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Abstract. The problem of the existence of Fibonacci-Wieferich primes has already been
investigated by many authors. In this paper we shall study a similar problem for the sequence
of Tribonacci numbers. Using matrix algebra, we find certain equivalent formulations of this
problem and also derive some criteria that can be used to effectively test particular primes.
A computer search showed that the problem has no solution for primes p ≤ 109.

1. Introduction

Let (Fn)∞n=0 be the Fibonacci sequence defined by Fn+2 = Fn+1 + Fn with F0 = 0 and
F1 = 1. It is well-known [9, p. 525] that (Fn mod m)∞n=0 is periodic for any modulus m > 1.
Let k(m) denote the period of (Fn mod m)∞n=0. That is, k(m) is the least positive integer
such that Fk(m) ≡ 0 and Fk(m)+1 ≡ 1 (mod m). In 1960, D. D. Wall [9, Theorem 5] proved
that for any prime p, we have: if k(p) = k(ps) 6= k(ps+1), then k(pt) = pt−sk(p) for t ≥ s.
Wall [9, p. 528] asked whether k(p) = k(p2) is always impossible. This problem has not
yet been resolved. The primes p satisfying the relation k(p) = k(p2) are often referred to as
Wall-Sun-Sun primes [1] or as Fibonacci-Wieferich primes [5].

Finding an answer to Wall’s question can be extremely difficult. In 1992, Zhi-Hong Sun and
Zhi-Wei Sun [6] showed that, if p - xyz and xp + yp = zp, then k(p) = k(p2). Consequently,
an affirmative answer to Wall’s question implies the first case of Fermat’s last theorem. From
this point of view, there is a similarity to the well-known Wieferich primes. Recall that an
odd prime p is called Wieferich if 2p−1 ≡ 1 (mod p2). In 1909, A. Wieferich [10] proved that,
if p - xyz and xp + yp = zp, then 2p−1 ≡ 1 (mod p2). The only Wieferich primes known are
1093 and 3511; this has been verified up to 1.25× 1015 [3].

In this paper we focus on a similar problem related to the Tribonacci sequence. Recall
that the Tribonacci sequence (Tn)∞n=0 is defined by Tn+3 = Tn+2 + Tn+1 + Tn with T0 = 0,
T1 = 0, T2 = 1. It is well-known [8, Theorem 1] that (Tn mod m)∞n=0 is periodic. Let h(m)
denote the period of (Tn mod m)∞n=0. In [8, pp. 349–351], M. E. Waddill proved that, if
h(p) = h(ps) 6= h(ps+1), then h(pt) = pt−sh(p) for t ≥ s. By analogy with the Fibonacci
case, the primes p satisfying h(p) = h(p2) may be called Tribonacci-Wieferich primes. Up to
the present, no instance of h(p) = h(p2) has been found, and it is an open question whether
h(p) = h(p2) never appears.

2. Matrix characterization of h(p) = h(p2)

The Tribonacci numbers Tn can be computed by taking the powers of the Tribonacci
companion matrix T . If
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T =




0 1 0
0 0 1
1 1 1


 , then T n =




Tn−1 Tn−2 + Tn−1 Tn

Tn Tn−1 + Tn Tn+1

Tn+1 Tn + Tn+1 Tn+2


 for n > 1. (2.1)

Clearly, h(p) is the period of (Tn mod p)∞n=0 if and only if h(p) is the smallest positive
integer h for which T h ≡ E (mod p) and h(p2) is the period of (Tn mod p2)∞n=0 if and only
if h(p2) is the smallest positive integer k satisfying T k ≡ E (mod p2) where E is the 3 × 3
identity matrix. For any prime p we define an integer matrix Ap = [aij] such that

Ap =
1

p
(T h(p) − E). (2.2)

From (2.1) it follows now that

Ap =




a11 a31 − a21 a21

a21 a11 + a21 a31

a31 a21 + a31 a11 + a21 + a31


 . (2.3)

Lemma 2.1. For any prime p, we have h(p) 6= h(p2) if and only if Ap 6≡ 0 (mod p).

