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Abstract. In this paper, we define a new product over R∞, which allows us to obtain
a group isomorphic to R∗ with the usual product. This operation unexpectedly offers an
interpretation of the Rédei rational functions, making more clear some of their properties,
and leads to another product, which generates a group structure over the Pell hyperbola.
Finally, we join together these results, in order to evaluate solutions of the Pell equation in
an original way.

1. Introduction

The Pell equation is
x2 − dy2 = 1,

where d is a given positive integer and x, y are unknown numbers, whose values we are seeking
over the integers. If d is a perfect square, the Pell equation has only the trivial solution (1, 0).
The interesting case is when d is not a square, because then the Pell equation has infinite
integer solutions. For example, knowing the minimal non-trivial solution (x1, y1) with x1 and
y1 positive integers, we can evaluate

(x1 + y1
√
d)n = xn + yn

√
d, for all n ≥ 0

where (xn, yn) is also a solution of the Pell equation (cf. [5]). The Pell equation has ancient
origins (for further references, see [1, 14]) dating back to Archimedes Cattle Problem, but it
is not known if Archimedes was able to solve it. Surely the first mathematician who found a
method for solving the Pell equation was the Indian Brahmagupta. If you know two solutions
(x1, y1) and (x2, y2) of the Pell equation, with the Brahmaguptha method you find that

(x1x2 + dy1y2, x1y2 + y1x2), (x1x2 − dy1y2, x1y2 − y1x2)

are also solutions. Nowadays the most common method of resolution involves continued frac-
tions. A continued fraction is a representation of a real number α through a sequence of
integers as follows:

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where the integers a0, a1, . . . can be evaluated with the recurrence relationsak = [αk]

αk+1 =
1

αk − ak
if αk is not an integer

k = 0, 1, 2, . . .
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for α0 = α (cf. [10]). A continued fraction can be expressed in a compact way using the
notation [a0, a1, a2, a3, . . .]. The finite continued fraction

[a0, . . . , an] =
pn

qn
, n = 0, 1, 2, . . .

is a rational number and is called the nth convergent of [a0, a1, a2, a3, . . .]. The continued

fraction expansion of
√
d is periodic and it has the form (cf. [10])

√
d = [a0, a1, . . . , aL−1, 2a0].

It is possible to prove that the minimal solution of the Pell equation is

(x1, y1) = (pL−1, qL−1), L even

(x1, y1) = (p2L−1, q2L−1), L odd,

where
pL−1

qL−1
= [a0, . . . , aL−1]

p2L−1

q2L−1
= [a0, . . . , a2L−1].

Furthermore, all solutions of the Pell equation are of the form (pnL−1, qnL−1), when L is
even, and (p2nL−1, q2nL−1) when L is odd, for n = 1, 2, . . . (cf. [10]). The geometrical locus
containing all solutions of the Pell equation is the Pell hyperbola

Hd = {(x, y) ∈ R2 : x2 − dy2 = 1}.
The fascinating aspect of working with the Pell hyperbola is a group law that we can give over
Hd. In fact, for every pair of points P,Q ∈ Hd, we can define their product as the intersection
between Hd and a line through (1, 0) parallel to the line PQ. This geometric construction is
essentially the same presented in the book of Veblen (cf. [13]) as a general product between
points on a line [13, p. 144], which can be defined in a similar way over conics [13, p. 231–232],
in order to obtain a group structure. Algebraically (see, e.g., [5]) this product between two
points (x1, y1) and (x2, y2) is given by the point

(x1x2 + dy1y2, y1x2 + x1y2).

This geometric group law over the Pell hyperbola, similar to the one over an elliptic curve, has
the advantage of a nice algebraic expression, which yields greatly simplified formulas (cf. [6]).
In this paper we will see how it is possible to obtain this product in an original way, starting
essentially from a transform over R ∪ {∞}. Then we will use the Rédei rational functions (cf.
[11]) in order to evaluate the powers of points over Hd. The Rédei rational functions arise

from the development of (z+
√
d)n, where z is an integer and where d is a non-square positive

integer. One can write

(z +
√
d)n = Nn(d, z) +Dn(d, z)

√
d, (1.1)

where

Nn(d, z) =

[n/2]∑
k=0

(
n

2k

)
dkzn−2k, Dn(d, z) =

[n/2]∑
k=0

(
n

2k + 1

)
dkzn−2k−1.

