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Abstract. In this paper, we study the elements of the continued fractions of
√

Q and
(−1 +

√
4Q + 1)/2 (Q ∈ N). We prove that if the period length of continued fraction

of (−1 +
√

4Q + 1)/2 is even, then the middle element is odd (see Theorem 1.4 below), a
phenomenon observed first by Arnold [2]. We obtain an analogue theorem for the continued
fraction of

√
Q (see Theorem 1.6 below). We also give the parametrization of positive

integers Q such that continued fractions of
√

Q (respectively, (−1+
√

1 + 4Q)/2) has period
of length dividing T , where T is an arbitrary positive integer, which generalize Theorem 3
of Arnold [1]. We explicitly describe the set of positive integers Q such that the continued
fraction of

√
Q has period length equal to 3 or 4.

1. Introduction

This paper is motivated by a series of papers by V. I. Arnold. In [1, 2, 3], by calculating
hundreds of examples, Arnold exhibited some interesting statistic results of the continued
fractions of quadratic irrationals, though some of them were rediscovered. The aim of this
paper is to give the proofs of some results observed first by Arnold.

From Lagrange’s theorem we know that the continued fraction of an irrational α is periodic
if and only if α is quadratic. In this paper, following Arnold, we focus on the continued
fractions of the positive roots of equations x2 = Q and x2 + x = Q, where Q is a positive
rational integer.

First, we introduce some notions of the classical theory of continued fractions (see [4,
Chapter IV], [5, 6]). The finite continued fraction

a0 +
1

a1 + 1
. . . +

1

an

is expressed as [a0; a1, . . . , an]. Considering a0, a1, . . . , an as indeterminates, we have

[a0; a1, . . . , an] =
[a0, a1, . . . , an]

[a1, . . . , an]
,

where [a0, a1, . . . , an] is a polynomial of a0, a1, . . . , an. For example, [a0, a1] = a0a1+1. Denote
the numerator [a0, a1, . . . , an] by An. Then the sequence An can be calculated recursively:
A−1 = 1, A0 = a0, Ak+1 = ak+1Ak + Ak−1 (k ≥ 0). Similarly, denote the denominator
[a1, . . . , an] by Bn. Then B−1 = 0, B0 = 1, Bk+1 = ak+1Bk + Bk−1 (k ≥ 0). The symbol
[a0, a1, . . . , an] can also be computed directly by using Euler’s rule [4, p. 72–74]. There is a
simple relation between {An} and {Bn}:

AnBn−1 −BnAn−1 = (−1)n−1. (1.1)

Next we list as lemmas some known results which will be used subsequently.
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Lemma 1.1. For all a0, a1, . . . , an, [a0, a1, . . . , an] = [an, . . . , a1, a0].

The proof of this lemma appears at the beginning of Section 2.

Lemma 1.2. If Q ∈ N is not a perfect square, then the continued fraction of
√

Q is of the
form [a0; a1, . . . , an, 2a0], where a0 = b√Qc, an = a1, a2 = an−1, . . .. (For the proof, see [5, p.
79], [6, p. 47], or [4, pp. 83-92].)

Lemma 1.3. Let Q be a positive integer such that 1 + 4Q is not a perfect square. Then
the continued fraction of (−1 +

√
1 + 4Q)/2 is of the form [a0; a1, . . . , an, 2a0 + 1], where

a0 = b(−1 +
√

1 + 4Q)/2c, an = a1, a2 = an−1, . . .. (For the proof, see [5, p. 105].)

In this paper, we prove the following theorems.

Theorem 1.4. Let Q be a positive integer such that 1 + 4Q is not a perfect square. If the
length of the period of the continued fraction of α = (−1 +

√
1 + 4Q)/2 is even, then the

middle element an of the continued fraction

α = [a0; a1, . . . , an−1, an, an−1, . . . , a1, 2a0 + 1]

is odd.

