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Abstract. We give one parameter generalizations of the Fibonacci and Lucas numbers
denoted by {Fn(θ)} and {Ln(θ)}, respectively. We evaluate the Hankel determinants with
entries {1/Fj+k+1(θ) : 0 ≤ i, j ≤ n} and {1/Lj+k+1(θ) : 0 ≤ i, j ≤ n}. We also find the
entries in the inverse of {1/Fj+k+1(θ) : 0 ≤ i, j ≤ n} and show that all its entries are
integers. Some of the identities satisfied by the Fibonacci and Lucas numbers are extended
to more general numbers. All integer solutions to three Diophantine equations related to
the Pell equation are also found.

1. Introduction

The Hilbert matrix Hn has entries 1/(i + j + 1) : 0 ≤ i, j ≤ n. It is well-known that,
for all n, Hn is nonsingular and the elements of its inverse matrix are all integers, see for
example [6]. The determinant of Hn has a closed form expression which shows that the
determinant is very small for large n. This is important in numerical analysis because the
smaller the determinant, the larger the condition number becomes and computing the inverse
numerically becomes unstable. Many other applications of the Hilbert matrix are in [6].

The Fibonacci numbers have many interesting properties and appear in many areas of
mathematics [12, 17]. One unexpected result is due to Richardson who showed in [15] that
the “Filbert matrix” is also nonsingular and its inverse has only integer entries. The i, j entry
of the Filbert matrix is 1/Fi+j+1 where 0 ≤ i, j ≤ n and {Fn : n ≥ 1} are the Fibonacci
numbers.

One way to compute the determinant of Hn is to note that it is the Hankel determinant
associated with a constant weight function supported on [0, 1]. Berg [5] observed that the
reciprocals of the Fibonacci numbers form a moment sequence of a special little q-Jacobi
weight, [9, Section 18.4]. He used Lemma 1.1, to be stated below, to prove Richardson’s
result.

Recall that the Chebyshev polynomials of the first and second kinds are

Tn(cos θ) = cos(nθ), Un(cos θ) =
sin((n + 1)θ)

sin θ
, (1.1)

respectively. Askey [3, 4] observed that the Fibonacci numbers {Fn} and the Lucas numbers
{Ln} are related to the Chebyshev polynomials via

Fn+1 = (−i)nUn(i sinh(θ0)), Ln+1 = 2(−i)nTn(i sinh θ0)) (1.2)

where θ0 > 0 and sinh θ0 = 1/2.
The purpose of this paper is to give one parameter generalizations of the Fibonacci and

Lucas numbers. Our generalization comes from the Chebyshev polynomials of the first and
second kinds. Our generalizations of the Fibonacci and Lucas numbers satisfy the recurrence
relation
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yn+1(θ) = 2 sinh θyn(θ) + yn−1(θ) (1.3)

and the initial conditions (2.12) and (3.2). We generalize Richardson’s result by replacing
the Fibonacci numbers by our generalized Fibonacci numbers. This will be done in Section 2.
In Section 3 we introduce the generalized Lucas numbers and study some of their properties.
We also give a closed form evaluation of a Hankel determinant whose elements are reciprocals
of Lucas numbers.

The book [12] contains many results on Fibonacci and Lucas numbers with detailed proofs.
On the other hand we found Vajda’s book [17] to be very comprehensive but concise. In
Section 4 we extend some of the properties of the Fibonacci and Lucas numbers to our
numbers. We have only included a sample of the identities involving {Fn(θ)} and {Ln(θ)}.
There are many other relationships involving the Fibonacci and Lucas numbers which extend
to our more general sequences {Fn(θ)} and {Ln(θ)} but we made no attempt to include them.
In Section 5 we describe all integer solutions to

y2 − kxy − x2 = ±1,

for a given integer k > 1. We also characterize all integers n for which n2(1 + k2) ± 4 is a
perfect square when k is odd. When k = 1 these results reduce to known facts involving the
Fibonacci numbers.

