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Abstract. In this paper we consider infinite sums derived from the reciprocals of the
Fibonacci numbers, and infinite sums derived from the reciprocals of the square of the
Fibonacci numbers. Applying the floor function to the reciprocals of these sums, we obtain
equalities that involve the Fibonacci numbers.

1. Introduction

A great many Fibonacci and Lucas identities have been discovered so far by many ama-
teurs and professional mathematicians. Recently, the first author has found some new sum
formulas for the reciprocals of the Fibonacci numbers, and the reciprocals of the square of
the Fibonacci numbers.

Our theorems are as follows:

Theorem 1. 
( ∞∑

k=n

1

Fk

)−1
 =

{
Fn−2, if n is even and n ≥ 2;

Fn−2 − 1, if n is odd and n ≥ 1.

Theorem 2. 
( ∞∑

k=n

1

F 2
k

)−1
 =

{
Fn−1Fn − 1, if n is even and n ≥ 2;

Fn−1Fn, if n is odd and n ≥ 1.

We believe that these theorems involve new ideas. In this note, we shall prove these
theorems.

2. Proof of Theorem 1

To prove Theorem 1, we need two lemmas.

Lemma 1.

(1)
∞∑

k=n

Fn−2

Fk

< 1, if n is even and n ≥ 2.

(2)
∞∑

k=n

Fn−2

Fk

> 1, if n is odd and n ≥ 1.

Proof. For n > 0,
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1

Fn

− 2

Fn+2

− 1

Fn+3

=
Fn+2 − 2Fn

FnFn+2

− 1

Fn+3

=
Fn−1

FnFn+2

− 1

Fn+3

=
Fn−1Fn+3 − FnFn+2

FnFn+2Fn+3

=

(
F 2

n+1 + (−1)n F 2
2

)− (
F 2

n+1 + (−1)n+1 F 2
1

)

FnFn+2Fn+3

=
2 (−1)n

FnFn+2Fn+3

.

(1) If n is even and n > 0, then

1

Fn

− 2

Fn+2

− 1

Fn+3

> 0.

Therefore,
1

Fn

>
1

Fn+2

+
1

Fn+2

+
1

Fn+3

.

Using this inequality for n > 2 repeatedly, we have

1

Fn−2

>
1

Fn

+
1

Fn

+
1

Fn+1

>
1

Fn

+
1

Fn+1

+

(
1

Fn+2

+
1

Fn+2

+
1

Fn+3

)

>
1

Fn

+
1

Fn+1

+
1

Fn+2

+
1

Fn+3

+

(
1

Fn+4

+
1

Fn+4

+
1

Fn+5

)

> · · · > 1

Fn

+
1

Fn+1

+
1

Fn+2

+
1

Fn+3

+
1

Fn+4

+
1

Fn+5

+ · · ·

=
∞∑

k=n

1

Fk

.

And we have ∞∑

k=n

Fn−2

Fk

< 1,

if n is even, and n > 2 .
This inequality holds for n = 2. Thus (1) is proved and (2) is proved similarly. ¤

Lemma 2. For n ≥ 1,

(1)
∞∑

k=n

Fn−2 − 1

Fk

< 1.

(2)
∞∑

k=n

Fn−2 + 1

Fk

> 1.

Proof. We denote α =
1 +

√
5

2
and β =

1−√5

2
.
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(1) Let k ≥ m ≥ 1.
Then,

√
5(Fk−m − α−mFk) = αk−m − βk−m − α−m(αk − βk)

= α−mβk − βk−m ≤ α−m | β |k + | β |k−m

< α0 | β |0 + | β |0= 2 <
√

5.

Therefore,

Fk−m − α−mFk < 1.

Therefore,
Fk−m − 1

Fk

< α−m.

Putting m = k − n + 2, we have

Fn−2 − 1

Fk

< αn−2−k (2 ≤ n ≤ k + 1).

By this inequality, we have

∞∑

k=n

Fn−2 − 1

Fk

<

∞∑

k=n

αn−2−k =
∞∑

j=2

α−j =
1

α2(1− α−1)
=

1

α2 − α
= 1.