The Rédei rational functions Qn(d, z) are defined by

Qn(d, z) =
Nn(d, z)

Dn(d, z)
, for all n ≥ 1. (1.2)
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Their multiplicative property is well–known

Qnm(d, z) = Qn(d,Qm(d, z))

for any couple of indexes n,m. Thus the Rédei functions are closed with respect to composition
and satisfy the commutative property

Qn(d,Qm(d, z)) = Qm(d,Qn(d, z)).

The multiplicative property of the Rédei functions has several applications. For example, this
property has been exploited in order to create a public key cryptographic system (cf. [9]).
The Rédei rational functions reveal their utility in several other fields. Given a finite field Fq,

of order q, and
√
d ̸∈ Fq, then Qn(d, z) is a permutation of Fq if and only if (n, q + 1) = 1 [7,

p. 44]. Another recent application of these functions is in finding a new bound for multiplicative
character sums of nonlinear recurring sequences (cf. [4]). Moreover, they can be used in order
to generate pseudorandom sequences (cf. [12]). In this paper we will see a totally different
approach for the Rédei rational functions, studying an original connection between them and
continued fractions. In particular we will see how we can apply Rédei rational functions in
order to generate solutions of the Pell equation. This research starts from the fact that the
sequence of functions Qn(d, z), by definition, converges to

√
d, i.e., Rédei functions are rational

approximations of
√
d, for any parameter z. We know that the best rational approximations

of an irrational number are provided by the convergents of its continued fraction (cf. [10]). So
it would be beautiful to find a parameter z in order to obtain some convergents from Qn(d, z).
In this paper we find the parameter z such that Q2n(d, z) correspond to all the convergents of

the continued fraction of
√
d, leading to the solutions of the Pell equation. This method uses

the Rédei rational functions in a totally different field from the classic ones and, considering
the fast evaluation of Rédei rational functions (cf. [8]), it allows to generate solutions of the
Pell equation in a rapid way.

2. A New Operation Over R∞

We consider a transform, defined over R∞ = R∪{∞} which induces a natural product over
R∞. We show how this operation is strictly related to the Rédei rational functions (cf. [11]),
revealing a new interesting point of view to understand their multiplicative property.

Definition 2.1. For any positive real number d, we define the transform

ρd : R∞ → R∞

ρd(x) =
x+ 1

x− 1

√
d. (2.1)

As immediate consequences of (2.1), we have that

ρd(1) = ∞, ρd(0) = −
√
d, ρd(∞) =

√
d. (2.2)

Moreover, we can easily find the inverse of ρd:

ρ−1
d (x) =

x+
√
d

x−
√
d
. (2.3)

A more important achievement is the product ⊙d, induced by ρd over R∞

x⊙d y = ρd(ρ
−1
d (x)ρ−1

d (y)) =
d+ xy

x+ y
, (2.4)
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which is surely associative and commutative. Furthermore, comparing ⊙d with the usual
product over R,

√
d plays the role of ∞ and −

√
d the role of 0, since we have the following

relations for all x ∈ R∞

√
d⊙d x =

d+
√
dx

√
d+ x

=
√
d and −

√
d⊙d x = −

√
d.

These properties, together with (2.2), suggest that this new product induces a group structure
on the set

Pd := R∞ − {±
√
d}.

Over (Pd,⊙d), ∞ is the identity with respect to ⊙d and any element x has the unique inverse
−x since

x⊙d ∞ = x, x⊙d (−x) = ∞, for all x ∈ Pd.

We immediately have the following.

Theorem 2.2. (Pd,⊙d) is a commutative group. The transform ρd is an isomorphism from the
group (R∗, ·), of nonzero real numbers under ordinary multiplication, into the group (Pd,⊙d).