The connection between Fibonacci numbers, hyperbolic functions, and Chebyshev polyno-
mials was observed but somehow never fully exploited, see for example [17, Chapter 11], and
[13]. Another recent development is due to Kalman and Mena [10] who treated sequences
which satisfy the three term recurrence relation

yn+1 = ayn + byn−1,

under general initial conditions. They derived many of the properties that their generalized
sequence share with the Fibonacci or Lucas numbers. Our numbers being less general than
the Kalman-Mena numbers have additional properties. For example the inverse matrix to
1/L1+i+j does not have integer coefficients, while the inverse matrix to 1/Fi+j+1 as well as
1/Fi+j+1(θ) have integer entries, {Fn(θ)} being our generalization of the Fibonacci numbers.
Some of the other refined properties involving congruences and integer points on algebraic
curves or surfaces do not extend to the very general setting of Kalman and Mena.

We now come to Lemma 1.1.
Let µ be a measure whose moments, s0 6= 0, sn :=

∫
R xndµ(x) exist for all n = 0, 1, . . . ,

and let {pn(x)} be the sequence of polynomials orthogonal with respect to µ, that is
∫

R
pm(x)pn(x)dµ(x) = ζnδm,n, ζn 6= 0 (1.4)

for n = 0, 1, 2, . . . . We shall always normalize µ by ζ0 = 1, so that µ has a unit total mass.
The corresponding Hankel matrix and Hankel determinant are

Hn =




s0 s1 . . . sn

s1 s2 . . . sn+1
...

... . . .
...

sn sn+1 . . . s2n


 , Dn =

∣∣∣∣∣∣∣∣

s0 s1 . . . sn

s1 s2 . . . sn+1
...

... . . .
...

sn sn+1 . . . s2n

∣∣∣∣∣∣∣∣
, (1.5)
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respectively, and n = 0, 1, . . . . The orthonormal polynomials {p̃n(x)}, p̃n(x) = pn(x)/
√

ζn

have the determinant representation

p̃n(x) =
1√

DnDn−1

∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn

s1 s2 · · · sn+1
...

... · · · ...
sn−1 sn · · · s2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣

. (1.6)

The kernel polynomials are

Kn(x, y) =
n∑

k=0

pk(x)pk(y)/ζn. (1.7)

Let F (x, y) be a polynomial in x of degree n and a polynomial in y of degree at most n. If∫
R F (x, y)p(y)dµ(y) = p(x) for every polynomial p of degree ≤ n then F (x, y) = Kn(x, y).

This leads to the following lemma.

Lemma 1.1. Let

Kn(x, y) =
n∑

j,k=0

aj,k(n) xj yk. (1.8)

Then aj,k(n) = ak,j(n) and the matrix An whose entries are {aj,k(n)} is the inverse of Hn.

Lemma 1.1 is in the paper [16] by Tracy and Widom and in Berg’s paper [5]. It directly
follows from the determinant representation [1, page 9]

Kn(x, y) = − 1

Dn

∣∣∣∣∣∣∣∣∣∣

0 1 x · · · xn

1 s0 s1 · · · sn

y s1 s2 · · · sn+1
...

... · · · ...
yn sn−1 sn · · · s2n−1

∣∣∣∣∣∣∣∣∣∣

. (1.9)

2. Generalized Fibonacci Numbers

Consider the Chebyshev polynomials of the second kind

Un(i sinh θ) = Un(cos(π/2− iθ) =
ei(π/2−iθ)(n+1) − e−i(π/2−iθ)(n+1)

ei(π/2−iθ) − e−i(π/2−iθ)

= in
e(n+1)θ + (−1)ne−(n+1)θ

eθ + e−θ
.

(2.1)

Set

Fn+1(θ) = (−i)n Un(sinh(iθ)) =
e(n+1)θ + (−1)ne−(n+1)θ

eθ + e−θ
. (2.2)

The explicit representation of the Chebyshev polynomials of the second kind, see for example
[9, Section 4.5] leads to

Fn(θ) =

bn/2c∑

k=0

(
n + 1

2k + 1

)
sinhn−2k(θ) cosh2k(θ). (2.3)
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Choose θ0 > 0 so that cosh θ0 =
√

5/2. Thus sinh θ0 = 1/2 and eθ0 = φ in Berg’s notation

in [5]. Clearly e−θ0 = (
√

5 − 1)/2 − φ̂ in Berg’s notation. Thus Fn(θ0) = Fn, n = 1, 2, . . . ,
the Fibonacci sequence. Moreover

Fn(θ) = enθ 1− (−1)ne−2nθ

eθ + e−θ
. (2.4)

For positive integer α we have

Fα(θ)

