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Abstract. We provide combinatorial proofs of some formulas for the power of a Lucas
number which as far as we know have only been proven using other methods. We achieve
this by introducing a new kind of object we call a bracket into the usual square-and-domino
tiling model.

1. Introduction

Let Fn and Ln denote the Fibonacci and Lucas numbers defined, respectively, by F0 = 0,
F1 = 1 with Fn = Fn−1 + Fn−2 if n ≥ 2 and by L0 = 2, L1 = 1 with Ln = Ln−1 + Ln−2

if n ≥ 2. Recently, proofs which use tilings have explained a variety of identities involving
Fibonacci and Lucas numbers, as popularized by Benjamin and Quinn in their text [3]. See
for example, [1, 2, 5]. Here we add a certain feature to the usual square-and-domino tilings
and find combinatorial proofs of the following four identities where m ≥ 1, n ≥ 0:
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The first two identities above occur as V78 and V79 on pages 144–145 of Proofs that Really
Count [3], where Benjamin and Quinn raise the question of finding their combinatorial proofs.
See Vajda [6] for algebraic proofs. The latter two identities were recently derived by Ma and
Zhang [4] using algebraic methods. In this note, we provide combinatorial proofs of Fibonacci
and Lucas polynomial identities from which formulas (1.1)–(1.4) will follow as special cases
upon using a new construction we term bracketed tiling.

2. Preliminaries

Consider a board of length n with cells labeled 1 to n. A tiling of this board (termed
an n-tiling) is an arrangement of indistinguishable squares (pieces covering a single cell)
and indistinguishable dominos (rectangular pieces covering two cells) which cover the board
completely and no pieces overlap. Let Fn denote the set of all (linear) n-tilings. When the
board is circular, meaning that a domino may wrap around from cell n back to cell 1, we
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denote the set of all n-tilings by Ln. Circular tilings are also called bracelets. It is clear that
Fn ⊆ Ln. Recall that

| Fn | = Fn+1, n ≥ 1,

and

| Ln | = Ln, n ≥ 1.

(If we let F0 = {∅}, the “empty tiling,” and L0 consist of two empty tilings of opposite
orientation, then these relations hold for n = 0 as well.)

Now assign the weight x to every square in a tiling and the weight y to every domino.
Given T ∈ Fn (or Ln), define the weight ω(T ) of the tiling to be the product of the weights
of its tiles. The Fibonacci and Lucas polynomials (see, e.g., [3]) are given, respectively, as

Fn(x, y) :=
∑

T∈Fn

ω(T )

and

Ln(x, y) :=
∑

T∈Ln

ω(T ).

As an example, we have L3 = {sss, slr, lrs, rsl} and L3(x, y) = x3 + 3xy, where s is a
square, and l and r are the left and right halves of a domino. The Fn(x, y) and Ln(x, y) both
satisfy a two-term recurrence of the form

an+2 = xan+1 + yan, n ≥ 1,

upon considering whether a tiling ends in a square or domino. By defining F0(x, y) = 1 and
L0(x, y) = 2, the recurrence holds for n = 0 as well. Note that when x = y = 1, all tilings
have unit weight, which implies that Fn(1, 1) =| Fn |= Fn+1 and Ln(1, 1) =| Ln |= Ln.

3. Bracketed Tilings

3.1. Counting Bracketed Tilings. A wide variety of combinatorial identities can be
proven using constant-weight tilings, variable-weight tilings, or simply unit-weight tilings
(see, e.g., [2, 3]). Here we take these methods in a different direction by introducing a new
kind of object into our tilings. A bracket is an object that occupies a single cell, like a square.
They come in two varieties, which we denote by < and >, and must be placed according to
the following criterion:

Every group of consecutive brackets must be properly paired and nested in a
manner identical to parentheses. Such groups may occur even between the left
and right halves of a domino.

Bracketed tilings of length n with k bracket pairs, where 0 ≤ k ≤ bn
2
c, may be formed

as follows. First select the k positions for the < on a board of length n. This uniquely
determines the positions of the > since they must follow the < without gaps. For once you
have selected the slots to be occupied by left brackets, you fill in the gaps in such a way so
that the first right bracket goes in the first available slot to the right of the first left bracket,
the second right bracket goes in the first now available slot to the right of the second left
bracket, and so on. If one runs out of spaces in which to place right brackets, then continue
searching for spaces from left to right at the beginning of the tiling. Once they are placed,
the left and right brackets are paired in a manner identical to parentheses. Below are two
examples when n = 8 and k = 3:
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< < < −→ < < > < > >

< < < −→ > < > < < > .