Remark 2.3. If we consider two positive real numbers d, e, we also have an immediate
isomorphism between (Pd,⊙d) and (Pe,⊙e):

ϕ : Pe → Pd

ϕ : x 7→ x

√
d

e
.

We now show a wonderful relation relating the product (2.4) and the Rédei rational functions
(cf. [11]). It is well–known that for any pair of indices m and n,

Qnm(d, z) = Qn(d,Qm(d, z)) (2.5)

but what can we say about Qn+m(d, z)? Using product (2.4) the answer is simple and further-
more we can use this fact in order to obtain the multiplicative property in a more explicative
way than the usual one [7, pp. 22–23].

Proposition 2.4. With the notation introduced above

Qn+m(d, z) = Qn(d, z)⊙d Qm(d, z).

Proof. For the sake of simplicity, here we omit the variables z and d, so

Nn(d, z) = Nn, Dn(d, z) = Dn, Qn(d, z) = Qn.

Using a matricial approach (cf. [3]) we have(
z d
1 z

)n

=

(
Nn dDn

Dn Nn

)
, (2.6)

so (
Nn+m dDn+m

Dn+m Nn+m

)
=

(
Nn dDn

Dn Nn

)(
Nm dDm

Dm Nm

)
.

Comparing the resulting matrix on the right with the one on the left, we finally obtain the
relations {

Nn+m = NnNm + dDnDm

Dn+m = DnNm +NnDm.
(2.7)
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Now the proof is straightforward using (2.7) and definition of Rédei rational functions (1.2):

Qn ⊙d Qm =
d+QnQm

Qn +Qm
=

d+ Nn
Dn

· Nm
Dm

Nn
Dn

+ Nm
Dm

=
NnNm + dDnDm

NnDm +NmDn
= Qn+m.

�
Remark 2.5. It is interesting to consider the additive property of the Rédei rational functions
because it clarifies the meaning of the multiplicative property and makes this relation simpler
to use. Furthermore, we can relate these functions to the integers with the operations of sum
and product, extending their definition to negative indexes n through this matricial approach.
Indeed the set of the Rédei rational functions {Qn(d, z), for all n ∈ Z} with the operations ⊙d

and ◦ (the composition of functions) is a ring isomorphic to (Z,+, ·).

The previous proposition is a powerful tool which enables us to evaluate the powers of
elements with respect to the product (2.4).

Corollary 2.6. Let zn⊙d = z ⊙d · · · ⊙d z︸ ︷︷ ︸
n

be the nth power of z with respect to the product

(2.4). Then
zn⊙d = Qn(d, z).

Proof. From (1.1) and (1.2), when n = 1

z = Q1(d, z).

Therefore,

zn⊙d = z ⊙d · · · ⊙d z = Q1(d, z)⊙d · · · ⊙d Q1(d, z) = Q1+···+1(d, z) = Qn(d, z).

�
This Corollary shines a light on the multiplicative property (2.5), which holds because

Qn(d, z) is essentially a power of an element with respect to the product (2.4):

Qn(d,Qm(d, z)) = (Qm(d, z))n⊙d = (zm⊙d )n⊙d = znm⊙d = Qnm(d, z).

This proof for the multiplicative property allows us to consider the Rédei rational functions
as a power of an element and in this way they are easier to use, as we will see later.

3. A Commutative Group Over Pell Hyperbola

The group (Pd,⊙d), related to a nonsquare positive integer d, reveals some important con-
nections to the Pell hyperbola

Hd = {(x, y) ∈ R2/x2 − dy2 = 1},
with asymptotes

y = ±
x
√
d
.

The Pell hyperbola Hd can be parametrically represented using the line

y =
1

m
(x+ 1). (3.1)

Here we use as parameter m the cotangent of the angle formed with the x–axis, instead of
the usual tangent. We choose the cotangent as parameter because it is the only choice which
allows us to have a correspondence between Pd and Hd. Indeed in this case ∞ (the identity of
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Pd) will correspond to (1, 0) (the identity of Hd). Moreover, the two points at the infinity are

obtained by the parameters ±
√
d. Now, for all m ̸= ±

√
d, the line (3.1) intersects Hd in only

two points: (−1, 0) and another one. Thus it seems natural to visualize Pd as the parametric
line. Moreover, the bijection

ϵd : Pd → Hd

ϵd : m 7→
(
m2 + d

m2 − d
,

2m

m2 − d

)
,

yields a solution to the system x2 − dy2 = 1

y =
1

m
(x+ 1).

