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ABSTRACT

If n is a positive integer, there exists one and only one pair (j, k) of positive integers such
that (j +k +1)2−4k = 5n2. The resulting unique representation of n can be used to generate
both the Wythoff difference array and the Fraenkel array. It also provides the solution of the
complementary equation b(n) = a(jn) + kn in all cases in which a and b are a pair of Beatty
sequences and a(n) is of the form [rn] for r an irrational number in the field Q(

√
5).

1. INTRODUCTION

Given a positive integer n, the Diophantine equation m2 − 4k = 5n2 has many solutions
(m, k). However, putting m = j + k +1 yields an equation that has one and only one solution
(j, k) for which both j and k are positive integers. After proving this in Section 2, we shall
show, in Sections 3 and 4, how each of two recently introduced arrays can be generated by
taking the pairs (j, k) in a certain order. The arrays, called the Wythoff difference array
(WDA) and the Fraenkel array, are defined just below. In Section 5, Gessel’s Theorem
regarding all the solutions of the equations m2 ± 4 = 5n2 is generalized in connection with
the WDA and the Fraenkel array. In Section 6, Theorem 1 is applied to the complementary
equation b(n) = a(jn) + kn.

Throughout, the symbols j, k are integers, and n, g, h are positive integers. The golden
number (1 +

√
5)/2 is denoted by τ. The Fibonacci numbers Fg and Lucas numbers Lg are

defined as usual by

F0 =0, F1 = 1, Fg = Fg−1 + Fg−2 for g ≥ 2,

L0 =2, L1 = 1, Lg = Lg−1 + Lg−2 for g ≥ 2.

The WDA, D = {d(g, h)}, is given [3] by

d(g, h) = bgτcF2h−1 + (g − 1)F2h−2

and satisfies the following recurrence for rows:

d(g, h) = 3d(g, h− 1)− d(g, h− 2) for h ≥ 3.

The lower Wythoff sequence (indexed as A000201 in [5]) and upper Wythoff sequence
(A001950) are given by {bnτc} and {

⌊
nτ2

⌋
}, respectively. As the dispersion [6] of the upper

Wythoff sequence, the WDA contains every n exactly once. The northwest corner of D is
shown here:
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1 2 5 13 34 89 233 . . .
3 7 18 47 123 322 843
4 10 26 68 178 466 1220
6 15 39 102 267 299 1830
8 20 52 136 356 932 2440
9 23 60 157 411 1076 2817
11 28 73 191 500 1309 3427
12 31 81 212 555 1453 3804
14 36 94 246 644 1686 4414
...

Table 1. The Wythoff difference array

The Fraenkel array, F = {f(g, h)}, is introduced in [1] in connection with a combinatorial
game and a numeration system. The number in row g and column h is

f(g, h) = b(g − 1)τ + 1cF2h−1 + gF2h−2.

This array satisfies the same row recurrence that D does:

f(g, h) = 3f(g, h− 1)− f(g, h− 2) for h ≥ 3.

(In [1], the array has an initial row consisting entirely of zeros.) The array F is the dispersion
of the sequence {

⌊
nτ2

⌋
+ 1}, alias {bnτc + n + 1}, formed by adding 1 to the terms of the

upper Wythoff sequence.

1 3 8 21 55 144 377 . . .
2 6 16 42 110 288 754
4 11 29 76 199 521 1364
5 14 37 97 254 665 1741
7 19 50 131 343 898 2351
9 24 63 165 432 1131 2961
10 27 71 186 487 1275 3338
12 32 84 220 576 1508 3948
13 35 92 241 632 1652 4225
...

Table 2. The Fraenkel array

2. MAIN THEOREM

Theorem 1: For every n ≥ 1, there exists exactly one pair j ≥ 1, k ≥ 1 such that

n =

√
(j + k + 1)2 − 4k

5
. (1)
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Explicitly,

j =n2 + n bnτc − bnτc2 , (2)

k = bnτc2 + (2− n) bnτc − n2 − n + 1. (3)

In order to prove Theorem 1, we first introduce notation and lemmas. For n ≥ 1, let

k(n) = bnτc2 + (2− n) bnτc − n2 − n + 1 (4)
m(n) = 2 bnτc − n + 2 (5)

i(n) =
{

(n− 1)/2− bnτc if n is odd,

n/2− bnτc if n is even.