Proof. This follows from (2.2). ¤
Lemma 2.2. For any prime p, the elements a11, a21, a31 in (2.3) satisfy

3a11 + 2a21 + a31 ≡ 0 (mod p). (2.4)

Proof. From (2.2) and (2.3), we obtain that

det T h(p) ≡ 1 + p(3a11 + 2a21 + a31) (mod p2)

and the lemma follows from det T = 1. ¤
From (2.3) and (2.4) it follows that the elements of Ap mod p can be expressed by means

of a11, a21 alone. Of course, if Ap ≡ 0 (mod p), then detAp ≡ 0 (mod p). On the other hand,
we have the following proposition.

Proposition 2.3. Let p 6= 2. If detAp ≡ 0 (mod p) and Ap 6≡ 0 (mod p), then there is an
ε ∈ Z such that

7ε3 + 29ε2 + 39ε + 19 ≡ 0 (mod p) and a21 ≡ a11ε (mod p).

Proof. Using (2.3) and (2.4), we obtain after some simplification

detAp ≡ −(38a3
11 + 78a2

11a21 + 58a11a
2
21 + 14a3

21)(mod p). (2.5)

Suppose p|a11 and p - a21. Then from (2.5) we have detAp ≡ −14a3
21 (mod p) and thus

14 ≡ 0 (mod p). As p 6= 2, we have p = 7. We can verify that h(7) = 48. Then, for A7, we
have

A7 =
1

7
(T 48 − E) ≡




4 2 0
0 4 2
2 2 6


 (mod 7).

Hence, a11 ≡ 4 (mod 7), which is a contradiction to p|a11. Consequently, there is an ε ∈ Z
such that a21 ≡ a11ε (mod p). From (2.5) it now follows that

detAp ≡ −a3
11(14ε3 + 58ε2 + 78ε + 38) (mod p). (2.6)
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Since p - a11, p 6= 2 and p|detAp, it follows from (2.6) that

7ε3 + 29ε2 + 39ε + 19 ≡ 0 (mod p).

¤

Let Lp be the splitting field of the Tribonacci characteristic polynomial t(x)=x3−x2−x−1
over the field of p-adic numbers Qp and let α, β, γ be the roots of t(x) in Lp. Clearly, α, β, γ
are in the ring Op of integers of the field Lp. By a simple calculation we find that the
discriminant of t(x) is M t(x) = −44. See also [7, p. 310]. This implies that Lp/Qp does
not ramify for p 6= 2, 11 and so the maximal ideal of Op is generated by p. Finally, for
a unit u ∈ Op, we denote by ordpt(u) the least positive rational integer k such that uk ≡
1(mod pt). As uk ≡ 1 (mod p) implies upk ≡ 1 (mod p2), we have either ordp2(u) = ordp(u)
or ordp2(u) = p · ordp(u).

Theorem 2.4. Let p 6= 2, 11. Then, for any t ∈ N, we have

h(pt) = lcm(ordpt(α), ordpt(β), ordpt(γ)). (2.7)

Proof. Over Lp, we can write Tn = Aαn + Bβn + Cγn for suitable A,B,C ∈ Lp. The
coefficients A,B, C are uniquely determined by the system of equations A + B + C = 0,
Aα+Bβ +Cγ = 0 and Aα2 +Bβ2 +Cγ2 = 1 over Lp. The determinant of the matrix of this
system is equal to (α−β)(α−γ)(γ−β). As α 6≡ β(mod p), α 6≡ γ(mod p) and β 6≡ γ(mod p),
Cramer’s rule gives A = [(α−β)(α−γ)]−1, B = [(α−β)(γ−β)]−1, C = −[(α−γ)(γ−β)]−1.
Moreover, A,B,C are units in Op. Let k = h(pt). Then [Aαk +Bβk +Cγk, Aαk+1 +Bβk+1 +
Cγk+1, Aαk+2 + Bβk+2 + Cγk+2] ≡ [A + B + C, Aα + Bβ + Cγ,Aα2 + Bβ2 + Cγ2](mod pt).
This system can be reduced to the equivalent form




1 1 1
α β γ
α2 β2 γ2







A(αk − 1)
B(βk − 1)
C(γk − 1)


 ≡




0
0
0


 (mod pt). (2.8)

As the determinant of the matrix in (2.8) is not divisible by p, (2.8) has only one solution

A(αk − 1) ≡ 0 (mod pt), B(βk − 1) ≡ 0 (mod pt), C(γk − 1) ≡ 0 (mod pt).