Fn+α(θ)
= e−nθ 1− (−e−2θ)α

1− (−e−2θ)n+α
. (2.5)

With

q = −e−2θ (2.6)

we arrive at

Fn(θ) = e(n−1)θ 1− qn

1− q
. (2.7)

Formula (2.7) enables us to extend the definition of Fn(θ) to nonpositive values of n. This
agrees with defining Fn(θ) for n ≤ 0 from (1.3) and the initial conditions (2.12) below.
Indeed it is easy to see that

F−n(θ) = (−1)n−1Fn(θ). (2.8)

From (2.7) it follows that

Fα(θ)

Fn+α(θ)
= (1− qα)

∞∑

k=0

(qk/eθ)n qαk. (2.9)

Now use
(

n
k

)
F to denote the binomial coefficient relative to {Fn(θ)}, that is

(
n

0

)

F
:= 1,

(
n

k

)

F
=

Fn(θ)Fn−1(θ) · · ·Fn−k+1(θ)

F1(θ) F2(θ) · · · Fk(θ)
. (2.10)

Theorem 2.1. We have(
n

k

)

F
= Fk−1(θ)

(
n− 1

k

)

F
+ Fn−k+1(θ)

(
n− 1

k − 1

)

F
. (2.11)

Proof. It is easy to write the right-hand side of (2.11) in the form

1

Fn(θ)

(
n

k

)

F
[Fk−1(θ)Fn−k(θ) + Fk(θ)Fn−k+1(θ)]

=
(1− q)−2

Fn(θ)

(
n

k

)

F
e(n−1)θ[(1− qk)(1− qn−k+1)− q(1− qk−1)(1− qn−k)].

The quantity in the square bracket simplifies to (1− q)(1− qn) and the result follows. ¤
It is clear from (2.2) that

F1(θ) = 1, F2(θ) = 2 sinh θ. (2.12)

We now choose θ such that

sinh θ = a positive integer. (2.13)
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It then follows from the three term recurrence relation for Chebyshev polynomials that
{Fn(θ)} solves (1.3) under the initial conditions (2.12). This and (2.13) show that Fn(θ) is
a positive integer for all n, n > 0. Theorem 1.1 implies that

(
n
k

)
F is always a positive integer

when n > 0.
We can express (2.9) as the nth moment of the measure

ν(x) = (1− qα)
∞∑

k=0

qαkδ(x− qke−θ), (2.14)

where δ(x− c) is a unit atomic measure located at x = c. When α is even this is a positive
measure with total mass = 1, otherwise ν is a unit signed measure. In view of (18.4.11)
and (18.4.13) in [9] we see that the corresponding orthogonal polynomials are little q-Jacobi
polynomials {pn(xeθ; qα−1, 1)}, where

pn(x; a, b) = 2φ1(q
−n, abqn+1; aq; q, qx)

=
n∑

j=0

(q; q)n(abqn+1; q)j

(q; q)j(q; q)n−j

q(
j+1
2 ) (−x)j

(aq; q)j

,
(2.15)

and the q-shifted factorials are

(λ; q)s = (1− λ)(1− λq) · · · (1− λqs−1).

The above q is a base for the q-shifted factorials and is not the same as in (2.6).
In terms of the generalized Fibonacci coefficients the polynomials are expressed as

p(α)
n (x) :=

(
n + α− 1

n

)

F
pn(xeθ; qα−1, 1)

=
n∑

k=0

(
n

k

)

F

(
α + n + k − 1

n

)

F
(−1)nk+(k

2) xk.

(2.16)

The orthogonality relation is [8]
∫

R
p(α)

m (x)p(α)
n (x) dν(x) = (−1)αn Fα(θ)

Fα+n(θ)
δm,n. (2.17)

Recall that if the orthonormal polynomial of degree n is

γnxn + lower order terms

then the Hankel determinant Dn is given by

Dn =
n∏

j=1

γ−2
j . (2.18)

Consequently

det {1/Fα+i+j(θ) : 0 ≤ i, j ≤ n}

= (−1)α(n+1
2 )F−n

α (θ)

[
n∏

k=1

Fα+2k

(
α + 2k − 1

k

)

F

]−1

.
(2.19)
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Theorem 2.2. Let A be the matrix {1/Fα+j+k : 0 ≤ j, k ≤ n}. Then A−1 has the matrix
elements

(−1)(α+j+k)n−(j
2)−(k

2) Fα+j+k(θ)

(
α + n + j

n− k

)

F

×
(

α + n + k

n− j

)

F

(
α + j + k − 1

j

)

F

(
α + j + k − 1

k

)

F
.