In the lemmas, n stays fixed, and we abbreviate

bnτc as x, m(n) as m, k(n) as k1.

Define

mi = m + 2i− 2 for i ≥ 1, (6)
ki = k1 + (i− 1)m + (i− 1)2. (7)

Lemma 1: 4k1 + 5n2 is a square:

4k1 + 5n2 = m2.

Proof:

4k1 + 5n2 = 4[x2 + (2− n)x− n2 − n + 1] + 5n2

= 4x2 + n2 + 4− 4nx + 8x− 4n

= (2x− n + 2)2.

Lemma 2: The least integer i for which 4ki + 5n2 is a nonnegative square is i(n).

Proof: Let

δn =
{

1 if n is odd,

0 if n is even.

We solve the equation 4ki + 5n2 = δn for i:

δn = 4[k1 + (i− 1)m + (i− 1)2] + 5n2

= 4k1 + 5n2 + 4(i− 1)m + 4(i− 1)2

= m2 + 4(i− 1)m + 4(i− 1)2

= [m + 2(i− 1)]2,
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so that
δn = ±(2x− n + 2i).

If n is even, write n = 2q and find that 2 bnτc − 2q + 2i = 0, which yields i = n/2− bnτc . If
n is odd, write n = 2q − 1, and find, using δn = −1, that i = (n− 1)/2− bnτc .

Lemma 3: If i ≥ i(n), then
4ki + 5n2 = m2

i .

Proof: Using Lemma 1, we have

4ki + 5n2 = 4[k1 + (i− 1)m + (i− 1)2] + 5n2

= 4k1 + 5n2 + 4(i− 1)m + 4(i− 1)2

= m2
i .

Lemma 4: If k is an integer for which 4k + 5n2 is a square, then k is one of the numbers ki,
where i ≥ i(n).

Proof: Suppose 4k + 5n2 is a square, M2. Then M has the same parity as n, so that
M must be one of the list, exhaustive by Lemma 2, of consecutive same-parity squares given
by Lemma 1.

Lemma 5: k1 ≥ 1.

Proof: Let f be the fractional part of nτ, so that

0 < f = nτ − bnτc < 1.

Then

k1 = bnτc2 + (2− n) bnτc − n2 − n + 1
= (1− f)[(1− f) + (2τ − 1)n]
≥ 1.

Lemma 6: k0 ≤ −1.

Proof:

k0 = k1 −m + 1
= k1 − (n bnτc − n + 1) + 1

= (−
√

5n + f)f
≤ −1.

Lemma 7: If i ≥ 2, then mi ≤ ki.
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Proof:

mi = m + 2i− 2
≤ (i− 1)m + (i− 1)2

≤ ki.

by Lemma 5 and (6).
We now prove Theorem 1. Let k = k1 and j = m − k1 − 1, so that m = j + k + 1. By

Lemma 1, 4k+5n2 = m2. By Lemmas 4 and 6, if k̂ < k and 4k̂+5n2 is a square, then k ≤ −1.
By Lemmas 4 and 5, if k̂ > k and 4k̂ + 5n2 is a square, then j ≤ −1. Therefore k and j are
the only pair of positive integers k̂ and ĵ that satisfy

(ĵ + k̂ + 1)2 − 4k̂ = 5n2,

hence, they provide the unique solution of (1).