This implies αk ≡ 1 (mod pt), βk ≡ 1 (mod pt) and γk ≡ 1 (mod pt). Thus, we have
ordpt(α)|k, ordpt(β)|k and ordpt(γ)|k, which implies

lcm(ordpt(α), ordpt(β), ordpt(γ))|k.

As A, B, C are not divisible by p, the periods of (Aαn mod pt)∞n=0, (Bβn mod pt)∞n=0 and
(Cγn mod pt)∞n=0 are ordpt(α), ordpt(β) and ordpt(γ) . Consequently, the period k of (Aαn +
Bβn +Cγn mod pt)∞n=0 divides lcm(ordpt(α), ordpt(β), ordpt(γ)) and the theorem follows. ¤

Remark 2.5. If p 6= 2, 11 then Op/(p) is the field with p[Lp:Qp] elements where
[Lp : Qp] ∈ {1, 2, 3}. Thus, for any λ ∈ {α, β, γ}, ordp(λ)|p[Lp:Qp] − 1, and by (2.7), we
have h(p)|p[Lp:Qp] − 1. This implies that, for any prime p 6= 2, 11, h(p) 6≡ 0 (mod p). If
p = 2, 11, then h(p) ≡ 0 (mod p). Exactly, h(2t)=2t+1 and h(11t)=10 · 11t for any t ∈ N.

Lemma 2.6. For any prime p 6= 2, 11, we have Ap ≡ 0 (mod p) if and only if
ordp2(λ) 6≡ 0 (mod p) for each λ ∈ {α, β, γ}.
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Proof. From Lemma 2.1 it follows that Ap ≡ 0 (mod p) if and only if h(p) = h(p2). As
p 6= 2, 11, by Remark 2.5, we have p - h(p), which, together with (2.7), yields h(p) = h(p2)
if and only if lcm(ordp2(α), ordp2(β), ordp2(γ)) 6≡ 0 (mod p). ¤
Lemma 2.7. Let p 6= 2, 11. Then lcm(ordpt(α), ordpt(β)) = lcm(ordpt(α), ordpt(γ)) =
lcm(ordpt(β), ordpt(γ)) = lcm(ordpt(α), ordpt(β), ordpt(γ)) for any t ∈ N.

Proof. This follows from the Viète equation αβγ = 1. ¤
Theorem 2.8. Let p 6= 2, 11 and Ap 6≡ 0 (mod p). Then detAp ≡ 0 (mod p) if and only
if there is a unique λ ∈ {α, β, γ} for which ordp2(λ) 6≡ 0 (mod p). Moreover, for this λ, we
have λ ∈ Zp where Zp is the ring of p-adic integers.

Proof. Over the field Lp, the Tribonacci matrix T is similar to the diagonal matrix D with
α, β, γ on the diagonal. Thus, an invertible matrix H exists such that T = HDH−1 and thus
T h = HDhH−1 where h = h(p). On the other hand, T h = E+pAp where Ap 6≡ 0 (mod p). If
we combine these two expressions, we have E +pAp = HDhH−1, which implies pH−1ApH =
Dh − E. By the well-known properties of determinants, we easily obtain that

p3 · detAp = (αh − 1)(βh − 1)(γh − 1). (2.9)

Let detAp ≡ 0 (mod p). From (2.7) and (2.9), it now follows that at least one of the
differences αh−1, βh−1, γh−1 is divisible by p2. Consequently, for at least one λ ∈ {α, β, γ},
we have ordp2(λ) 6≡ 0 (mod p). Since Ap 6≡ 0 (mod p), it follows from Lemmas 2.6 and 2.7
that this λ is unique. Without loss of generality, we can assume λ = α. Suppose that α /∈ Zp.
The Galois group Gal(Lp/Qp) is cyclic, generated by the Frobenius automorphism σ. Then
ασ 6= α and so ασ ∈ {β, γ}, say ασ = β. Then ordp2(β) = ordp2(α) 6≡ 0 (mod p), which is a
contradiction as α is the unique root with this property.

