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Abstract. A collection A of sequences of positive integers is called regular if for all positive
integers k and r, there is a least positive integer n = n(k, r) such that for every partition of
{1, 2, . . . , n} into r subsets, there is some subset that contains a k-term sequence belonging
to A. In this paper we examine the regularity of families related to the Fibonacci numbers.
In particular, we consider the regularity of the family of arithmetic progressions whose
gaps are Fibonacci numbers, the family of increasing sequences (not necessarily arithmetic
progressions) whose gaps are Fibonacci numbers, and the family of all sequences satisfying
the Fibonacci recurrence xi = xi−1 + xi−2.

1. Introduction

Many results in integer Ramsey theory take the following general form, where A is a given
collection of sequences of integers and k and r are fixed positive integers.

There is a least positive integer n = n(A, k; r) such that for every partition of
[1, n] = {1, 2, . . . , n} into r subsets, at least one of the subsets must contain
a k-term member of A.

Two classical results of this nature are Schur’s Theorem and van der Waerden’s Theorem.
Schur’s Theorem [6] states that for all positive integers r, there is a least positive integer
s = s(r) such that whenever [1, s] is partitioned into r subsets, at least one of the subsets will
contain a triple (x, y, z) (not necessarily distinct) such that x + y = z. Van der Waerden’s
Theorem [7] states that for all positive integers k and r, there is a least positive integer
w = w(k; r) such that for every partition of [1, w] into r subsets, at least one subset will
contain a k-term arithmetic progression. For these two theorems, A is the family of solutions
to x + y = z, and the family of arithmetic progressions, respectively.

The purpose of this note is to examine the Ramsey properties that result when A is a
family of sequences defined in terms of Fibonacci numbers.

Before proceeding, we mention some notation and terminology that we will use. We
denote by Fi the ith Fibonacci number, where F1 = F2 = 1, and we denote by F the set
of all Fibonacci numbers {1, 2, 3, 5, 8, . . .}. By F we shall mean the family of all increasing
sequences of positive integers that satisfy the Fibonacci recurrence; i.e., F = {{ai}k

i=1 : ai =
ai−1 +ai−2 for 3 ≤ i ≤ k, and k ∈ Z+}. If S is a set of positive integers, an S-diffsequence is
a sequence x1, x2, . . . such that xi− xi−1 ∈ S for all i ≥ 2. We will find it convenient to refer
to a partition of a set as a coloring; specifically, for a positive integer r, an r-coloring of a set
S is any function χ : S → C, where |C| = r. If χ is a coloring of a set S, and A ⊂ S, we say
that A is monochromatic under χ if χ is constant on A. We will often denote a particular
coloring, where the colors are 0 and 1, as a string of 0s and 1s. Further, if T is such a string,
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the notation T n will denote the string TT . . . T︸ ︷︷ ︸
n

. Finally, for a < b, we will denote the set of

integers {a, a + 1, . . . , b} by [a, b].
For a fixed positive integer r, if A is a family such that n(A, k; r) exists for all k ∈ Z+, we

say that A is r-regular. If the family A is r-regular for all r, we say that A is regular. If A
is not regular, then the degree of regularity of A, which is denoted by dor(A), is the largest
r such that A is r-regular.

In this paper we shall look at the Ramsey properties of the following three particular
families of sequences:

(1) The family F .
(2) The family APF consisting of all arithmetic progressions x, x + d, x + 2d, . . . with the

property that d ∈ F .
(3) The family of F -diffsequences.

2. The Family of Fibonacci Sequences

For Fibonacci sequences of length three, the existence of the Ramsey number n(F , 3; r) is
immediate from Schur’s Theorem, since we see that this number has the same meaning as
the Schur number s(r). On the other hand, the following result shows that n(F , k; r) does
not exist if k ≥ 4, even when r = 2 colors.

Theorem 2.1. There exists a 2-coloring of Z+ that avoids 4-term monochromatic members
of F .