Proof. Use Lemma 1.1, (2.16), and (2.17). ¤

3. Generalized Lucas Numbers

We now consider the Chebyshev polynomials of the first kind

Tn(i sinh θ) = Tn(cos(π/2− iθ) = [ei(π/2−iθ)n + e−i(π/2−iθ)n]

=
in

2

[
enθ + (−1)ne−nθ

]
.

Define the generalized Lucas numbers by

Ln(θ) = 2(−i)n Tn(cos(iθ − π/2) =
[
enθ + (−1)ne−nθ

]
, (3.1)

for n = 0, 1, . . . . Thus,

L0(θ) = 2, L1(θ) = 2 sinh θ. (3.2)

Hence, L2(θ) = cosh(2θ). It readily follows that {Ln(θ)} solves (1.3) under the initial condi-
tions (3.2). Assume

2 sinh θ = a positive integer. (3.3)

Consequently Ln(θ) is a positive integer for all n, n = 1, 2, . . . . Clearly there are infinitely
many such θ’s. Moreover Ln(θ0) = Ln.

In view of (2.6) we see that

Ln(θ) = enθ [1 + qn]. (3.4)

We extend the definition of Ln(θ) to n ≤ 0 by (3.4). The explicit representation of Tn(x),
[9, Section 4.5] establishes the representation

Ln(θ) =

bn/2c∑

k=0

(
n

2k

)
sinhn−2k(θ) cosh2k(θ). (3.5)

It readily follows from (3.4) that

Lα(θ)

Ln+α(θ)
= (1 + qα)

∞∑

k=0

(−qα)k(qke−θ)n.

Define a measure ψ by

ψ = (1 + qα)
∞∑

k=0

(−qα)kδ(x− qke−θ), (3.6)
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where, as before, δ(x − c) is a unit atomic measure located at x = c. Analogous to the
definition (2.10) the binomial coefficient relative to the generalized Lucas numbers {Ln(θ)}
is (

n

0

)

L
:= 1,

(
n

k

)

L
=

Ln(θ)Ln−1(θ) · · ·Ln−k+1(θ)

L1(θ) L2(θ) · · · Lk(θ)
. (3.7)

It is unlikely that the binomial coefficients relative to the generalized Lucas numbers are
integers, but they may be integers if we only use the generalized Lucas numbers of odd
indices.

The polynomials

q(α)
n (x) :=

(
n + α− 1

n

)

L
pn(xeθ;−qα−1, 1)

=
n∑

k=0

(
n

k

)

L

(
α + n + k − 1

n

)

L
(−1)nk+(k

2) xk

(3.8)

are special little q-Jacobi polynomials and satisfy the orthogonality relation
∫

R
p(α)

m (x)p(α)
n (x) dν(x) = (−1)αn Lα(θ)

Lα+n(θ)
δm,n. (3.9)

The proof of (2.19) can be modified to establish

det {1/Lα+i+j(θ) : 0 ≤ i, j ≤ n}

= (−1)α(n+1
2 )L−n

α (θ)

[
n∏

k=1

Lα+2k

(
α + 2k − 1

k

)

L

]−1

.
(3.10)

4. Relations

Let yn be a solution to (1.3) with integer initial conditions and y1 and y2. If y0 and y1 are
relatively prime then yn and yn+1 are relatively prime. This follows by induction from (1.3).
Consequently Fn(θ) and Fn+1(θ) are relatively prime, and so are Ln(θ) and Ln+1(θ).

The following result follows from (2.6)–(2.7) and (3.4).