Conversely, let α be the unique λ ∈ {α, β, γ} such that ordp2(λ) 6≡ 0 (mod p). Conse-
quently, we have ordp2(α)=ordp(α). Put r=ordp(α). Then we have p2|αr − 1 in Op. From
(2.7), it follows that r|h and thus p2|αh−1 in Op. Further from (2.7), it follows that p|βh−1
and p|γh − 1. If we combine these facts, we obtain p4|(αh − 1)(βh − 1)(γh − 1). From (2.9),
it now follows that detAp ≡ 0 (mod p). ¤
Corollary 2.9. Let t(x) be irreducible over Qp. Then we have

Ap ≡ 0 (mod p) if and only if detAp ≡ 0 (mod p). (2.10)

Proof. If t(x) is irreducible over Qp, then there is no root of t(x) in Zp. ¤
Corollary 2.10. Let p 6= 2, 11. Then detAp ≡ 0 (mod p) if and only if there is at least one
λ ∈ {α, β, γ} such that ordp2(λ) 6≡ 0 (mod p).

Proof. This follows from Theorem 2.8 and Lemma 2.6. ¤
Our results can be summarized in the following theorem.

Theorem 2.11. Let p 6= 2, 11 and let k be the number of roots α, β, γ of t(x) in Op whose
order modulo p2 is divisible by p. Then the following cases may occur:

Case k = 0: h(p) = h(p2), or equivalently Ap ≡ 0 (mod p).
Case k = 1: This case is impossible.
Case k = 2: h(p) 6= h(p2) and detAp ≡ 0 (mod p).
Case k = 3: h(p) 6= h(p2) and detAp 6≡ 0 (mod p).
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Proof. Theorem 2.4 gives that k = 0 if and only if h(p) = h(p2). Lemma 2.1 states that
h(p) = h(p2) if and only if Ap ≡ 0 (mod p). Using Lemma 2.7, we see that the case k = 1 is
impossible and Theorem 2.8 distinguishes the remaining two cases. ¤

A natural question arises whether there is a prime p satisfying k = 2. Since the solution
of this question seems to be as difficult as the question whether h(p) 6= h(p2) for all primes
p, we state it as a problem.

Problem 2.12. Decide whether there is a prime p for which h(p) 6= h(p2) and
ordp(α) = ordp2(α) where α ∈ Z is a solution of x3−x2−x−1 ≡ 0 (mod p2). The prime
p satisfying this condition may be called Tribonacci-Wieferich prime of the second kind.

3. Criteria for testing Tribonacci-Wieferich primes

In this section we derive two interesting criteria that can be used, without computing the
roots of t(x) in Op, to decide whether h(p) = h(p2) or not. Let p 6= 2, 11. Put q = |Op/(p)|.
By Remark 2.5, q = pt where t = [Lp : Qp] ∈ {1, 2, 3}. For proofs of our criteria, we shall
need the following lemma.

Lemma 3.1. Let p 6= 2, 11. Then, for a unit u ∈ Op, we have

ordp2(u) 6≡ 0 (mod p) if and only if uq−1 ≡ 1 (mod p2). (3.1)

Proof. Put s = ordp2(u). Clearly, [Op/(p
2)]× has q(q − 1) elements and so s|q(q − 1). Let

p - s. As q = pt, we have s|q − 1 and uq−1 ≡ 1 (mod p2) follows. On the other hand, let
uq−1 ≡ 1 (mod p2). Then s|q − 1. As p - q − 1, we have ordp2(u) 6≡ 0 (mod p). ¤

Now we are ready for the following theorem.

Theorem 3.2. Let p 6= 2, 11, u ∈ Op such that t(u) ≡ 0 (mod p). Let t(x) be irreducible
over Qp. Then the following statements are equivalent:

(i) h(p) = h(p2),
(ii) u3q − u2q − uq − 1 ≡ 0 (mod p2).

