A COMBINATORIAL APPROACH TO FIBONOMIAL COEFFICIENTS

ARTHUR T. BENJAMIN AND SEAN S. PLOTT

Abstract. A combinatorial argument is used to explain the integrality of Fibonomial coefficients and their generalizations. The numerator of the Fibonomial coefficient counts tilings of staggered lengths, which can be decomposed into a sum of integers, such that each integer is a multiple of the denominator of the Fibonomial coefficient. By colorizing this argument, we can extend this result from Fibonacci numbers to arbitrary Lucas sequences.

1. Introduction

The Fibonomial Coefficient \(\binom{n}{k}_F \) is defined, for \(0 < k \leq n \), by replacing each integer appearing in the numerator and denominator of \(\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots1} \) with its respective Fibonacci number. That is,

\[
\binom{n}{k}_F = \frac{F_nF_{n-1}\cdots F_{n-k+1}}{F_kF_{k-1}\cdots F_1}.
\]

For example, \(\binom{7}{3}_F = \frac{F_7F_6F_5F_3F_2F_1}{F_kF_{k-1}\cdots F_1} = 13 \cdot 8 \cdot 5 \cdot 2 \cdot 1 = 1340 \).

It is, at first, surprising that this quantity will always take on integer values. This can be shown by an induction argument by replacing \(F_n \) in the numerator with \(F_kF_{n-k+1} + F_{k-1}F_{n-k} \), resulting in

\[
\binom{n}{k}_F = \frac{F_nF_{n-1}\cdots F_{n-k+1}}{F_kF_{k-1}\cdots F_1}.
\]

By similar reasoning, this integrality property holds for any Lucas sequence defined by \(U_0 = 0, U_1 = a \) and for \(n \geq 2, U_n = aU_{n-1} + bU_{n-2} \), and we define

\[
\binom{n}{k}_U = \frac{U_nU_{n-1}\cdots U_{n-k+1}}{U_kU_{k-1}\cdots U_1}.
\]

In this note, we combinatorially explain the integrality of \(\binom{n}{k}_F \) and \(\binom{n}{k}_U \) by a tiling interpretation, answering a question proposed in Benjamin and Quinn’s book, *Proofs That Really Count* [1].

2. Staggered Tilings

It is well-known that for \(n \geq 0 \), \(f_n = F_{n+1} \) counts tilings of a \(1 \times n \) board with squares and dominoes [1]. For example, \(f_4 = 5 \) counts the five tilings of length four, where \(s \) denotes a square tile and \(d \) denotes and domino tile: \(sss, ssd, sds, dss, dd \). Hence, for \(\binom{n}{k}_F = \frac{f_{n-1}f_{n-2}\cdots f_{n-k}}{f_{k-1}f_{k-2}\cdots f_0} \), the numerator counts the ways to simultaneously tile boards of length \(n-1, n-2, \ldots, n-k \). The challenge is to find disjoint “subtilings” of lengths \(k-1, k-2, \ldots, 0 \) that can be described in a precise way. Suppose \(T_1, T_2, \ldots, T_k \) are tilings with respective lengths \(n-1, n-2, \ldots, n-k \). We begin by looking for a tiling of length \(k-1 \).
THE FIBONACCI QUARTERLY

If T_1 is “breakable” at cell $k - 1$, which can happen $f_{k-1}f_{n-k}$ ways, then we have found a tiling of length $k - 1$. We would then look for a tiling of length $k - 2$, starting with tiling T_2.

Otherwise, T_1 is breakable at cell $k - 2$, followed by a domino (which happens $f_{k-2}f_{n-k-1}$ ways). Here, we “throw away” cells 1 through n, which we call T_{k+1}. (Note that T_{k+1} has length $n - k - 1$, which is one less than the length of T_k.) We would then continue our search for a tiling of length $k - 1$ in T_2, then T_3, and so on, creating T_{k+2}, T_{k+3}, and so on as we go, until we eventually find a tiling T_{x_1} that is breakable at cell $k - 1$. (We are guaranteed that $x_1 \leq n - k + 1$ since T_{n-k+1} has length $k - 1$.) At this point, we disregard everything in T_{x_1} and look for a tiling of length $k - 2$, beginning with tiling T_{x_1+1}.

Following this procedure, we have, for $1 \leq x_1 < x_2 < \cdots < x_{k-1} \leq n$, the number of tilings T_1, T_2, \ldots, T_k that lead to finding a tiling of length $k - i$ at the beginning of tiling T_{x_i} is

$$f_{x_i-1} f_{k-2} f_{n-x_i-1-(k-1)} f_{x_i-1} \cdots f_0
= f_{n-1} f_{n-2} \cdots f_{n-k}$$

$$= f_{k-1} f_{k-2} f_{k-3} \cdots f_1 \sum_{1 \leq x_1 < x_2 < \cdots < x_{k-1} \leq n-1} \prod_{i=1}^{k-1} (f_{k-1-i})^{x_i-x_i-1} f_{n-x_i-(k-i)}$$

$$= F_k F_{k-1} F_{k-2} \cdots F_2 F_1 \sum_{1 \leq x_1 < x_2 < \cdots < x_{k-1} \leq n-1} \prod_{i=1}^{k-1} (F_{k-i})^{x_i-x_i-1} F_{n-x_i-(k-i)+1}.$$

That is,

$$\binom{n}{k}_F = \sum_{1 \leq x_1 < x_2 < \cdots < x_{k-1} \leq n-1} \prod_{i=1}^{k-1} F_{k-i}^{x_i-x_i-1} F_{n-x_i-(k-i)+1}.$$

This theorem has a natural Lucas sequence generalization. For positive integers a, b, it is shown in [1] that $u_n = U_{n+1}$ counts colored tilings of length n, where there are a colors of squares and b colors of dominoes. (More generally, if a and b are any complex numbers, u_n counts the total weight of length n tilings, where squares and dominoes have respective weights a and b, and the weight of a tiling is the product of the weights of its tiles.) By virtually the same argument as before, we have

$$\binom{n}{k}_U = \sum_{1 \leq x_1 < x_2 < \cdots < x_{k-1} \leq n-1} \prod_{i=1}^{k-1} b^{x_i-x_i-1} U_{k-i}^{x_i-x_i-1} U_{n-x_i-(k-i)+1}.$$

The presence of the $b^{x_k-1-(k-1)}$ term accounts for the $x_{k-1} - (k - 1)$ dominoes that caused $x_{k-1} - (k - 1)$ tilings to be unbreakable at their desired spot.

As an immediate corollary, we note that the right hand side of this identity is a multiple of b, unless $x_i = i$ for $i = 1, 2, \ldots, k - 1$. It follows that

$$\binom{n}{k}_U \equiv U_{n-k+1}^{k-1} \pmod{b}.$$

8

VOLUME 46/47, NUMBER 1
A COMBINATORIAL APPROACH TO FIBONOMIAL COEFFICIENTS

REFERENCES

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
E-mail address: benjamin@hmc.edu

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711