Theorem 4.1. For all integers α, n, i, j, the following identities hold

Fα+n+i(θ)Fα+n+j(θ)− (−1)α+i+jFn−i(θ)Fn−j(θ)

= Fα+2n(θ)Fα+i+j(θ),
(4.1)

Fn+i(θ)Fn+j(θ)− Fn(θ)Fn+i+j(θ) = (−1)nFi(θ)Fj(θ), (4.2)

together with their companion formulas

Lα+n+i(θ)Lα+n+j(θ)− (−1)α+i+j(4 + k2)Ln−i(θ)Ln−j(θ)

= Lα+2n(θ)Lα+i+j(θ),
(4.3)

Ln+i(θ)Ln+j(θ)− Ln(θ)Ln+i+j(θ) = (−1)n+1(k2 + 4)Fi(θ)Fj(θ), (4.4)

where k = 2 sinh θ.
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One interesting application of (4.2) is to take i = −j = 2, replace n by 2n±1 and conclude
that

F 2
2n+1(θ) ≡ −k2 (mod F2n−1(θ)) and F 2

2n−1(θ) ≡ −k2 (mod F2n+1(θ)). (4.5)

Thus, given an integer k a solution to the system of congruences

a2 ≡ −k2 (mod b), and a2 ≡ −k2 (mod b),

is (a, b) = (F2n−1(θ), F2n+1(θ)). The converse to this may be true, at least for certain values
of k and it is interesting to characterize such values. In the case k = 1 the converse is due
to Owings [14].

One of the topics in Sections 32.3–32.4 in [12] is the question of evaluating the sums
∑

i,j,k>0,i+j+k=n

FiFjFk.

We consider the more general question of evaluating Sn,

Sm(n) :=
∑

j1,j2,...,jm:j1+j2+···+jm=n

Fj1Fj2 · · ·Fjm . (4.6)

Since Sm(n) is an m-fold Cauchy convolution we find

∞∑
n=0

Sm(n)tn = tm(1− t− t2)−m.

The ultraspherical polynomials {Cν
n(x)} have the generating function

∞∑
n=0

Cν
n(x)tn = (1− 2xt + t2)−ν ,

[9, Section 4.5]. They have the explicit formula

Cν
n(x) =

bn/2c∑

k=0

(2ν)n xn−2k (x2 − 1)k

4k k! (ν + 1/2)k (n− 2k)!
.

It is clear that Sm(n) = 0 if n < m. Therefore,

Sm(n + m) = (−i)nCm
n (i/2)

=
(2m)n

2n

bn/2c∑

k=0

(5/4)k

k! (m + 1/2)k (n− 2k)!
.

(4.7)

Formula (4.7) generalizes many of the formulas in [12]. The only drawback of (4.7) is that
it does not show that Sm(n) is an integer. Indeed the individual terms in the sum (after
multiplication by 2−n(2m)n) are not integers but their sum is an integer.

Theorem 5.9 in [12] asserts that

Fn+kFn−k − F 2
n = (−1)n+k+1F 2

k ,

and is attributed to Catalan. Equations (2.6) and (2.7) yield the identical result

Fn+k(θ) Fn−k(θ)− F 2
n(θ) = (−1)n+k+1F 2

k (θ). (4.8)
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A consequence of (4.8) is that if p | Fn(θ) and p | Fn±k(θ) then p | Fk(θ). The case k = 1 of
(4.8) is

Fn+1(θ) Fn−1(θ)− F 2
n(θ) = (−1)n (4.9)

and generalizes the Cassini formula, [12, Theorem 5.3]. Moreover
(

F2(θ) F1(θ)
F1(θ) F0θ)

)n

=

(
Fn+1(θ) Fn(θ)

Fn(θ) Fn−1(θ)

)
, (4.10)

follows from equations (2.6) and (2.7), and the fact that
(

F2(θ) F1(θ)
F1(θ) F0θ)

)
=

1

1 + e−2θ

(
1 e−θ

e−θ − 1

)(
eθ 0

0 − e−θ

)(
1 e−θ

e−θ − 1

)
.

One can prove a formula similar to (4.10) and involving the generalized Lucas numbers. The
relationship (4.9) follows from (4.10) by evaluating the determinants of both sides.

Theorem 4.2. The generalized Fibonacci numbers have the property

arctan(k/F2m+1(θ)) + arctan(1/F2m+2(θ)) = arctan(1/F2m(θ)), (4.11)

where k = 2 sinh θ. Moreover
∞∑

n=0

arctan(k/F2n+3(θ)) = arctan(1/k). (4.12)

Proof. Clearly (4.11) is equivalent to
[

k

F2m+1(θ)
+

1

F2m+2(θ)

]
/

[
1− k

F2m+1(θ)F2m+2(θ)

]
=

1

F2m(θ)
.