Thus, (1) is proved and (2) is proved similarly. ¤

Proof of Theorem 1.
Case 1. n is even, and n ≥ 2. If n = 2,

∞∑

k=2

1

Fk

>
1

F2

= 1.

Therefore,

0 <

( ∞∑

k=2

1

Fk

)−1

< 1.

This implies ⌊( ∞∑

k=2

1

Fk

)−1⌋
= 0 = F2−2.

If n ≥ 4, then by our lemmas we have

1

Fn−2 + 1
<

∞∑

k=n

1

Fk

<
1

Fn−2

.

Therefore,

Fn−2 <

( ∞∑

k=n

1

Fk

)−1

< Fn−2 + 1.
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Therefore, 
( ∞∑

k=n

1

Fk

)−1
 = Fn−2.

Case 2. If n is odd, and n ≥ 1. n = 1 and 3 cases are easily verified. If n ≥ 5, we have

1

Fn−2

<

∞∑

k=n

1

Fk

<
1

Fn−2 − 1
.

Therefore,

Fn−2 − 1 <

( ∞∑

k=n

1

Fk

)−1

< Fn−2.

Thus, 
( ∞∑

k=n

1

Fk

)−1
 = Fn−2 − 1.

This completes the proof. ¤

3. Proof of Theorem 2

As for Theorem 1, we require two lemmas for the proof of Theorem 2.

Lemma 3.

(1)
∞∑

k=n

Fn−1Fn

F 2
k

> 1, if n is even and n ≥ 2.

(2)
∞∑

k=n

Fn−1Fn

F 2
k

< 1, if n is odd and n ≥ 1.

Proof. For n > 1, with the use of de Moivre-Binet form, we have

1

Fn−1Fn

− 1

F 2
n

− 1

F 2
n+1

− 1

Fn+1Fn+2

=
Fn − Fn−1

Fn−1F 2
n

− Fn+2 + Fn+1

F 2
n+1Fn+2

=
Fn−2

Fn−1F 2
n

− Fn+3

F 2
n+1Fn+2

=
Fn−2F

2
n+1Fn+2 − Fn−1F

2
nFn+3

Fn−1F 2
nF 2

n+1Fn+2

=
F 2

n+1(F
2
n + (−1)n−1F 2

2 )− F 2
n(F 2

n+1 + (−1)nF 2
2 )

Fn−1F 2
nF 2

n+1Fn+2

=
(−1)n−1F 2

n+1 − (−1)nF 2
n

Fn−1F 2
nF 2

n+1Fn+2

=
(−1)n+1F2n+1

Fn−1F 2
nF 2

n+1Fn+2

.
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(1) If n is even, and n ≥ 2, then

1

Fn−1Fn

− 1

F 2
n

− 1

F 2
n+1

− 1

Fn+1Fn+2

< 0.

Therefore,
1

Fn−1Fn

<
1

F 2
n

+
1

F 2
n+1

+
1

Fn+1Fn+2

.

Using this inequality repeatedly, we have

1

Fn−1Fn

<
1

F 2
n

+
1

F 2
n+1

+
1

Fn+1Fn+2

<
1

F 2
n

+
1

F 2
n+1

+

(
1

F 2
n+2

+
1

F 2
n+3

+
1

Fn+3Fn+4

)

<
1

F 2
n

+
1

F 2
n+1

+
1

F 2
n+2

+
1

F 2
n+3

+

(
1

F 2
n+4

+
1

F 2
n+5

+
1

Fn+5Fn+6

)

<
1

F 2
n

+
1

F 2
n+1

+
1

F 2
n+2

+
1

F 2
n+3

+
1

F 2
n+4

+
1

F 2
n+5

+ · · ·

=
∞∑

k=n

1

F 2
k

.

We have
∞∑

k=n

Fn−1Fn

F 2
k

> 1.