3. THE WYTHOFF DIFFERENCE ARRAY

Regarding equation (1), we now ask, for any fixed j, this question: what values of n are
generated? The answer is surprising and simple: a row of the WDA. We shall prove that as
j ranges through a certain nonincreasing sequence, the corresponding rows are the consecutive
rows of the WDA. To that end, suppose g ≥ 1 and h ≥ 1, and abbreviate bgτc as x. Let

j = j(g) = x2 − (g − 1)x− (g − 1)2,
k = k(g, h) = g2 + (g − 1 + L2h−1)x− x2 + (g − 1)(L2h−2 − 2), (8)
n = n(g, h) = xF2h−1 + (g − 1)F2h−2. (9)

In view of (2), what we wish to prove is that

(j + k + 1)2 − 4k = 5n2. (10)

We have
j + k + 1 = L2h−1 + (g − 1)L2h−2 + 2,

so that, abbreviating L2h−1 as L̂1 and L2h−2 as L̂2,

(j + k + 1)2 − 4k = (xL̂1 + (g − 1)L̂2 + 2)2

− 4(g2 + (g − 1 + L̂1)x− x2 + (g − 1)(L̂2 − 2))

= 8g + 4x− 4gx− 2xL̂1L̂2 + 2gxL̂1L̂2

− 4g2 + 4x2 + L̂2
2 − 2gL̂2

2 + g2L̂2
2 + x2L̂2

1 − 4

= x2L̂2
1 + 2xL̂1L̂2(g − 1) + L̂2

2(g − 1)2

+ 8g + 4x− 4gx− 4g2 + 4x2 − 4.
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Now using the well-known identities

L̂2
1 = L4h−4 + L4h−3 − 2, (11)

L̂2
2 = L4h−4 + 2, (12)

L̂1L̂2 = L4h−3 + 1 (13)

in (9), we have

(j + k + 1)2 − 4k = x2(L4h−4 + L4h−3 − 2) + 2x(g − 1)(L4h−3 + 1)
+ (g − 1)2(L4h−4 + 2)
+ 8g + 4x− 4gx− 4g2 + 4x2 − 4

= L4h−3[x2 + 2x(g − 1)] + L4h−4[x2 + (g − 1)2] (14)
+ 2[x2 − (g − 1)x− (g − 1)2]. (15)

Thus, the left-hand side of (10) is expressed in terms of the Lucas numbers L4h−4 and L4h−3.
We shall next convert the right-hand side of (8) to the same expression:

5n2 = 5[xF2h−1 + (g − 1)F2h−2]2

= 5x2F 2
2h−1 + 10x(g − 1)F2h−1F2h−2 + 5(g − 1)2F 2

2h−2.

Applying the well-known identities

5F 2
2h−1 = L4h−4 + L4h−3 + 2, (16)

5F 2
2h−2 = L4h−4 − 2, (17)

5F2h−1F2h−2 = L4h−3 − 1, (18)

gives

5n2 = x2(L4h−4 + L4h−3 + 2) + 2x(g − 1)(L4h−3 − 1) + (g − 1)2(L4h−4 − 2),

as in (14) and (15), so that (10) is now proved

4. THE FRAENKEL ARRAY

In Section 3, we showed a method of generating by rows; to summarize, for each j = j(g)
for which (1), and hence (8), has a solution, the corresponding numbers k = k(g, h) and
n = n(g, h) were generated. In this section, we shall reverse the roles of j and k. That is,
for each k = k(g), we recognize all the j(g, h) and thus generate a row of numbers n(g, h).
For the sake of analogy, we use the same notation as in Section 2; however, as functions, j, k,
and n are not the same as in Section 2. Moreover, in this section, the symbol x abbreviates
b(g − 1)τc rather than bgτc .
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Let

k = k(g) = (x + g + 1)g − (x− 1)2,
j = j(g, h) = x2 + (L2h−1 + 2− g)x− g2 + (L2h−2 − 1)g + L2h−1, (19)
n = n(g, h) = (x + 1)F2h−1 + gF2h−2. (20)

Then
j + k + 1 = (x + 1)L2h−1 + gL2h−2,

and

(j + k + 1)2 − 4k = (x + 1)2L2
2h−1 + 2g(x + 1)L2h−2L2h−1 + g2L2

2h−2

− 4[(x + g + 1)g − (x + 1)2].

