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ABSTRACT

The Fibonacci series represents the simplest series whose successive members obey a
periodic 3-term relation, wherein the coefficients and the period are all equal to 1. Here the
most general case where these parameters are all arbitrary is treated. For a series of quantities
or elements, related by a periodic 3-term recurrence relation between adjacent elements, it is
shown that there is also a 3-term invariant recurrence relation between corresponding elements
within adjacent periods. Application to the numerators and denominators of the convergents
of a periodic continued fraction follows naturally.

1. THEOREM

Given a periodic 3-term recurrence relation between the elements Ei of the form:

ciEi = biEi−1 + aiEi−2 (1)

or, equivalently:
ai+2Ei + bi+2Ei+1 − ci+2Ei+2 = 0, (2)

where the ai, bi, ci are constants which repeat with period n, such that ai+n = ai, bi+n =
bi, ci+n = ci then

CE(r+2)n+s = BE(r+1)n+s + AErn+s, (3)

where A,B, C are constants for all integer values of r, s.
(Illustrative examples are provided in a later section of this paper).

2. PROOF

Let M(ai, bi,−ci) be the tridiagonal array composed of the quantities ai, bi,−ci, and
let Dl,m be the associated tridiagonal determinant whose first row is (bl,−cl) and last row
(am, bm). From the m − l + 1 equations (1) for i = l,m in m − l + 3 unknowns by backward
elimination successively of the m− l unknowns Em−1, . . . , El one obtains

Πm
l (ci)Em = Dl,mEl−1 + alDl+1,mEl−2 (4)

or, putting l = 1,m = n
CEn = D1,nE0 + a1D2,nE−1, (5)

where C = Πn
1 (ci). Similarly from the m − l equations (1) with i = l + 1,m in m − l + 2

unknowns by successive forward elimination of the m − l − 1 unknowns El, . . . , Em−2 one
obtains

Πm
l+1(−ai)El−1 = Dl+1,mEm−1 − cmDl+1,m−1Em (6)
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or, putting l = 1,m = n
A

′
E0 = D2,nEn−1 − cnD2,n−1En, (7)

where A
′
= Πn

2 (−ai) = (−1)n−1Πn
2 (ai). From the periodicity of the ai, bi, ci it follows imme-

diately, by full n-cycle shifts of the indices i, from (5), by a shift of r + 1 cycles, that

CE(r+2)n = D1,nE(r+1)n + a1D2,nE(r+1)n−1 (8)

and from (6), by a shift of r cycles, that

A
′
Ern = D2,nE(r+1)n−1 − cnD2,n−1E(r+1)n. (9)

Hence, by elimination of E(r+1)n−1 between (8) and (9)

CE(r+2)n = BE(r+1)n + AErn, (10)

where B = D1,n +a1cnD2,n−1 and A = a1A
′ = (−1)n−1Πn

1 (ai). Clearly A and C are invariant
under any re-ordering of the ai and ci. It remains to be shown that B is invariant under any
cyclic shift of the ai, bi, ci. Subjecting B to a single cyclic shift of i to i + 1 and n to n + 1,
using cn+1 = c1

B;1 = D2,n+1 + a2cn+1D3,n, (11)

where ; s signifies the result of increasing all the indices on the ai, bi, ci by an amount s. Now
expansion of D2,n+1 gives

D2,n+1 = b1D2,n + a1cnD2,n−1 (12)

while similarly,
D1,n = b1D2,n + a2c1D3,n (13)

and thus it follows that
B;1 = D1,n + a1cnD2,n−1 = B. (14)

A result similar to (13) holds for an arbitrary cyclic shift s giving

B;s = B;s−1 = · · · = B;1 = B (15)

and (3) is therefore valid for all r, s = 0, 1, 2 . . . , thus proving the theorem. For consistency
in application of the above results Di,i = bi, Di,i−1 = 1, Di,i−2 = 0. Since the indexing of the
ai, bi, ci and Ei is arbitrary, then (3) is valid also for negative values of r and s, provided the
recurrence relations (1) are satisfied. Thus it is evident from (15) that a triplet obeying (3)
may be considered to begin anywhere within a period.

3. COROLLARY

A direct consequence of the above theorem is that, any sequence satisfying a recurrence
relation of period unity, such as for example the Fibonacci and Lucas sequences, Fn and
Ln, also satisfies a recurrence relation of arbitrary period n. For each such value of n, the
relation (3) holds with constants An, Bn, Cn, which are independent of the initial values E0, E1
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and therefore are the same for all sequences with the same ai, bi, ci. For the specific case
ai = bi = ci = 1 (all i), then An = (−1)n−1 and Cn = 1. The expression (14) for Bn can be
most easily evaluated using the representations Fn = (αn − βn)/

√
5, Ln = (αn + βn) where

α = (1 +
√

5)/2, β = (1−
√

5)/2 with αβ = −1. Using the results

(α2n+s − β2n+s) = (αn + βn)(αn+s − βn+s)− (αβ)n(αs − βs)

(α2n+s + β2n+s) = (αn + βn)(αn+s + βn+s)− (αβ)n(αs + βs)

it follows that Bn = Ln. In the particular case of the Fibonacci sequence for which F0 = 0,
putting s = 0 recovers the well-known result F2n = LnFn as a special case of the more
general theorem. However, for the Lucas sequence with L0 = 2 the corresponding result is
L2n = (Ln)2 + 2(−1)n−1.