Remark 1.5. Arnold ([2, p. 30]) described the parities of the ‘middle’ elements of such
continued fractions: “But I have no general proof of this fact, which has been observed in
several hundred examples.” This theorem gives a proof of his observation.

Considering the similarity of continued fractions of
√

Q and (−1 +
√

1 + 4Q)/2, we get
the following analogue of Theorem 1.4.

Theorem 1.6. Suppose that the length of the period of the continued fraction of
√

Q is
divisible by 4, i.e. the continued fraction is of the form√

Q = [a0; a1, . . . , a2n+1, a2n+2, a2n+1, . . . , a1, 2a0].

If the elements a1, . . . , a2n+1 are all even, then the middle element a2n+2 is even.

Arnold ([1], Theorem 3) parameterized those positive integers Q whose square roots
√

Q
have continued fractions of period length T = 2. He proved that the continued fraction of
the square root of an integer Q has the period of length T = 2 if and only if Q belongs to
one of the two-parametrical series:

(I) Q = x2y2 + x (x > 1, y ≥ 1),

(II) Q = x2y2 + 2x (x ≥ 1, y ≥ 1).

The following four theorems are generalizations of Arnold’s result.

Theorem 1.7. Let Q ∈ N. Then the continued fraction of
√

Q has period of length T = 3
if and only if Q is of the form

(u + k(4u2 + 1))2 + 4ku + 1,

where u, k ∈ N.

Theorem 1.8. Let Q ∈ N. The continued fraction of
√

Q has period of length T = 4 if and
only if one of the following three conditions holds.

(I) Q = (−(2v−1)(2uv−u−v+1)+k(2u−1)(4uv−2u−2v+3))2+4k(2uv−u−v+1)−(2v−
1)2, where u, v, k ∈ N satisfy −(2v−1)(2uv−u−v+1)+k(2u−1)(4uv−2u−2v+3) > 0;
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(II) Q = (−v(4uv + 1) + ku(4uv + 2))2 + k(4uv + 1) − 4v2, where u, v, k ∈ N satisfy
−v(4uv + 1) + ku(4uv + 2) > 0 and −v(4uv + 1) + ku(4uv + 2) 6= v;

(III) Q = (−v(4uv − 2v + 1) + k(2u − 1)(2uv − v + 1))2 + k(4uv − 2v + 1) − 4v2, where
u, v, k ∈ N satisfy −v(4uv− 2v + 1) + k(2u− 1)(2uv− v + 1) > 0 and −v(4uv− 2v +
1) + k(2u− 1)(2uv − v + 1) 6= v.

Generally, fixing a positive integer T , we can get the parametrization of positive integers
Q such that the continued fractions of

√
Q (respectively, (−1 +

√
1 + 4Q)/2) have period of

length dividing T .

Theorem 1.9. Let Q ∈ N. Then the continued fraction of
√

Q has period of length dividing
T if and only if Q is of the form

a2
0 + (−1)T+1[a2, . . . , a2]

2 + k[a2, . . . , a1],

where

a0 =
1

2

(
(−1)T+1[a2, . . . , a1][a2, . . . , a2] + k[a1, . . . , a1]

)

and a1, a2, . . . ∈ N, k ∈ Z such that

(−1)T+1[a2, . . . , a1][a2, . . . , a2] + k[a1, . . . , a1] ∈ 2N.

Theorem 1.10. Let Q ∈ N. Then the continued fraction of (−1 +
√

1 + 4Q)/2 has period
of length dividing T if and only if Q is of the form

a2
0 + a0 + (−1)T+1[a2, . . . , a2]

2 + k[a2, . . . , a1],

where

a0 =
1

2
((−1)T+1[a2, . . . , a1][a2, . . . , a2] + k[a1, . . . , a1]− 1)

and a1, a2, . . . ∈ N, k ∈ Z such that

(−1)T+1[a2, . . . , a2, a1][a2, . . . , a2] + k[a1, . . . , a1] + 1 ∈ 2N.