Applying (11)-(13) and simplifying give

(j + k + 1)2 − 4k = L4h−3(x + g + 1)L4h−4(x + 1)2

+ 2[(x + 1)2 + g(1− x− g)].

Meanwhile,
5n2 = 5[(x + 1)F2h−1 + gF2h−2]2,

which, using (16)-(18), simplifies to the expression already obtained for (j + k + 1)2 − 4k.

5. GESSEL’S THEOREM GENERALIZED

Gessel’s Theorem [2] can be stated in two parts:
The solutions of 5n2 + 4 = m2 are the pairs (m,n) = (L2h, F2h);
the solutions of 5n2 − 4 = m2 are the pairs (m,n) = (L2h−1, F2h−1).
Recall from Section 4 that row 1 of the Fraenkel array is generated from (10) with k = 1,

as j runs through the numbers L2h−2, so that m runs through the alternating Lucas numbers
L2h. The fact that row 1 consists of the numbers F2h in increasing order implies the first part
of Gessel’s theorem. Row 2 of the Fraenkel array corresponds to g = 2 and k = 4, for which
j takes the values 1, 9, 31, . . . , m takes the values 6, 14, 36, . . . , n takes the values 2, 6, 16, . . . ,
and the pairs (m,n) = (2Lh, 2Fh) solve the equation 5n2 + 16 = m2. In like manner, row 3
gives the solutions of the equation 5n2 + 20 = m2. In general, row g of the Fraenkel array
gives the solutions of the equation

5n2 + 4k(g) = m2,

where k(g) is as given by (4).
Recall from Section 3 that row 1 of the WDA is generated from (10) with j = 1, as

k runs through the alternating Lucas numbers L2h−1. The fact that row 1 consists of the
numbers F2h−1 in increasing order constitutes a proof of the first part of Gessel’s theorem,
quite different from the proofs in [2]. We shall show here that the other rows of the WDA
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correspond to complete solutions of equations similar to 5n2 − 4 = m2. It is easy to check
that equation (10) is equivalent to

5n2 − 4j = (j + k − 1)2

= (m− 2)2,

so that row g of the WDA gives the solutions of the equation

5n2 − 4j(g) = (m− 2)2,

where j(g) is as given by (2) (with g substituted for n). For example, row 4, giving solutions
of the equation 5n2 + 36 = (m− 2)2 consists of the numbers n = n(h):

6, 15, 39, 102, . . . ;

using j = 9, we find the numbers m(h):

14, 35, 89, 230, . . . ,

given by m(h) = 2 + 3L2h+1.

6. THE COMPLEMENTARY EQUATION b(n) = a(jn) + kn

As in [4], under the assumption that sequences a and b partition the sequence of positive
integers, the designation complementary equations applies to equations such as b(n) = a(jn)+
kn, where j and k are fixed positive integers. For example, the solutions of the equation
b(n) = a(n) + n is the sequence b given by b(n) =

⌊
nτ2

⌋
, or equivalently, by a(n) = bnτc. It

is shown in [4] that the equation b(n) = a(jn) + kn is solved by a pair of Beatty sequences

a(n) = brnc , b(n) = bsnc ,

where r and s are determined as follows: let

p =
j − k + 1

2
, (21)

√
q =

√
(j + k + 1)2 − 4k

2
.

Then

r =
p +

√
q

j
and s =

j
√

q + q + jp− p2

q − (p− j)2
,

where r and s are related by

1
r

+
1
s

= 1.
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In this section, we seek those pairs (j, k) for which r has the form c + d
√

5, where c and
d are rational and d 6= 0. In view of (21), the problem is essentially solved in Section 2, with
solutions given by (2) and (3). For example, for (j, k) = (1, 4), we have

r = −1 +
√

5 and s = 3 +
√

5.

For (j, k) = (5, 1), we have

r =
5 + 3

√
5

10
and s =

7 + 3
√

5
2

,

and for (j, k) = (4, 5),

r =
√

5
2

and s = 5 + 2
√

5.
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