Note that in the second example, the < in the sixth slot is paired with the > in the first
slot. We will say that a bracket pair <> wraps around if the > occurs to the left of the <.
Once the positions of the k pairs of brackets are determined, cover the remaining n−2k cells
with a tiling of squares and dominos, where the left and the right halves of a domino may
be separated by a group of consecutive brackets. This subtiling of squares and dominos may
be a linear tiling or a bracelet containing a wraparound domino.

One might wonder, a priori, whether the bracket pairs <> are uniquely determined once
the brackets have been placed as described above. The proof of the following lemma shows
that indeed they are.

Lemma 3.1. For any < within a bracketed tiling, the position of its matching bracket > is
uniquely determined.

Proof. Selecting an arbitrary <, we can determine the position of its partner > as follows.
Start a count of 1 at the <. Move to the next cell, wrapping around if necessary. Either
increment the counter if it contains a < or decrement the counter if it contains a > (note
that these are the only two options regarding the next cell, since squares and dominos are
not allowed between bracket pairs). Proceeding in this fashion, the matching > is located
where the counter reaches zero. ¤

We now differentiate two types of bracketed tilings. A straight bracketed n-tiling consists
of k bracket pairs for some k, none of which wrap around, and whose subtiling of squares and
dominos belongs to Fn−2k. A bracketed n-bracelet consists of k bracket pairs, some of which
may wrap around, and whose subtiling of squares and dominos belongs to Ln−2k (except
when n is even and k = n

2
, in which case there is just one possibility for the subtiling,

not two). Let BFn denote the set of straight bracketed n-tilings and let BLn denote the
bracketed n-bracelets. It is clear that BFn ⊆ BLn. Below are some examples:

{l <><<>> r, slr <><> s, <<><<>>>} ⊂ BF8,

{rl <><<>>, > rsslrl <, <>><<<>>} ⊂ BL8 −BF8.

The following are not bracketed tilings at all

<<>, < lr >, < s >, ll <> rr, s <>><<> .

We extend the weights defined above on Fn and Ln to BFn and BLn by assigning every
bracket pair the weight y and define the weight of a bracketed tiling to be the product of
the weights of all of its tiles and brackets. Define the polynomials F ∗

n(x, y) and L∗n(x, y) by

F ∗
n(x, y) :=

∑

T∈BFn

ω(T )

and
L∗n(x, y) :=

∑

T∈BLn

ω(T ).

When n = 3, for example, we have BL3 = {sss, slr, lrs, rsl, s <>, <> s, > s <} and
L∗3(x, y) = x3 + 6xy.
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Counting bracketed bracelets according to the number of <> pairs yields the following
proposition.

Proposition 3.2. If n ≥ 0, then

L∗2n+1(x, y) =
n∑

k=0

yk

(
2n + 1

k

)
L2n+1−2k(x, y) (3.1)

and

L∗2n(x, y) = yn

(
2n

n

)
+

n−1∑

k=0

yk

(
2n

k

)
L2n−2k(x, y). (3.2)

Proof. Let k denote the number of <> pairs in a bracketed m-bracelet, where 0 ≤ k ≤ bm
2
c.

Select k cells on an m-board to be occupied by a < in
(

m
k

)
ways, which uniquely determines

the positions of the >. These k bracket pairs contribute weight yk. Cover the remaining
m− 2k cells with a (weighted) member of Lm−2k. If m = 2n is even, the cases when k = n
and k < n must be differentiated. ¤

One may also count bracketed bracelets by filling in the gaps between sets of consecutive
brackets with straight tilings instead of bracelets.