(3.2)

In fact, we find two solutions (−1, 0),
(
m2+d
m2−d

, 2m
m2−d

)
. The bijection ϵd maps 0 into (−1, 0), ∞

into (1, 0), and, using (3.1), the inverse of ϵd can be seen to be

τ : Hd → Pd

τ : (x, y) 7→
1 + x

y
.

We observe that the map τ has no explicit dependence on d, but this dependence is implicit
when we consider a point (x, y) ∈ Hd. Since we have a bijection from Pd to Hd, we can
transform the product ⊙d over Pd into a product ⊙H over Hd as

(s, t)⊙H (u, v) = ϵd(τ(s, t)⊙d τ(u, v)), for all (s, t), (u, v) ∈ Hd.

Using the definitions of ϵ and τ :

τ(s, t)⊙d τ(u, v) =

(
1 + s

t

)
⊙d

(
1 + u

v

)
=

1 + s+ u+ su+ dtv

t+ tu+ v + sv
,

and, using the relations s2 − dt2 = 1 and u2 − dv2 = 1, finally we have

(s, t)⊙H (u, v) = (su+ dtv, tu+ sv). (3.3)

The operation constructed on Hd has all the good properties of ⊙d. Therefore we have the
following theorem.

Theorem 3.1. (Hd,⊙H) is isomorphic to (Pd,⊙d) and (Hd,⊙H) is a commutative group.

As we have seen in the introduction, the product (3.3) is a classical product used to construct
a group over a conic, but here we have seen how it is possible to obtain this product in an
original way, starting essentially from a transform over R∞.

Remark 3.2. Hd is isomorphic to the group of unit norm elements in Q(
√
d). Remembering

that
Q(

√
d) = {s+ t

√
d : s, t ∈ Q},

the natural product between two elements of Q(
√
d) is

(s+ t
√
d)(u+ v

√
d) = (su+ dtv) + (tu+ sv)

√
d.

Remark 3.3. We can easily observe that the products ⊙d and ⊙H , and the transformations
ϵd, τ , all involve only rational operations. If we consider Pd = Q ∪ {∞} = Q∞ and Hd =
{(x, y) ∈ Hd/x, y ∈ Q}, then we retrieve again ϵd, τ , as isomorphisms between Pd and Hd.
Furthermore Pd does not depend on d and (Pd,⊙d) ∼= (Q∗, ·).
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4. Generating Solutions of the Pell Equation via Rédei Rational Functions

We are ready to put together all the results obtained in the previous sections. The main
purpose of this work is to reveal a beautiful connection among Rédei rational functions, the
product⊙H and solutions of the Pell equation. The matrix representation ofNn(d, z), Dn(d, z),
introduced in Proposition 2.4, allows us to consider

(Nn(d, z))
+∞
n=0 = W(1, z, 2z, z2 − d)

(Dn(d, z))
+∞
n=0 = W(0, 1, 2z, z2 − d).

Here (an)
+∞
n=0 = W(a, b, h, k) indicates the linear recurrent sequence of order 2, with initial

conditions a, b and characteristic polynomial t2 − ht+ k, i.e.,
a0 = a

a1 = b

an = han−1 − kan−2 for all n ≥ 2.

Now for any point (x, y) ∈ Hd we set

(xn, yn) = (x, y)n⊙H ,

where

(x0, y0) = (1, 0) and (x1, y1) = (x, y).

We know that

(x+ y
√
d)n = xn + yn

√
d,

and so (xn), (yn), as sequences, recur with polynomial t2−2xt+1. We can easily observe that
(x, y)n⊙H = (Fn(x), yGn(x)) and

(Fn(x))
+∞
n=0 = W(1, x, 2x, 1)

(Gn(x))
+∞
n=0 = W(0, 1, 2x, 1).