4. APPLICATIONS

An immediate application of the result (10) is to the accelerated evaluation of high series
members of the sequence Ei starting from lower members. Such a situation applies to the
higher approximants of a periodic continued fraction. A typical continued fraction of the form
(employing an obvious notation)

F = b0 + a1/b1 + a2/b2 + · · · (16)

has successive approximants which may be written Fi = Ai/Bi whose numerators Ai and
denominators Bi separately satisfy a 3-term recurrence relation of the form (1) with ci = 1

Ai = biAi−1 + aiAi−2 (17)

Bi = biBi−1 + aiBi−2 (18)

with, for consistency,
A0 = b0, A−1 = 1, B0 = 1, B−1 = 0. (19)

Setting l = 1 in (4)
Am = b0D1,m + a1D2,m = D0,m (20)

Bm = D1,m = D0,m−1;1 = Am−1;1 (21)

thus recovering results given by Perron[3]. A general periodic continued fraction may consist
of a non-periodic part followed by a periodic part, as in

F = b0 + a1/b1 + · · ·+ ak/Rk, (22)

where
Rk = bk + ak+1/bk+1 + · · ·+ ak+n/Rk (23)

repeats with period n, so that ak+n = ak and bk+n = bk. When Rk = F and there is no
non-periodic part the continued fraction is said to be purely periodic, otherwise it is mixed
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periodic. Periodic continued fractions occur in the development of quadratic surds such as
S = P + Q

√
R where P and Q are rational with Q non-zero and R is a positive integer, not

a perfect square. These give rise to simple continued fractions where ai = 1, ci = 1 and the
bi are positive integers. Then in the recurrence relation (3) C = 1 and A = (−1)n−1 with
B a positive integer. The evaluation of high order periodic approximants is of interest in the
solution of Diophantine equations of the Pell type. A different (2-term) recurrence relation,
connecting only two adjacent periods, and which applies to the numerators and denominators
of approximants to only purely periodic continued fractions, has been given also by Perron [4].
Putting l = n in (4), with all ci = 1 gives

Em = Dn,mEn−1 + anDn+1,mEn−2 (24)

which, using (20) and (21) becomes

Em = Am−n;nEn−1 + anBm−n;nEn−2. (25)

Letting m = rn + s, r = 1, 2, 3, . . . ; s = 0, 1, 2, . . . and using Am;n = Am, Bm;n = Bm

Ern+s = A(r−1)n+sEn−1 + anB(r−1)n+sEn−2 (26)

which, when Ei is replaced by Ai or Bi expresses each in terms of linear combination of both
Ai−n and Bi−n with the fixed coefficients An−1, An−2 and Bn−1, Bn−2, respectively. Thus,

Arn+s = An−1A(r−1)n+s + anAn−2B(r−1)n+s (27)
Brn+s = Bn−1A(r−1)n+s + anBn−2B(r−1)n+s. (28)

For the special case of r=1, s=0, (26), (27) and (28) all reduce to the form

En = A0En−1 + anB0En−2 (29)

or, using (19) together with a0 = an, b0 = bn

En = bnEn−1 + anEn−2 (30)

in accord with the defining relation (1) for ci = 1 with i = n.

5. RELATED WORK

H. R. P. Ferguson [2] considers periodic recurrence systems generated by a one-parameter
class of linear recurrences of the form

fn(t) = anfn−1 + tbn−1fn−2 (31)

where the sequences ai and bi are periodic. The Fibonacci pseudogroup is invoked to facilitate
the description of such systems, and to evaluate the characteristic polynomial in the parameter
t. Cooper [1] discusses periodic recurrence systems of the type (1), for the special case where all
ci = 1, and has evaluated by direct calculation in each case what are essentially our constants
A,B,C for periodicities k =1,2,3,4,5,6,7 and indicated how results can be obtained in the
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general case. His ‘tree’ operations replace basically the matrix arithmetic involved in (14), but
relate only to the case s = 0. I am extremely grateful to Professor Cooper for bringing these
works to my attention.

6. ILLUSTRATIVE EXAMPLES

1. Let (1,2,3); (2,3,1); (3,1,2) be the (arbitrary) values of ai, bi, ci defining a recurrence
sequence Ei of period n = 3. Setting (again arbitrarily) E0 = 0, E1 = 1 the subsequent
members E2 to E10 are 2/3, 4, 3; 10/3, 16, 13; 14, 68, 55 and the values of A,B,C are found
to be 6, 24, 6 or 1, 4, 1 when reduced to their simplest terms. Then clearly the triplets Ei

with indices i = (0,3,6); (1,4,7); (2,5,8); (3,6,9); (4,7,10) all obey the relation (3).
2. It is readily seen that

√
7 can be developed as the periodic continued fraction (using

the notation of (16))

√
7 = 2 + (1/1 + 1/1 + 1/1 + 1/4) (32)

where the brackets (...) enclose the recurrent partial fractions with period n = 4, giving
A = −1, B = 16, C = 1. When expanded the successive approximants A0/B0 to A12/B12 are
given by

Ai = 2; 3, 5, 8, 37; 45, 82, 127, 590; 717, 1307, 2024, 9403 (33)

Bi = 1; 1, 2, 3, 14; 17, 31, 48, 223; 271, 494, 765, 3554 (34)

from which it is readily found that the triplets of Ai and Bi with the indices i = (0,4,8); (1,5,9);
(2,6,10); (3,7,11); (4,8,12) also all obey the relation (3).
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