In other words we need to show that

[kF2m+2(θ) + F2m+1(θ)]F2m(θ) = F2m+1(θ)F2m+2(θ)− k.

The above can be rewritten as

k[1 + F2m+2(θ)F2m(θ)] = F2m+1(θ)[F2m+2(θ)− F2m(θ)] = kF 2
2m+1(θ),

which follows from (4.9). Finally (4.12) follows by telescopy from (4.11). ¤
It is easy to prove the following result

n∑
j=1

F 2
j (θ) = 2 sinh θFn(θ)Fn+1(θ). (4.13)

which reduces to a theorem of Lucas when θ = θ0, see Theorem 5.5 in [12]. One can also
prove

F 2
n+1(θ) + F 2

n(θ) = F2n+1(θ),

F 2
n+1(θ)− F 2

n(θ) = 2 sinh θ F2n+1(θ).
(4.14)

When θ = θ0 the above identities reduce to results of Lucas, [12, Corollary 5.4].
The Lucas numbers are related to the Fibonacci numbers via

Lm(θ) = Fm+1(θ) + Fm−1(θ) (4.15)

which follows from a calculation using (3.4) and (2.7).
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The identities (5) and (7a) in [17] extend to

Ln+1(θ) + Ln−1(θ) = 4 cosh2 θFn(θ) (4.16)

and

Fn+2(θ)− Ln−2(θ) = 2 sinh θLn(θ), (4.17)

respectively.
Another identity which follows from (3.4) and (2.7) is

Lm(θ)Fn(θ)− Fm+n(θ) = (−1)mLn−m(θ). (4.18)

With n = tm we iterate (4.18) and derive the finite continued fraction expansion

Fm(t+1)(θ)

Fmt(θ)
= Lm(θ)− (−1)m

Lm(θ)−
(−1)m

Lm(θ)− · · ·
(−1)m

Lm(θ)
. (4.19)

In the above equation Lm(θ) appears m times.

Theorem 4.3. The following identities hold

F2n(θ) = Fn(θ)Ln(θ), (4.20)

Fn+m(θ) + (−1)mFn−m(θ) = Fn(θ)Lm(θ) (4.21)
n∑

j=0

1

Fj(θ)
=

1 + sinh θ

sinh θ
− F2n−1(θ)

F2n(θ)
. (4.22)

Proof. Formula (4.20) is the special case m = n of (4.21). The proof of (4.22) is by induction.
It clearly holds when n = 1. The induction step uses

−F2n−1(θ)

F2n(θ)
+

1

F2n+1(θ)
= − F2n(θ)

F2n+1(θ)

which follows from (4.20) and (4.21). ¤

By letting n →∞ in Theorem 4.3 we find

∞∑
n=0

1

Fn(θ)
= 1 + e−θ coth θ.

In the case of the Fibonacci numbers θ = θ0, the above sum reduces to (77) page 60 in [17].

5. Integer Points on Algebraic Curves and Surfaces

In this section we prove two theorems describing all the integral points on the curves
y2 − kxy − x2 = ±1 for a positive integer k.

Theorem 5.1. Let θ > 0 be given and assume that k := 2sinhθ > 1 is an odd integer.
A positive integer n is a generalized Fibonacci number if and only if 4n2 cosh2 θ + 4 or
4n2 cosh2 θ − 4 is a perfect square.

Proof. We will only consider positive solutions to

x2(k2 + 4)− y2 = ±4. (5.1)
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It is clear that

(k2 + 4)F 2
m(θ)− L2

m(θ) = 4 cosh2 θF 2
m(θ)− L2

m(θ)

= (eθ + e−θ)2e2(m−1)θ

(
1− qm

1− q

)2

− (1 + qm)2e2mθ

which simplifies to 4(−1)m+1, so it is equal to ±1. Hence, n = Fm(cosh θ) makes 4n2 cosh2 θ±
4 a perfect square. To prove the converse assume that 4x2

1 cosh2 θ ± 4 is a perfect square
= y2

1 say. We assume x1 > 1 and the case x1 = 1 we considered at the end. Thus,

y2
1 = x2

1(k
2 + 4)± 4 with x1 > 1.