Proposition 3.3. If n ≥ 0, then

L∗2n+1(x, y) =
n∑

k=0

yk

(
2n + 2

k

)
F2n+1−2k(x, y) (3.3)

and

L∗2n(x, y) =
n∑

k=0

yk

(
2n + 1

k

)
F2n−2k(x, y). (3.4)

Proof. Suppose the length of a bracketed bracelet is m. Choose an arbitrary subset S of
[m + 1] of size k, where 0 ≤ k ≤ bm

2
c. If m + 1 /∈ S, then place a < in the positions on an

m-board corresponding to the elements of the subset, which uniquely determines the >. If
m + 1 ∈ S, place a < in the k− 1 positions on an m-board corresponding to the elements of
S−{m+1}, which determines the >; then add the left half of a domino to the right-most cell
not occupied by a bracket and the right half of a domino to the left-most unoccupied cell. In
either case, fill in the remaining m− 2k cells with a (weighted) member of Fm−2k. If m = 8,
for example, the bracketed tilings > sl <> rs < and >> rssl << would be members of
BL8 which correspond, respectively, to the subsets S = {4, 8} and S = {7, 8, 9} of [9]. ¤
3.2. A Sign-Changing Involution. Define the sign of a member of BLm as (−1)k, where
k denotes the number of bracket pairs. We have the following.

Proposition 3.4. If n ≥ 0, then

x2n+1 =
n∑

k=0

(−y)k

(
2n + 1

k

)
L2n+1−2k(x, y) (3.5)

and

x2n = (−y)n

(
2n

n

)
+

n−1∑

k=0

(−y)k

(
2n

k

)
L2n−2k(x, y). (3.6)

FEBRUARY 2010 65



THE FIBONACCI QUARTERLY

Proof. The right sides of (3.5) and (3.6) give the total signed weight of all members of BLm

for odd and even m, respectively. To complete the proof, we define a sign-reversing, weight-
preserving involution of BLm whose sole survivor is the all-square tiling, which has weight
xm. Within a member of BLm, call either a domino l · · · r or an un-nested bracket pair
< · · · > an outermost pair. Define the first outermost pair to be the one whose left half is
furthest to the left. Switching the first outermost pair to the opposite type produces the
desired involution. For example, the tilings > sl <> rs < and >> rssl << in BL8 would
be paired, respectively, with > s <<>> s < and >>> ss <<<. ¤

Proposition 3.5. If n ≥ 0, then

x2n+1 =
n∑

k=0

(−y)k

[(
2n + 1

k

)
−

(
2n + 1

k − 1

)]
F2n+1−2k(x, y) (3.7)

and

x2n =
n∑

k=0

(−y)k

[(
2n

k

)
−

(
2n

k − 1

)]
F2n−2k(x, y). (3.8)

Proof. Let k denote the total number of bracket pairs plus the number of wraparound domi-
nos (either 0 or 1) within a member of BLm. Then the right sides of (3.7) and (3.8) give the
total signed weight of all members of BLm for odd and even m according to the value of k;
note that the sign is (−1)k−1 if a wraparound domino occurs. Now apply the involution of
the preceding proof. ¤

Remark 3.6. Taking x = y = 1 in the above proofs, we get combinatorial explanations for
such identities as

1 =
n∑

k=0

(−1)k

(
2n + 1

k

)
L2n+1−2k

and

1 =
n∑

k=0

(−1)k

[(
2n + 1

k

)
−

(
2n + 1

k − 1

)]
F2n+2−2k.

3.3. Proofs of (1.1)–(1.4). To complete the proofs of formulas (1.1)–(1.4), we will need
the values of Fn(x, y) and Ln(x, y) when x = Lm and y = (−1)m+1. The following relations
are equivalent to special cases of a more general result which was established in [2] and given
both algebraic and combinatorial proofs.

Lemma 3.7. If m,n ≥ 1, then

Fn

(
Lm, (−1)m+1

)
=

F(n+1)m

Fm

(3.9)

and

Ln

(
Lm, (−1)m+1

)
= Lnm. (3.10)

Relations (3.9) and (3.10) also follow from substituting the Binet formula for Lm into those
for Fn(x, y) and Ln(x, y) and simplifying.

We can now complete the proofs of identities (1.1)–(1.4).
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Proof. Identities (1.1) and (1.2) follow, respectively, from (3.5) and (3.6) upon substituting
x = Lm and y = (−1)m+1 and applying (3.10). Substituting x = Lm and y = (−1)m+1 into
(3.7) and (3.8), and applying (3.9), yields identities (1.3) and (1.4), upon replacing k with
n− k and observing (

r

t

)
−

(
r

t− 1

)
=

r − 2t + 1

r − t + 1

(
r

t

)

for positive integers r and t. ¤
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