2. Proofs of the Theorems

Proof of Lemma 1.1. From the definition we know that

[a0; a1, . . . , an, an+1] = [a0; [a1; . . . , an, an+1]].

This means that

[a0, a1, . . . , an, an+1]

[a1, . . . , an, an+1]
= a0 +

[a2, . . . , an+1]

[a1, . . . , an+1]
=

a0[a1, . . . , an+1] + [a2, . . . , an+1]

[a1, . . . , an+1]
.

Thus,
[a0, a1, . . . , an, an+1] = a0[a1, . . . , an, an+1] + [a2, . . . , an, an+1]. (2.1)

Similarly,
[an+1, an, . . . , a1, a0] = an+1[an, . . . , a1, a0] + [an−1, . . . , a1, a0].

By induction, this is

an+1[a0, a1, . . . , an] + [a0, a1, . . . , an−1] = an+1An + An−1.

Now, the proof follows from the recursive formula for An. ¤
To prove Theorem 1.4, we need the following lemma.
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Lemma 2.1. Let ai ∈ N (i = 1, . . . , n). If an is even, then

[a1, . . . , an−1, an, an−1, . . . , a1]

is also even.

Proof. We prove the lemma by induction. If n = 1, then [a1] = a1 is even. Suppose that the
conclusion holds for all n ≤ k. Then

[a1, . . . , ak+1, . . . , a1] (recursive
= [a1, . . . , ak+1, . . . , a2]a1 + [a1, . . . , ak+1, . . . , a3] formula ofAn)
= [a2, . . . , ak+1, . . . , a1]a1 + [a3, . . . , ak+1, . . . , a1] (Lemma 1.1)
= ([a2, . . . , ak+1, . . . , a2]a1 + [a2, . . . , ak+1, . . . , a3])a1 (recursive

+[a3, . . . , ak+1, . . . , a2]a1 + [a3, . . . , ak+1, . . . , a3] formula ofAn)
= [a2, . . . , ak+1, . . . , a2]a

2
1 + 2[a3, . . . , ak+1, . . . , a2]a1

+[a3, . . . , ak+1, . . . , a3] (Lemma 1.1)
≡ 0 (mod 2). (induction assumption)

¤
The next lemma is needed in the proof of Theorem 1.6. The proof of this lemma is omitted

because it is similar to that of Lemma 2.1.
Lemma 2.2. If a1, . . . , a2n+1 are all even and a2n+2 is odd, then

[a1, . . . , a2n+1, a2n+2, a2n+1, . . . , a1] is even, and

[a2, . . . , a2n+1, a2n+2, a2n+1, . . . , a2] is odd.

Remark 2.3. [a1, . . . , an−1, an, an−1, . . . , a1] is the sum of certain products formed out of
a1, . . . , an−1, an. The products occurring in [a1, . . . , an−1, an, an−1, . . . , a1] can be explicitly
described by Euler’s rule ([4] p.72–74). They are obtained by omitting several separate pairs
of consecutive terms from the whole product a1 · · · an · · · a1. Given one way of omitting,
you can reverse the order of a1, . . . , an, . . . , a1, then you get a new way of omitting, but the
two products are the same. For example, letting n = 2, by reversing order, a1a2a1 changes
to a1a2a1. In this way, the only terms of [a1, . . . , an−1, an, an−1, . . . , a1] left (mod 2) are
the terms symmetric with respect to the middle element an. Since x2 ≡ x (mod 2), we
have [a1, . . . , an−1, an, an−1, . . . , a1] ≡ an[a1, . . . , an−1] (mod 2). Using this, one can obtain
Lemma 2.1 immediately. For example, letting n = 4, the term a1a2a3a4a3a2a1 and the term
a1a2a3a4 a3a2a1 are both equal to a1a2a3, so they vanish (mod 2). Thus

[a1, a2, a3, a4, a3, a2, a1] ≡ a1a4a1 + a3a4a3 + a1a2a3a4a3a2a1 ≡ a4[a1, a2, a3] (mod 2).