Proof. For each positive integer i, let Bi = [2i−1, 2i−1]. Let χ be the 2-coloring of Z+ defined
by χ(Bi) = 0 if i is odd, and χ(Bi) = 1 if i is even.

For a contradiction, assume that {a1, a2, a3, a4} is a monochromatic Fibonacci sequence.
Note that if a1, a2 ∈ Bj for some j, then a3 would belong to Bj+1; this is not possible since
the ai’s have the same color. Hence, a1 and a2 belong to different blocks. Likewise, a2 and
a3 cannot belong to the same block.

Since χ(a1) = χ(a2), we must have a1 ∈ Bj and a2 ∈ Bk for some j and k such that
k ≥ j + 2. Hence, a1 + a2 = a3 must belong to Bk since it has the same color as a2. This
contradicts our earlier statement that a2 and a3 are not in the same block. ¤

Remark. If we use a second order linear homogeneous recurrence different from the Fibonacci
recurrence, in many instances the associated Ramsey-type function does exist. For example,
since all arithmetic progressions are solutions to the recurrence an = 2an−1 − an−2, by van
der Waerden’s Theorem, every finite coloring of Z+ admits arbitrarily long monochromatic
solutions to this recurrence. Results on Ramsey properties for the family of Fibonacci se-
quences, but where the first two terms of the sequence are arbitrary positive integers (not
necessarily non-decreasing) may be found in [3]. Other positive Ramsey results concerning
sequences defined by second order recurrences are given in [4].

3. Arithmetic Progressions Whose Gaps are Fibonacci Numbers

In [2] the following theorem is proven:

Theorem 3.1. If S = {ai}∞i=1 is any set of positive integers with the property that, for some
real number c > 1, ai ≥ cai−1 for all but a finite number of i, then APS is not regular.
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As an immediate corollary, we know that APF is not regular, since the Fibonacci numbers
have the asymptotic ratio ai/ai−1 ∼ (1+

√
5)/2. By directly applying the method of proof of

Theorem 3.1, as presented in [2], specifically to the sequence F , one finds that dor(APF ) ≤ 7.
By employing a different line of reasoning, we obtain Proposition 3.3 below, which gives a
stronger result. The proof makes use of the following three facts from [2].

Lemma 3.2. ([2])

(i) If APS is 2-regular, then S contains a multiple of every positive integer.

(ii) If B = {ai}∞i=1 is a sequence of positive integers such that ai ≥ 3ai−1 for all i ≥ 2,
then APB is not 2-regular.

(iii) If X and Y are sets of positive integers such that APX is not r-regular and APY is
not s-regular, then APX∪Y is not rs-regular.

Proposition 3.3. dor(APF ) ≤ 3.

Proof. Partition the Fibonacci sequence into the sets A = {x ∈ F : x is odd} and B = {x ∈
F : x is even}. By Lemma 3.2 (i), APA is not 2-regular. Also, B = {F3i : i ≥ 1}, and since
Fk ≥ 3

2
Fk−1 for all k ≥ 3, we see that B satisfies the hypothesis of Lemma 3.2 (ii). Hence,

APB is not 2-regular. Therefore, by Lemma 3.2 (iii), APF is not 4-regular. ¤
Remark. It is shown in [2] that if m is any fixed nonnegative integer, and if G = ∪∞n=1[Fn, Fn + m],
then APG is not regular.

4. The F -Diffsequences

When discussing the degree of regularity of families of diffsequences, we adopt the ter-
minology of “accessibility” from [5]. That is, if D is a set, we shall refer to the degree of
regularity of the family of D-diffsequences as the degree of accessibility of D, denoted by
doa(D). If the family of D-diffsequences is regular, we will simply say that D is accessible.