It can be easily seen that x1 > 1 implies y1 > kx1. Let

x2 = (y1 − kx1)/2, y2 = |(ky1 − (k2 + 4)x1)/2|.
Both x2 and y2 are positive integers since x1 and y1 have the same parity. A calculation
shows that x = x2, y = y2 solve (5.1). Moreover x2 < x1 if and only if y1 < (k + 2)x1, that
is if and only if x2

1(k
2 + 4)± 4 < (k + 2)2x2

1, since the left-hand side is y2
1. Clearly the latter

inequality holds, hence 0 < x2 < x1. We continue in this manner until we reach xn = 1.
Thus, y2

n = k2 +4±4. The case − leads to yn = k but the case + makes (yn−k)(yn +k) = 8,
hence, yn = k +2j and yn = −k +23−j, for some j = 0, 1, 2, 3. This forces yn = (2j +23−j)/2
so that j must equal 1 or 2, that is yn = 3 which contradicts k > 1. Thus, the only solution
is yn = k = L1(θ) and x1 = F1(θ). By reversing the above steps, and using (4.15) and (1.3)
we see that x1 = Fn(θ) and y1 = Ln(θ). ¤

Note that in the process of proving Theorem 4.3 we also proved the following.

Corollary 5.2. We have

4 cosh2 F 2
n(θ)− L2

n(θ) = 4(−1)n+1. (5.2)

In particular {Fn(θ)} and {Ln(θ)} cannot have any common divisor larger than 2. Moreover
Fn(θ) and Ln(θ) have the same parity.

Note that the Diophantine equation (5.1) is a special case of the Pell equation.
Let

k := 2 sinh θ. (5.3)

Observe that

F 2
n+1(θ)− kFn(θ)Fn+1(θ)− F 2

n(θ) = (−1)n (5.4)

follows from replacing the F ’s in the left-hand side by the corresponding expressions from
(2.7). We now prove a converse to (5.4). Consider the Diophantine equations

y2 − kxy − x2 = 1, (5.5)

y2 − kxy − x2 = −1. (5.6)

The integer solutions to (5.5) or (5.6) will be denoted by (x, y). It is clear that if (x, y) is
such a pair then (−x,−y) will satisfy the same equation. Moreover if (x, y) satisfy (5.5) (or
(5.6)) then (y,−x) will solve (5.6), (respectively (5.5)). Hence there is no loss of generality
in assuming x ≥ 1 and y ≥ 1.
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Theorem 5.3. Let k be an integer, k > 1, and related to θ through (5.3). Assume that (x, y)
solves (5.5). Then there exists a positive integer n such that (x, y) = (F2n(θ), F2n+1(θ)). On
the other hand if (x, y) solves (5.6) then there exists a positive integer n such that (x, y) =
(F2n−1(θ), F2n(θ)).

Proof. The proof consists of three steps.
Step 1. We show that the smallest positive x satisfying (5.5) is x = k. To see this write
(5.5) in the form y(y − kx) = x2 + 1, hence, y = kx + z and z > 1. Thus (5.5) becomes
x(x − kz) = z2 − 1, which shows that x ≥ k = F2(θ). The only possible answer for y is
y = F3(θ). Indeed the point (F2(θ), F3(θ)) lies on the curve (5.5).
Step 2. We use induction. Assume that all solutions to (5.5) are of the form (F2j(θ), F2j+1(θ)),
for 1 ≤ j ≤ m. Let x > F2m(θ) and assume that x is the smallest integer such that (x, y)
solves (5.5). Rewrite (5.5) as

(y − kx)2 − 1 = (k2 + 1)x2 − kxy = x[(k2 + 1)x− ky].

Thus, (k2 + 1)x− ky > 0. We have already shown that y > kx. Define (x0, y0) by

x0 = (k2 + 1)x− ky, y0 = y − kx. (5.7)

Both x0 and y0 are positive integers. Moreover x0 − x = k(x − ky) < 0, that is x0 < x,
hence, x0 ≤ F2m(θ). By direct computation we see that (x0, y0) solves (5.5), hence there is
a positive integer r such that x0 = F2r(θ) and y0 = F2r+1(θ). From (5.7) it follows that

x = x0 + ky0 and y = kx0 + (1 + k2)y0.

