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ABSTRACT

In this note, we find all the solutions of the Diophantine equation x2 + 72k = yn, x ≥
1, y ≥ 1, k ∈ N, n ≥ 3.

1. INTRODUCTION

The history of the Diophantine equation

x2 + C = yn, x ≥ 1, y ≥ 1, n ≥ 3,

is very rich. In 1850, Lebesgue [13] was the first to obtain a non-trivial result. He proved that
the above equation has no solutions when C = 1. In 1965, Chao Ko [10] proved that the only
solution of the above equation with C = −1 is x = 3, y = 2. J. H. E. Cohn [9] solved the
above equation for several values of the parameter C in the range 1 ≤ C ≤ 100. A couple of
the remaining values of C in the above range were covered by Mignotte and De Weger in ]17],
and the rest in the recent paper [6]. See also [7].

Recently, several authors become interested in the case when C is positive and only the
prime factors of C are specified. For example, the case when C = pk, where p is a prime
number, was dealt with in [1] and [12] for p = 2, in [2], [3] and [14] for p = 3, in [18] for p = 5
and k odd. Partial results for a general prime p appear in [4] and [11]. All the solutions when
x and y are coprime and C = 2a · 3b were found in [15]. See also the recent survey [19].

Here, we consider the case p = 7 and the following equation

x2 + 72k = yn, x ≥ 1, y ≥ 1, k ≥ 1, n ≥ 3. (1.1)

Our main result is the following.

Theorem 1.1: All solutions of equation (1.1) are:
n = 3 (x, y, k) = (524 · 73λ, 65 · 72λ, 1 + 3λ),
n = 4 (x, y, k) = (24 · 72λ, 5 · 7λ, 1 + 2λ), where λ ≥ 0 is any integer.

2. REDUCTION TO PRIMITIVE SOLUTIONS

Here, we show that it suffices to study equation (1.1) when gcd(x, y) = 1. We call such
solutions primitive. Assume that (x, y, k, n) is a non-primitive solution. Then 7 | x. Write
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x = 7ax1 with a ≥ 1 and 7 - x1. Clearly 7 | y so we may write y = 7by1 with some b ≥ 1 and
7 - y1. So equation (1.1) becomes

72a x2
1 + 72k = 7nb yn

1 . (2.1)

By looking at the exponents of 7 and keeping in mind −1 is not a quadratic residue modulo
7, we have that either 2k = nb ≤ 2a or 2a = nb < 2k. The first instance leads to

X2 + 1 = Y n,

where X = 7a−kx1 and Y = y1, which has no solution by Lebesgue’s result, while the second
instance leads to

X2 + 72k1 = Y n,

where X = x1, Y = y1 and 2k1 = 2k − 2a = 2k − nb. Note that (X, Y, k1, n) is a solution of
the original equation (1.1) which is furthermore primitive. Assume that we have showed that
the only primitive solutions of equation (1.1) are (x, y, k, n) = (524, 65, 1, 3) and (24, 5, 1, 4). If
(x1, y1, k1, n) = (524, 65, 1, 3), then 2k = 2 + 2a = 2 + 3b, which shows that a = 3λ and b = 2λ
for some positive integer λ. Hence, (x, y, k, n) = (7ax1, 7by1, 1+3λ, 3) = (524 · 73λ, 65 · 72λ, 1+
3λ, 3). If on the other hand (x1, y1, k, n) = (24, 5, 1, 4), then 2k = 2 + 2a = 2 + 4b, therefore
b = λ and a = 2λ. Thus, (x, y, k, n) = (24 · 72λ, 5 · 7λ, 1 + 2λ, 4).

It remains to prove that the only primitive solutions are indeed (x, y, k, n) = (524, 65, 1, 3)
and (24, 5, 1, 4).

3. THE CASE WHEN n = 3

Here, we obtain the following result.

Lemma 3.1: The only primitive solution of (1.1) with n = 3 is (x, y, k) = (524, 65, 1).

Proof: We factor our equation in Z[i] obtaining(
x + i7k

) (
x− i7k

)
= y3. (3.1)

Since x and y are coprime and 72k ≡ 1 (mod 4), we get that x is even (otherwise x2 + 72k is
a multiple of 2 but not of 4). This implies that x + 7ki and x− 7ki are coprime in Z[i] which
is a UFD. Since n = 3 and the only units of Z[i] are ±1,±i of multiplicative orders dividing 4
(hence, coprime to 3), we get that the relations

{
x + i7k = (u + iv)3

x− i7k = (u− iv)3
(3.2)

hold with some integers u and v. Eliminating x from the two equations (3.2), we get

2i7k = (u + iv)3 − (u− iv)3, (3.3)
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which is the same as 7k = v(3u2 − v2). Note that u and v are coprime since otherwise any
prime factor common to both u and v will also divide both x and y which is impossible. The
only possibilities are therefore v = ±1 or v = ±7k, which lead to the equations