Using the same idea, one can get that

[a1, . . . , an−1, an, an, an−1, . . . , a1] ≡ (an + 1)[a1, . . . , an−1] + [a1, . . . , an−2] (mod 2).

To simplify the proofs of Theorems 1.4, 1.6, 1.9, and 1.10 we build the following lemma.
Lemma 2.4. Suppose α = [a0; a1, . . . , a1, b]. Then

α2 = −b(α− a0)− a2
0 + 2αa0 +

b[a2, . . . , a1] + [a2, . . . , a2]

[a1, . . . , a1]
. (2.2)

Remark 2.5. When T ≤ 3, we fix the notations as follows:

T = 1, [a2, . . . , a1] = 0, [a2, . . . , a2] = 1, [a1, . . . , a1] = 1;
T = 2, [a2, . . . , a1] = 1, [a2, . . . , a2] = 0, [a1, . . . , a1] = a1;
T = 3, [a2, . . . , a1] = a1, [a2, . . . , a2] = 1, [a1, . . . , a1] = a2

1 + 1.
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In these cases, the equations can be verified directly.

Proof of Lemma 2.4. Since α = [a0; a1, · · · , a1, b], we have

1
α− a0

= a1 + 1

a2 +
1

. . . a1 +
1

b + (α− a0)

=
(α− a0 + b)[a1, a2, . . . , a2, a1] + [a1, a2, . . . , a2]

(α− a0 + b)[a2, . . . , a2, a1] + [a2, . . . , a2]
.

Rearranging the terms and using Lemma 1.1, the equation becomes

α2 = −b(α− a0)− a2
0 + 2αa0 +

b[a2, . . . , a1] + [a2, . . . , a2]

[a1, . . . , a1]
.

¤
Proof of Theorem 1.4. We prove the theorem by contradiction. Assume that an is even.
Using Equation (2.2), we get

Q = a2
0 + a0 +

(2a0 + 1)[a2, . . . , a1] + [a2, . . . , a2]

[a1, . . . , a1]
.

From Lemma 2.1 we know that the denominator as well as [a2, . . . , a2] is even. But by
Equation (1.1), [a2, . . . , a2, a1] is relatively prime to it. So, the numerator is odd. This
contradicts the fact that Q ∈ N. The proof is completed. ¤
Proof of Theorem 1.6. Using Equation (2.2) we get

Q = a2
0 +

2a0[a2, . . . , a2n+2, . . . , a2, a1] + [a2, . . . , a2n+2, . . . , a2]

[a1, . . . , a2n+2, . . . , a1]
.

If a1, . . . , a2n+1 are all even and a2n+2 is odd, then from Lemma 2.2, the numerator is odd
and the denominator is even. That is a contradiction. ¤
Proof of Theorem 1.7. If the length of the continued fraction of

√
Q is 3, then we have√

Q = [a0; a1, a1, 2a0 + (
√

Q− a0)],

where a1 6= 2a0. Calculating recursively we get

[a0, a1] = a0a1 + 1, [a0, a1, a1] = a0a
2
1 + a0 + a1, [a1, a1] = a2

1 + 1.

Using Equation (2.2) we obtain

Q = a2
0 +

2a0a1 + 1

a2
1 + 1

. (2.3)

If a1 is odd, then the denominator is even and the numerator is odd. This is impossible since
Q ∈ N. So a1 is even. Write a1 = 2u.

Since (4u, 4u2 + 1) = 1, to make the fraction

2a0a1 + 1

a2
1 + 1

=
4ua0 + 1

4u2 + 1

a positive integer, we must have

a0 = u + k(4u2 + 1), k ∈ N.
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(We exclude the case k = 0, since then a1 = 2a0.) Substituting a0, a1 with u, k in Equation
(2.3), we obtain the expression of Q,

Q = (u + k(4u2 + 1))2 + 4ku + 1.