It is obvious from the definitions that for all D, doa(D) ≥ dor(APD). In [5] it is re-
marked that F is 2-accessible (this can easily be proved by induction on the length of the
diffsequence), so that doa(F ) ≥ 2; but an upper bound on doa(F ) was not known. In the
following theorem, we prove that doa(F ) ≤ 5. The proof makes use of the following three
lemmas. Lemma 4.1 is well-known and easily proved, and Lemma 4.2 is due to T.C. Brown.

Let α =
√

5−1
2

, and denote by g the function defined on Z+ by g(m) = 4m + 2bmαc.
Lemma 4.1. For any n ≥ 0, 2 ·∑n

i=0 F3i+1 = F3n+3.

The following lemma is an immediate consequence of a result due to T.C. Brown1 [1].

Lemma 4.2. ([1]) For any N ≥ 2, if N − 1 = Fi1 + Fi2 + · · · + Fik for some i1, i2, . . . , ik,
where ij+1 ≥ ij + 2 for all 1 ≤ j ≤ k − 1 and i1 ≥ 2, then

bNαc = Fi1−1 + Fi2−1 + · · ·+ Fik−1.

Lemma 4.3. For any n ∈ Z+,

g

(
n∑

i=1

F3i−1

)
= F3n+3 − 4 and g

(
1 +

n∑
i=1

F3i−1

)
= F3n+3 + 2.

1Lemma 4.2 follows by taking α =
√

5−1
2 in Theorem 3 of [1].
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Proof. Since g(1) = 4 and g(2) = 10, the claim is true for n = 1. Now, by Lemma 4.2, for
n ≥ 2,

g

(
n∑

i=1

F3i−1

)
= 4 ·

n∑
i=1

F3i−1 + 2 ·
⌊
α ·

n∑
i=1

F3i−1

⌋

= 4 ·
n∑

i=1

F3i−1 + 2 ·
n∑

i=2

F3i−2. (4.1)

This, along with Lemma 4.1 and the fact that for all positive integers m, F3m−2 + 2F3m−1 =
F3m+1, implies that

g

(
n∑

i=1

F3i−1

)
= 4 + 2 ·

n∑
i=2

F3i+1 = 4 + F3n+3 − 2 · (F1 + F4)

= F3n+3 − 4.

Also, for n ≥ 2, using (4.1) we have

g

(
1 +

n∑
i=1

F3i−1

)
= 4 + 4 ·

n∑
i=1

F3i−1 + 2 ·
⌊
α ·

(
1 +

n∑
i=1

F3i−1

)⌋

= 4 + 4 ·
n∑

i=1

F3i−1 + 2 ·
n∑

i=1

F3i−2

= g

(
n∑

i=1

F3i−1

)
+ 6 = F3n+3 + 2,

which completes the proof. ¤

We now have the tools needed to prove the following theorem.

Theorem 4.4. The degree of accessibility of F is at most five.

Proof. To prove the theorem, we give a 6-coloring of Z+ that avoids 2-term monochromatic
F -diffsequences.

Note first that for any m ≥ 1,

{g(m), g(m) + 2} ∩ F = ∅. (4.2)

If (4.2) were false, then since g(m) ≥ 4 is even, there is an n ≥ 2 such that g(m) = F3n or
g(m)+2 = F3n. From Lemma 4.3 and the fact that g is an increasing function it would then
follow that

n∑
i=1

F3i−1 < m < 1 +
n∑

i=1

F3i−1,

which is impossible.
Let the sequence an be defined by

an = 4 + 2 (b(n + 1)αc − bnαc) .

Clearly, an ∈ {4, 6} for all n ∈ Z+. For n ∈ Z+ we define tn = 1 +
∑n−1

i=1 ai.
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Let C be the 6-coloring of Z+ determined by the partition consisting of the sets C1, . . . , C6

defined as follows. Let C1 = {tn : n ∈ Z+} and, for 2 ≤ i ≤ 6, let Ci = (i− 1 + C1)−
⋃i−1

j=1 Cj.
Clearly,

k 6= l ⇒ Ck ∩ Cl = ∅.
Since gaps between any two consecutive elements of C1 are 4 or 6, for any positive integer

n there are k ∈ Z+ and i ∈ [1, 6] so that n = tk + i− 1. Thus, Z+ = ∪6
i=1Ci.

