4), with all ¢; = 1 gives

En, = DpmEn_1+ anDpi1mEn—2 (24)
which, using (20) and (21) becomes
En=Am—nnEn_1+ anBm_nnEn_o. (25)
Letting m =rn+s,r=1,2,3,...;5=0,1,2,... and using A,,., = A, Bp:n = B,
Ernys = Ap—tiyntsBn1 + anBr_1)ntsEBn2 (26)

which, when FE; is replaced by A; or B; expresses each in terms of linear combination of both
A;_p, and B;_,, with the fixed coefficients A,,_1, A,_2 and B,,_1, B,,_2, respectively. Thus,

Arn+s = AnflA(r—l)n—‘,-s + anAnf2B(r—1)n+s (27)
Brn—i—s = Bn—lA(rfl)'n+s + aan—QB(rfl)rsz- (28)

For the special case of r=1, s=0, (26), (27) and (28) all reduce to the form
E, = AoEn_1 + anBoEn_s (29)
or, using (19) together with ag = a,, by = by,
Ep = byEp_1 + anEn_s (30)
in accord with the defining relation (1) for ¢; = 1 with i = n.
5. RELATED WORK

H. R. P. Ferguson [2] considers periodic recurrence systems generated by a one-parameter
class of linear recurrences of the form

fn(t) = anfn—l + tbn—lfn—2 (31)

where the sequences a; and b; are periodic. The Fibonacci pseudogroup is invoked to facilitate
the description of such systems, and to evaluate the characteristic polynomial in the parameter
t. Cooper [1] discusses periodic recurrence systems of the type (1), for the special case where all
c; = 1, and has evaluated by direct calculation in each case what are essentially our constants
A, B, C for periodicities k£ =1,2,3,4,5,6,7 and indicated how results can be obtained in the
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general case. His ‘tree’ operations replace basically the matrix arithmetic involved in (14), but
relate only to the case s = 0. I am extremely grateful to Professor Cooper for bringing these
works to my attention.

6. ILLUSTRATIVE EXAMPLES

1. Let (1,2,3); (2,3,1); (3,1,2) be the (arbitrary) values of a;,b;, ¢; defining a recurrence
sequence F; of period n = 3. Setting (again arbitrarily) Ey = 0,FE; = 1 the subsequent
members Fy to F1g are 2/3, 4, 3; 10/3, 16, 13; 14, 68, 55 and the values of A, B, C are found
to be 6, 24, 6 or 1, 4, 1 when reduced to their simplest terms. Then clearly the triplets E;
with indices i = (0,3,6); (1,4,7); (2,5,8); (3,6,9); (4,7,10) all obey the relation (3).

2. It is readily seen that v/7 can be developed as the periodic continued fraction (using
the notation of (16))

VT=24(1/1+1/1+1/141/4) (32)

where the brackets (...) enclose the recurrent partial fractions with period n = 4, giving
A =—-1,B =16,C = 1. When expanded the successive approximants Ay/By to A2/ B2 are
given by

A; =2;3,5,8,37;45,82,127,590; 717,1307, 2024, 9403 (33)

B; = 1;1,2,3,14; 17,31, 48, 223; 271, 494, 765, 3554 (34)

from which it is readily found that the triplets of A; and B; with the indices i = (0,4,8); (1,5,9);
(2,6,10); (3,7,11); (4,8,12) also all obey the relation (3).
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