Hence, x = F2r+2(θ) and y = F2r+3(θ).
Step 3. Assume that (x, y) solve (5.6) and set (x0, y0) = (y, x + ky). A calculation shows
that (x0, y0) satisfies (5.5), hence, (y, x + ky) = (F2j(θ), F2j−1(θ)), for some positive integer
j, which implies (x, y) = (F2j(θ), F2j−1(θ)), and the proof is complete. ¤

We next extend the following identities of Carlitz [12, p. 91, Example 90-91]:

Z3
n+1 − Z3

n − Z3
n−1 = 3Zn+1ZnZn−1, Zj = Fj or Lj.

Theorem 5.4. With k = sinh θ the identity

Z3
n+1(θ)− k3Z3

n(θ)− Z3
n−1(θ)

= 3kZn+1(θ)Zn(θ)Zn−1(θ),
(5.8)

holds for Zn(θ) = Fn(θ) or Zn(θ) = Ln(θ).

Proof. After using (1.3) we see that the left-hand side of the above equation in the Fibonacci
case is

2 sinh θFn(θ)[F 2
n+1(θ) + F 2

n−1(θ) + Fn+1(θ)Fn−1(θ)]− (2 sinh θ)3F 3
n(θ)

= 2 sinh θFn(θ)Fn−1(θ)[Fn+1(θ) + 2 sinh θFn(θ) + Fn−1(θ) + Fn+1(θ)]

which simplifies to the right-hand side of (5.8). We only used the recurrence relation (1.3)
to establish (5.8). Thus (5.8) also holds for {Ln(θ)} since it also satisfies (1.3). ¤

It is interesting to determine all the positive integer points on the surface z3 − y3 − z3 =
3xyz. We suspect that the only solutions are (x, y, z) = (Fn−1, Fn, Fn+1) or (Ln−1, Ln, Ln+1).
This would give a converse to Carlitz’s identities (5.8). Similarly it is of interest to determine
all the the positive integer points (x, y, z) which lie on the surface z3 − k3y3 − z3 = 3kxyz
for a given positive integer k.
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Fairgrieve and Gould [7] studied formulas involving differences of products of Fibonacci
numbers. They claim that computer searches yielded only the list of formulas stated below.
They pointed out that some of these formulas were already known and references are given
in [7].

Fn+1Fn+2Fn+6 − F 2
n+3 = (−1)nFn, (5.9)

FnFn+4Fn+5 − F 3
n+1 = (−1)n+1Fn+6, (5.10)

Fn−2F
2
n+1 − F 3

n = (−1)n−1Fn−1, (5.11)

Fn+2F
2
n−1 − F 3

n = (−1)nFn+1, (5.12)

Fn−3F
3
n+1 − F 4

n = (−1)n
[
Fn−1Fn+3 + 2F 2

n

]
(5.13)

Fn+3F
3
n−1 − F 4

n = (−1)n
[
F 2

n + FnFn−1 + 2F 2
n−1

]
. (5.14)

It is clear that we can rewrite the last equation above as

Fn+3F
3
n−1 − F 4

n = (−1)n
[
FnFn+1 + 2F 2

n−1

]
. (5.15)

These can be extended to the numbers Fn(θ). The extensions are given below.

Fn+1(θ)Fn+2(θ)Fn+6(θ)− F 2
n+3(θ) (5.16)

= (−1)n
[
k2Fn(θ) + (k3 − 1)Fn+1(θ)

]
,

Fn(θ)Fn+4(θ)Fn+5(θ)− F 3
n+1(θ) (5.17)

= (−1)n+1 [Fn+6(θ) + k(k − 1)Fn+4(θ)] ,

Fn−2(θ)F
2
n+1(θ)− F 3

n(θ) = (−1)n−1
[
kFn−1(θ) + (k2 − 1)Fn(θ)

]
, (5.18)

Fn+2(θ)F
2
n−1(θ)− F 3

n(θ) = (−1)n[Fn(θ) + kFn−1(θ)], (5.19)

Fn−3(θ)F
3
n+1(θ)− F 4

n(θ) (5.20)

= (−1)n
[
Fn−1(θ)Fn+3(θ) + 2F 2

n(θ) + (k2 − 1)Fn(θ)Fn+2(θ)
]

Fn+3(θ)F
3
n−1(θ)− F 4

n(θ) (5.21)

= (−1)n
[
F 2

n(θ) + Fn(θ)Fn−1(θ) + 2F 2
n−1(θ)

]
.

The proofs use (4.8)–(4.9) and (1.3).
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