¤
Example 2.6. The least four Q ∈ N such that the length of the period of the continued
fraction of

√
Q is 3 are 41, 130, 269, 370. They correspond to

u = 1, 1, 1, 2;
k = 1, 2, 3, 1.

Proof of Theorem 1.8. Using Equation (2.2) we have

Q = a2
0 +

2a0[a2, a1] + [a2]

[a1, a2, a1]
= a2

0 +
2a0(a1a2 + 1) + a2

a1(a1a2 + 2)
.

From Theorem 1.6 we can see the parities of a1, a2: both a1 and a2 are odd, both are even,
or a1 is odd and a2 is even. These correspond to the three cases in the theorem. We prove
only the second case (the others can be discussed in a similar way). Denote a1, a2 as 2u, 2v,
respectively. Then we get

Q = a2
0 +

a0(4uv + 1) + v

u(4uv + 2)
.

Since (4uv + 1)2 − 4uv(4uv + 2) = 1, the fraction

a0(4uv + 1) + v

u(4uv + 2)
= −4v2

when a0 = −v(4uv + 1). Thus we get all the possible values of a0 to make the fraction
integral a0 = −v(4uv + 1) + ku(4uv + 2), k ∈ Z. This means

Q = (−(4uv + 1)v + ku(4uv + 2))2 + k(4uv + 1)− 4v2.

The conditions −v(4uv + 1) + ku(4uv + 2) > 0 is needed for guaranteeing a0 > 0. In order
to guarantee that the period length is 4, we need a2 6= 2a0, which is equivalent to the last
condition in the statement of the theorem. This completes the proof in case (II). ¤
Example 2.7.

(I) Let u = v = 1. Then −(2v − 1)(2uv − u − v + 1) = −1, (2u − 1)(4uv − 2u −
2v + 3) = 3. If k = 1, then Q = 7 and

√
7 = [2; 1, 1, 1, 4]. If k = 2, then Q = 32

and
√

32 = [5; 1, 1, 1, 10]. Let u = 1, v = 2. Then −(2v − 1)(2uv − u − v + 1) =
−6, (2u − 1)(4uv − 2u − 2v + 3) = 5. Then Q = 23 when k = 2 and Q = 96 when
k = 3. The continued fractions of

√
23 and

√
96 are [4; 1, 3, 1, 8] and [9; 1, 3, 1, 18],

respectively.
(II) Let u = v = 1, then 4uv + 1 = 5, u(4uv + 2) = 6. If k = 1, then 2a0 = a1 = a2. That

means the period is of length 1. If k = 2, we get Q = 55 and
√

55 = [7; 2, 2, 2, 14].
Let u = 2, v = 1. Then 4uv + 1 = 9, u(4uv + 2) = 20. When k = 1, we have Q = 126
and

√
126 = [11; 4, 2, 4, 22].

(III) Let u = v = 1. Then −v(4uv− 2v +1) = −3, (2u− 1)(2uv− v +1) = 2. When k = 2
we have 2a0 = a2 6= a1. It is the same to say that the period length is 2. When k = 3
and k = 4 we have Q = 14 and Q = 33, respectively. The corresponding continued
fractions are

√
14 = [3; 1, 2, 1, 6] and

√
33 = [5; 1, 2, 1, 10].
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Proof of Theorem 1.9. By Lemma 1.2, we can write
√

Q = [a0; a1, . . . , a1, 2a0].

By Equation (2.2),

Q = a2
0 +

2a0[a2, . . . , a1] + [a2, . . . , a2]

[a1, . . . , a1]
.