3u2 = 1± 7k, (3.4)

3u2 = ±1 + 72k, (3.5)

respectively. The first equation is impossible because if the sign is −, then the right hand side
is negative while the right hand side is positive, while if the sign is +, then the right hand side
is congruent to 2 modulo 3 while the left hand side is divisible by 3. For the second equation,
considerations modulo 3 show that the sign must be −1. Thus, (7k)2 − 3u2 = 1. The Pell
equation X2 − 3Y 2 = ±1 has the smallest solution (X1, Y1) = (2, 1) and the second solution
is (X2, Y2) = (7, 4). The sequence (Xm)m≥1 is a Lucas sequence of the second type. By the
Primitive Divisor Theorem of Carmichael [8], it follows that if m > 12, then Xm has a prime
factor p ≡ ±1 (mod m). In particular, Xm cannot be a power of 7 if m > 12. One can now
check by hand that the only m ≤ 12 such that Xm is a power of 7 is m = 2. This leads to the
solution u = 4, v = ±7, k = 1, therefore to (x, y, k) = (524, 65, 1).

At this point, we consider it worthwhile to point out that in fact, all solutions of equations
(3.4) and (3.5) have been computed by De Weger in his Ph.D. thesis [20]. Namely, we multiply
each of the two equations by 3 to get an equation of the form Z2 = X +Y , where both X and
Y are S-units for the set of primes {2, 3, 5, 7} (i.e., are integers whose prime factors lie in the
above set) and such that gcd(X, Y ) is square-free. But all such solutions appear in Table 1,
pages 171–174 in [20]. A careful analysis of that table reveals that the only solutions when X
and Y are ±3 and ±3 · 7α for some positive integer α are the ones mentioned above.

This completes the proof of Lemma 3.1.

4. THE CASE WHEN n = 4

We have the following result.

Lemma 4.1: The only primitive solution of equation (1.1) with n = 4 is (x, y, k) = (24, 5, 1).

Proof: Now we rewrite equation (1.1) as

72k =
(
y2 + x

) (
y2 − x

)
. (4.1)

Since x is even and y is odd, we have that y2 + x and y2 − x are coprime. Thus,

{
y2 − x = 1,

y2 + x = 72k,
(4.2)

which leads to (
7k

)2 − 2y2 = −1. (4.3)

The above equation can be handled in two ways. The first way is to notice that the above
equation gives a solution (X, Y ) to the Pell equation X2 − 2Y 2 = ±1 with X = 7k. The first
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solution of the above equation is (X1, Y1) = (1, 1). Further, X2 = 3 and X3 = 7. By checking
Xm for all m ≤ 12 and invoking the Primitive Divisor Theorem as we did in the case n = 3,
we get that the only m such that Xm = 7k is m = 3 which gives k = 1. This leads to y = 5
and x = 24, which is the desired solution. The second way is to rewrite it as

Z2 := (2y)2 = 2 · 72k + 2 := X + Y,

and invoke again De Weger’s table. This concludes the proof.

5. THE REMAINING CASES

If (x, y, k, n) is a primitive solution to our original equation (1.1) and d > 2 is a divisor
of n, then (x, yn/d, k, d) is also a primitive solution of (1.1). The cases when d = 3 or d = 4
have been handled by the results from Sections 3 and 4. Since n ≥ 3 is coprime to 3 and not a
multiple of 4, it follows that there exists a prime p ≥ 5 dividing n. We may certainly replace
n by this prime, and hence assume that n = p ≥ 5 is prime. We look again at the equation

(x + i7k)(x− i7k) = yp.

Since x is even and y is odd, we get that x + 7ki and x − 7ki are coprime in Z[i]. Since p is
odd and the units of Z[i] have orders dividing 4, we get that there exist integers u and v such
that if we put α = u + iv, then {

x + i7k = αp;
x− i7k = αp.

(5.1)

The above equations lead to

7k

v
=

αp − ᾱp

α− ᾱ
∈ Z.

The sequence {un}n≥0 of general term un = (αn − ᾱn)/(α − ᾱ) for all n ≥ 0 is a Lucas
sequence of integers. By the extension of the Primitive Divisor Theorem of Carmichael to
Lucas sequences with complex conjugated roots by Bilu, Hanrot and Voutier [5], we know that
if p > 30 is a prime, then up must have a prime factor q ≡ ±1 (mod p). In particular, up

cannot be a power of 7 for such primes p. When p ∈ [5, 29], since up is a power of 7, we get
that up is lacking primitive divisors. There are only finitely many possibilities for the pair
(p, up) and all such instances appear in Table 1 in the paper [5]. A quick inspection of that
table reveals that there exists no defective (i.e., without primitive divisors) Lucas number up

whose roots α and α are in Z[i]. Thus, there are no more primitive solutions to our original
equation.
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