Proof. Let u ∈ Op, t(u) ≡ 0 (mod p). Then we have u ≡ α (mod p) or u ≡ β (mod p) or
u ≡ γ (mod p). We can assume u ≡ α (mod p). Then uq ≡ αq (mod p2). If h(p) = h(p2),
then uq ≡ αq ≡ α (mod p)2 and u3q − u2q − uq − 1 ≡ α3−α2−α−1 = 0 (mod p2).
On the other hand, assume u3q − u2q − uq − 1 ≡ 0 (mod p2). Let uq = α + pv. Then
(α + pv)3 − (α + pv)2 − (α + pv) − 1 ≡ pv(3α2 − 2α − 1) ≡ pv · t′(α) ≡ 0 (mod p2). Now
p 6= 2, 11 implies t′(α) 6≡ 0 (mod p) and so v ≡ 0 (mod p). Consequently, uq ≡ α (mod p2)
and αq−1 ≡ uq(q−1) ≡ 1 (mod p2). This, together with Lemma 3.1, yields ordp2(α) 6≡ 0
(mod p) and, by Corollary 2.10, we have detAp ≡ 0 (mod p). As t(x) is irreducible over
Qp, Corollary 2.9 yields Ap ≡ 0 (mod p) and h(p) = h(p2) follows using Lemma 2.1. ¤
Theorem 3.3. Let p 6= 2, 11, u ∈ Op such that t(u) ≡ 0 (mod p). Suppose that t(x) is
irreducible over Qp. Then the following statements are equivalent:

(i) h(p) = h(p2),
(ii) t(u) + (uq − u)t′(u) ≡ 0 (mod p2),
(iii) 3uq+2 − 2uq+1 − uq − 2u3 + u2 − 1 ≡ 0 (mod p2),

where t′ is the derivative of the Tribonacci characteristic polynomial t.
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Proof. Let α, β, γ be the roots of t(x) in Op and let u ∈ Op, t(u) ≡ 0 (mod p). We can
assume u ≡ α (mod p). Let u = α + pw. Then (ii) is equivalent to

(αq − α)(t′(α) + pw · t′′(α)) ≡ 0 (mod p2). (3.2)

If h(p) = h(p2), then by Lemmas 2.1 and 2.6 we have ordp2(α) 6≡ 0 (mod p) which, together
with Lemma 3.1, yields αq ≡ α (mod p2) and (3.2) follows. Conversely, assume (3.2). As
p 6= 2, 11, we have t′(α)+pw ·t′′(α) = 3α2−2α−1+6αpw−2α ≡ 3(α+pw)2−2(α+pw)−1 ≡
f ′(u) 6≡ 0 (mod p). Consequently, (3.2) yields αq−α ≡ 0 (mod p2). Using Lemma 3.1 and
Corollary 2.10, we have detAp ≡ 0 (mod p) and the irreducibility of t(x) yields Ap ≡ 0
(mod p) by (2.10). This, together with Lemma 2.1, implies h(p) = h(p2) as required. Finally,
by expansion of (ii) we obtain (iii) and the proof is finished. ¤
Remark 3.4. The result of Theorem 3.3, part (iii), is similar to that found by Li [4, p. 83]
for a Fibonacci sequence.

Remark 3.5. Theorems 3.2 and 3.3 have been proved on the assumption that t(x) is irre-
ducible over Qp. Let us now discuss the case of this assumption not being fulfilled. Clearly,
the proofs of the (i) ⇒ (ii) implications of both theorems remain valid even if the assumption
of irreducibility of t(x) is omitted. When proving the reverse (ii) ⇒ (i) implication, the
following two cases may occur.

If α is the unique root with the property ordp2(α) 6≡ 0 (mod p) then, by Lemma 2.6, we
have Ap 6≡ 0 (mod p) and thus h(p) 6= h(p2). By Theorem 2.8, we have detAp ≡ 0 (mod p).
Consequently, p is a Tribonacci-Wieferich prime of the second kind. In the opposite case,
Lemma 2.6 and Lemma 2.7 yield Ap ≡ 0 (mod p), and h(p) = h(p2) follows.