Next, note that to prove the theorem, it is enough to show that there is no 2-term F -
diffsequence contained in C1. Moreover, since all elements of C1 are odd, it is enough to
prove that for any positive integers m and n, n < m,

tm − tn 6∈ {F3i : i ∈ Z+}.
Let n < m, and let N = m − n. Since for any two nonnegative real numbers x and y,

bx + yc − (bxc+ byc) ∈ {0, 1}, we have

tm − tn = tn+N − tn =
n+N−1∑

i=n

ai

= 4N + 2 (b(n + N)αc − bnαc) ∈ {g(N), g(N) + 2}.

Hence, by (4.2), tm − tn 6∈ F . Therefore, C1 does not contain any 2-term F -diffsequence,
which completes the proof. ¤

Denote by ∆(F, k; r) the least positive integer ∆ (if it exists) such that every r-coloring
of [1, ∆] admits a monochromatic k-term F -diffsequence. It is noted in [5] that ∆(F, k; 2) ≤
Fk+3 − 2. Based on the known values of ∆ (see Table 1 below), this (exponential) upper
bound seems very weak. The following result gives a linear lower bound on ∆(F, k; 2) for
k ≥ 8, which coincides precisely with all known values of ∆(F, k; 2) for k ≥ 8.

Theorem 4.5. Let k ≥ 8. Then

∆(F, k; 2) ≥





16
3
k − 20 if k ≡ 0(mod 3)

16
3
k − 64

3
if k ≡ 1(mod 3)

16
3
k − 65

3
if k ≡ 2(mod 3)

.

Proof. Case 1. k ≡ 0(mod 3). Let n = k/3−2. We give a 2-coloring of [1, 16n+11] that avoids
monochromatic k-term F -diffsequences, which implies that ∆(F, k; 2) ≥ 16n+12 = 16

3
k−20.

Let X denote the following 2-coloring of [1,16]: 0111010010001011. Now define

An = Xn 01110100100,

a 2-coloring of [1, 16n + 11]. Let {ai}8n+6
i=1 be the elements of [1, 16n + 11] having color 0,

listed in increasing order. Let gi = ai+1 − ai. Note that

{gi}8n+5
i=1 = 4(21211234)n2121. (4.3)

Let x1 < x2 < · · · < xt be an F -diffsequence of color 0. Then for each j, 1 ≤ j ≤ t − 1,
xj+1−xj is a sum of consecutive gi’s, say xj+1−xj = gj1+gj1+1+· · ·+gj2 , where (j+1)1 = j2+1
for all j, 1 ≤ j ≤ t− 1.

We consider two subcases. First, assume x1 = 1. In this case, we see that x2 − x1 ≥ 13
and j2− j1 ≥ 6. Likewise, from (4.3) we have that for each gi, 1 < i < 8n + 1, that equals 4,
at least five other summands must be added to gi to produce a Fibonacci number. Finally,
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note that the last six gi’s can be summands of no xj+1 − xj other than possibly xt − xt−1.
Therefore, since the sequence {gi} has 8n + 5 terms, it follows that

t− 1 ≤ (8n + 5)− 5(n + 1) = 3n + 3.

Now assume x1 6= 1. Then g1 does not appear as a summand in any xj+1−xj. Also (as in
the argument used for the previous subcase) for each gi = 4 where i > 1, if gi is a summand
for some xj+1 − xj, then there must be at least five other summands along with it. Hence,
in this case

t− 1 ≤ (8n + 5)− 1− 5n = 3n + 4.