(2) If n is odd, and n ≥ 3, the inequality is similarly obtained. If n = 1, then the inequality
is easily verified. ¤

Lemma 4. For n ≥ 1,

(1)
∞∑

k=n

Fn−1Fn − 1

F 2
k

< 1.

(2)
∞∑

k=n

Fn−1Fn + 1

F 2
k

> 1.

Proof. (1) For n ≥ 2,

1

Fn−1Fn − 1
− 1

F 2
n

− 1

FnFn+1 − 1

=
FnFn+1 − Fn−1Fn

(Fn−1Fn − 1)(FnFn+1 − 1)
− 1

F 2
n

=
F 2

n

(Fn−1Fn − 1)(FnFn+1 − 1)
− 1

F 2
n

=
F 4

n − (Fn−1Fn − 1)(FnFn+1 − 1)

F 2
n(Fn−1Fn − 1)(FnFn+1 − 1)

.
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The numerator of RHS is,

F 4
n − Fn−1F

2
nFn+1 + Fn−1Fn + FnFn+1 − 1

= F 4
n − F 2

n(F 2
n + (−1)n) + Fn(Fn−1 + Fn+1)− 1

= −(−1)nF 2
n + Fn(Fn−1 + Fn+1)− 1

> −F 2
n + Fn(Fn−1 + Fn+1)− 1

= Fn(−Fn + Fn−1 + Fn+1)− 1

= 2FnFn−1 − 1 ≥ 1 > 0

(because n ≥ 2). Thus we have

1

Fn−1Fn − 1
− 1

F 2
n

− 1

FnFn+1 − 1
> 0.

Therefore,
1

Fn−1Fn − 1
>

1

F 2
n

+
1

FnFn+1 − 1
.

Just proceed as above, and we have

1

Fn−1Fn − 1
>

1

F 2
n

+
1

FnFn+1 − 1

>
1

F 2
n

+

(
1

F 2
n+1

+
1

Fn+1Fn+2 − 1

)

>
1

F 2
n

+
1

F 2
n+1

+

(
1

F 2
n+2

+
1

Fn+2Fn+3 − 1

)

>
1

F 2
n

+
1

F 2
n+1

+
1

F 2
n+2

+

(
1

F 2
n+3

+
1

Fn+3Fn+4 − 1

)

>
1

F 2
n

+
1

F 2
n+1

+
1

F 2
n+2

+
1

F 2
n+3

+
1

F 2
n+4

+ · · ·

=
∞∑

k=n

1

F 2
k

.

We have ∞∑

k=n

Fn−1Fn − 1

F 2
k

< 1, if n ≥ 2.

If n = 1, then this inequality clearly holds. Thus we obtain (1). (2) is similarly obtained. ¤
Proof of Theorem 2
Case 1. n is even, and n ≥ 2.
Using our Lemmas 3(1) and 4(1), we have

1

Fn−1Fn

<

∞∑

k=n

1

F 2
k

<
1

Fn−1Fn − 1
.

Therefore, we have

Fn−1Fn − 1 <

( ∞∑

k=n

1

F 2
k

)−1

< Fn−1Fn.
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Therefore, 
( ∞∑

k=n

1

F 2
k

)−1
 = Fn−1Fn − 1.

Case 2. n is odd, and n ≥ 1.
If n = 1,

∞∑

k=1

1

F 2
k

>
1

F 2
1

= 1 implies 0 <

( ∞∑

k=1

1

F 2
k

)−1

< 1.

Therefore, 
( ∞∑

k=1

1

F 2
k

)−1
 = 0 = F0F1.

If n is odd, and n ≥ 3, with the use of our Lemmas 3(2) and 4(2), we have

1

Fn−1Fn + 1
<

∞∑

k=n

1

F 2
k

<
1

Fn−1Fn

,

therefore,

Fn−1Fn <

( ∞∑

k=n

1

F 2
k

)−1

< Fn−1Fn + 1.

Therefore, 
( ∞∑

k=n

1

F 2
k

)−1
 = Fn−1Fn.

Thus we have proved Theorem 2. ¤
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