4. Computer investigation of Tribonacci-Wieferich primes

In addition to the main result formulated in Theorem 4.3, our computer search for the
Tribonacci-Wieferich primes brought an interesting discovery.

Let I denote the set of all primes for which t(x) is irreducible over Qp and I(x) be the
number of all p ∈ I, p ≤ x. Further, let Q denote the set of all primes p for which t(x)
is factorized over Qp into a product of a linear factor and a quadratic irreducible factor,
and Q(x) be the number of all p ∈ Q, p ≤ x. Finally, let L denote the set of all primes
p for which t(x) is factorized over Qp into linear factors and L(x) be the number of all
p ∈ L, p ≤ x. Clearly, I ∪ Q ∪ L is the set of all primes and I, Q, L are pairwise disjoint.
Consequently, I(x) + Q(x) + L(x) = π(x) where π(x) is the number of all primes p not
exceeding x. Note that 2 ∈ I and 11 ∈ Q. The result of our computer examination of the
exact values I(x), Q(x), L(x) is summarized in the following table.

x I(x) Q(x) L(x) π(x)
102 11 12 2 25
103 59 84 25 168
104 412 616 201 1229
105 3212 4805 1575 9592
106 26135 39305 13058 78498
107 221524 332459 110596 664579
108 1920148 2881402 959905 5761455
109 16949462 25425162 8472910 50847534

(4.1)

Table 1.
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From Table 1, we can see that, approximately, we have

I(x) : Q(x) : L(x) ≈ 2 : 3 : 1. (4.2)

Recall now that a subset A of the set of all primes has a natural density d(A) if

d(A) = lim
x→∞

|{p ∈ A; p ≤ x}|
π(x)

. (4.3)

Using the Frobenius Density Theorem [2], we can prove that d(I) = 1/3, d(Q) = 1/2, and
d(L) = 1/6. Thus we can formulate the following theorem.

Theorem 4.1. For d(I), d(Q), d(L) we have d(I) : d(Q) : d(L) = 2 : 3 : 1.

This means that our computer observation (4.2) is a consequence of Theorem 4.1.

Remark 4.2. An interesting question is whether for some primes, the chance that they are
Tribonacci-Wieferich is greater than for the others. This is supported by the fact that the
following assertion holds: If q = p[Lp:Qp], then in the multiplicative group [Op/(p

2)]× there
exist exactly q − 1 elements α satisfying αq−1 ≡ 1 (mod p2). Consequently, the number of
α ∈ [Op/(p

2)]× satisfying αq−1 ≡ 1 (mod p2) strongly depends on the form of factorization
of t(x) over Qp. Supposing that the images of the roots α, β, γ in [Op/(p

2)]× are randomly
distributed (such as when rolling a die) the probability strongly depends on which of the sets
I, Q, L the prime p belongs to. A similar reasoning for the case of a Fibonacci sequence would
lead to an interesting conclusion that the probability of finding the first Fibonacci-Wieferich
prime is much greater for primes ending with the digits 1 or 9.

Now we state the main theorem. By means of an extensive computer search we have
obtained the following two results.

Theorem 4.3.
(i) There is no Tribonacci-Wieferich prime p < 109.
(ii) There is no Tribonacci-Wieferich prime of the second kind p < 109.

Remark 4.4. By analogy with Problem 2.12, we can consider a similar problem for a
Tetranacci sequence (Mn)∞n=0 defined by Mn+4 = Mn+3 + Mn+2 + Mn+1 + Mn with M0 =
M1 = M2 = 0 and M3 = 1. Now, let h(m) denote a period of (Mn mod m)∞n=0. Is there
a prime p for which h(p) 6= h(p2) and ordp(α) = ordp2(α) where α ∈ Z is a solution of
x4 − x3 − x2 − x− 1 ≡ 0 (mod p2)? To this problem we find the following solution.

Theorem 4.5. For p < 109, there are exactly three Tetranacci-Wieferich primes of the
second kind: p1 = 17, p2 = 191, and p3 = 11351.
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