In both subcases, we have that no F -diffsequence in color 0 has length greater than
3n + 5 = k − 1.

Now consider the elements, {bi}, of color 1 under the coloring An. The sequence of gaps,
{bi+1 − bi}, is (11234212)n 1123. As was the case with color 0, each gap that equals 4 must
be added to at least five adjacent gaps to yield a Fibonacci number. So the largest t such
that xi+1 − xi ∈ F for all i, 1 ≤ i ≤ t− 1, satisfies t− 1 ≤ 8n + 4− 5n = 3n + 4, as desired.

Case 2. k ≡ 1(mod 3). Let n = (k−7)/3. Consider the coloring Bn = 01An01 of [1, 16n+15].
Let x1 < x2 < · · · < xt be an F -diffsequence that is monochromatic of color 0. The sequence
of gaps, {gi}, between the consecutive elements of color 0 is 24(21211234)n21211. If x1 = 1,
then we see, using the earlier argument concerning the gaps that equal 4, there are at most
8n + 7− 5(n + 1) = 3n + 2 terms xi+1 − xi. If x1 6= 1, then by the result for An in color 0,
there are most (3n + 4) + 1 terms xi+1 − xi. In both cases, no F -diffsequence of color 0 has
more than 3n + 6 = k − 1 terms.

Now consider the elements having color 1 under Bn. By the proof of Case 1 for the color
1, it is clear that, under Bn, there are at most (3n + 5) + 1 elements in any F -diffsequence
of color 1.

Hence, we have ∆(F, k; 2) ≤ 16n + 16 = (16/3)k − 64/3.

Case 3: k ≡ 2(mod 3). Let n = (k− 5)/3. Define Cn = Bn−101110, a coloring of [1, 16n+4].
The sequence of gaps between the consecutive elements of color 0 is the same as that for
Bn−1 with 2,4 appended to the end of the sequence. Hence, the longest possible sequence of
gaps between terms of any F -diffsequence of color 0 is 3(n − 1) + 5 + 1 = 3n + 3 = k − 2.
For color 1, the gap sequence is the same as that for Bn−1 with 2,1,1 appended. Thus, this
gap sequence ends with the sequence 4,2,1,1. This implies, using the proof of Case 2, color
1, that the longest possible sequence of Fibonacci gaps is 3(n− 1)+5+1 (by taking the last
gap to be 8). As with color 0, the longest possible F -diffsequence of color 1 is k− 1. Hence,
∆(F, k; 2) ≤ 16n + 5 = (16/3)k − 65/3. ¤

We conclude this section with a table of computer-generated values of ∆(F, k; r).

r\k 2 3 4 5 6 7 8 9 10 11 12 13
2 3 5 9 11 15 19 21 28 32 37 44 48
3 4 13 27 59
4 9 >600
5 13

Table 1. Values of ∆(F, k; r)
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5. Final Remarks and Questions

From Section 3, we know that 1 ≤ dor(APF ) ≤ 3, It has been conjectured [2] that when
S is a set of positive integers such that APS is 2-regular, then APS must be regular. If this
conjecture is true then dor(APF ) = 1.

In Section 4, we showed that 2 ≤ doa(F ) ≤ 5. From Table 1, we see that there is a huge
jump between ∆(F, 2; 4) and ∆(F, 3; 4), and we suspect that ∆(F, 3; 4) does not exist which
would imply that doa(F ) ≤ 3.

There is a great discrepancy between the established upper and lower bounds for ∆(F, k; 2).
We wonder if the lower bounds of Theorem 4.5 represent the exact values of this function.

The proof that ∆(F, k; 2) ≤ Fk+3 − 2, which consists of an obvious induction, can be
applied to any Fibonacci sequence, i.e., any sequence A = {ai} satisfying ai = ai−1 + ai−2,
for example the Lucas numbers. It would be interesting to study a table of exact values of
∆(A, k; 2) for some choices of A 6= F .
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