Since [a2, . . . , a1]
2 − [a1, . . . , a1][a2, . . . , a2] = (−1)T , the necessary and sufficient condition

for the fraction to be an integer is that

2a0 = (−1)T+1[a2, . . . , a1][a2, . . . , a2] + k[a1, . . . , a1] (k ∈ Z). (2.4)

Notice that the right side of (2.4) should be a positive even number. Thus we complete the
proof. ¤
Proof of Theorem 1.10. By Lemma 1.3, we can write

−1 +
√

4Q + 1

2
= [a0; a1, . . . , a1, 2a0 + 1].

Then by Equation (2.2),

Q = a2
0 + a0 +

(2a0 + 1)[a2, . . . , a1] + [a2, . . . , a2]

[a1, . . . , a1]
.

As above, the necessary and sufficient condition to make the fraction an integer is

2a0 + 1 = (−1)T+1[a2, . . . , a1][a2, . . . , a2] + k[a1, . . . , a1] (k ∈ Z). (2.5)

Notice that the right side of (2.5) should be a positive odd number. ¤
Remark 2.8. It is easy to see that for any sequence a1, . . . , aT−1 of natural numbers sat-
isfying a1 = aT−1, a2 = aT−2, . . ., there is a number aT such that [baT

2 c; a1, . . . , aT ] is the

continued fraction of
√

Q or
−1 +

√
1 + 4Q

2 , where Q is a natural number.

Example 2.9. Let T = 6.

(I) Let a1 = 1, a2 = 2, a3 = 3. Then [a2, a3, a2] = 16, [a2, a3, a2, a1] = 23, [a1, a2, a3, a2, a1] =
33. If we choose k = 12, then (−1)T+1[a2, . . . a1] + k[a1 . . . a1] = 28 is even. Thus
2a0 = 28, a0 = 14, Q = 216.

√
216 = [14; 1, 2, 3, 2, 1, 28]. If we set k = 13, then

(−1)T+1[a2, . . . a1] + k[a1 . . . a1] = 61 is odd. Thus, 2a0 + 1 = 61, a0 = 30, Q = 973.
(−1 +

√
1 + 4 ∗ 973)/2 = [30; 1, 2, 3, 2, 1, 61].

(II) Let a1 = 1, a2 = 2, a3 = 2. Then [a2, a3, a2] = 12, [a2, a3, a2, a1] = 17, [a1, a2, a3, a2, a1] =
24. Thus (−1)T+1[a2, . . . a1][a2, a3, a2] + k[a1 . . . a1] is always even. In other words,
we cannot find an a0 to make [a0; 1, 2, 2, 2, 1, 2a0 + 1] into the continued fraction of
(−1+

√
1 + 4Q)/2 for any natural number Q. When we chose k = 9, the least integer

such that (−1)T+1[a2, . . . a1][a2, a3, a2] + k[a1 . . . a1] > 0, we get a0 = 6, Q = 45. The
continued fraction is

√
45 = [6; 1, 2, 2, 2, 1, 12].

(III) Let a1 = 1, a2 = 1, a3 = 3. Then [a2, a3, a2] = 5, [a2, a3, a2, a1] = 9, [a1, a2, a3, a2, a1] =
16. Thus (−1)T+1[a2, . . . a1][a2, a3, a2]+k[a1 . . . a1] is always odd. So, [a0; 1, 1, 3, 1, 1, 2a0]
cannot be the continued fraction of

√
Q for any natural number Q. When we chose

k = 3, the least integer such that (−1)T+1[a2, . . . a1][a2, a3, a2] + k[a1 . . . a1] > 0, we
get a0 = 1, Q = 4. The continued fraction is (−1 +

√
1 + 4 ∗ 4)/2 = [1; 1, 1, 3]. The
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period length is 3, a divisor of 6. If k = 4, then a0 = 9, Q = 101. The continued
fraction is (−1 +

√
1 + 4 ∗ 101)/2 = [9; 1, 1, 3, 1, 1, 19].
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