Now, comparing the recurrence of Fn(x) and Nn(d, z), we can see that they coincide when

z = x and z2 − d = 1,

i.e., d = z2 − 1 = x2 − 1. We immediately have the following proposition.

Proposition 4.1. With notation introduced above

Fn(x) = Nn(x
2 − 1, x) and Gn(x) = Dn(x

2 − 1, x).

Let us recall Dickson polynomials (cf. [2]):

gn(a, x) =

[n/2]∑
i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i,

introduced by L. E. Dickson over finite fields. He studied when they give permutation of the
elements of the finite fields. Furthermore, Dickson polynomials are related to the classical
Chebyshev polynomials and they are used in several areas, like cryptography, pseudoprimality
testing, in order to construct irreducible polynomials over finite fields and in many other
applications of the number theory. The Rédei rational functions are related to the Dickson
polynomials:

2Nn(d, z) = gn(2z, z
2 − d).
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When a = 1, the sequence (gn(1, x) = gn(x))
+∞
n=0 recurs with characteristic polynomial t2−xt+1

and we can observe that

Fn(x) =
1

2
gn(2x) = Nn(x

2 − 1, x).

Since (x, y)nm⊙H = ((x, y)n⊙H )m⊙H , Fn(Fm(x)) = Fnm(x) and we have retrieved the multi-
plicative property of gn(x). Furthermore we have the explicit formula for Fn(x):

Fn(x) =
1

2

[n/2]∑
i=0

n

n− i

(
n− i

i

)
(−1)ixn−2i.

Corollary 2.6 allows us to point out that

Qn(d, ·) : (Q∞,⊙d) → (Q∞,⊙d)

is a morphism for all n and maps z into zn⊙d . In fact,

Qn(d, a⊙d b) = (a⊙d b)
n⊙d = an⊙d ⊙d b

n⊙d = Qn(d, a)⊙d Qn(d, b).

We have

Qn

(
d,

d+ ab

a+ b

)
=

d+Qn(d, a)Qn(d, b)

Qn(d, a) +Qn(d, b)
,

and when a = b = z,

Qn

(
d,

d+ z2

2z

)
=

d+Qn(d, z)
2

2Qn(d, z)
= Qn(d, z)⊙d Qn(d, z) = Q2n(d, z).

Given (x, y) ∈ Hd, we obtain

(τ(x, y))n⊙d =

(
1 + x

y

)n⊙d

= Qn

(
d,

1 + x

y

)
.

Since (τ(x, y))n⊙d = τ((x, y)n⊙H ),

1 + Fn(x)

yGn(x)
= τ((Fn(x), yGn(x))) = Qn

(
d,

1 + x

y

)
,

and thus (
1 + x

y

)n⊙d

=
1 +Nn(x

2 − 1, x)

yDn(x2 − 1, x)
. (4.1)

Proposition 4.2. For any (x, y) ∈ Hd(
1 + x

y

)2n⊙d

=
Fn(x)

yGn(x)
=

Nn(x
2 − 1, x)

yDn(x2 − 1, x)
.

Proof. Here we write Nn, Dn, instead of Nn(x
2 − 1, x), Dn(x

2 − 1, x). We want to prove the
equality

1 + F2n(x)

yG2n(x)
=

Fn(x)

yGn(x)
,

and so we consider
1 +N2n

yD2n
−

Nn

yDn
=

Dn +DnN2n −NnD2n

yD2nDn
.

As a consequence of (2.7) we have

N2n(d, z) = N2
n(d, z) + dD2

n(d, z)
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D2n(d, z) = 2Dn(d, z)Nn(d, z),

and
1 +N2n

yD2n
−

Nn

yDn
=

Dn(1−N2
n + (x2 − 1)D2

n)

yD2nDn
= 0.

In fact, using (2.6)
N2

n(d, z)−D2
n(d, z) = (z2 − d)n,

and in our case
N2

n(x
2 − 1, x)− (x2 − 1)D2

n(x
2 − 1, x) = 1.

�
Corollary 4.3. With the notation at the beginning of Section 3, for any (x1, y1) ∈ Hd, i.e.,
such that x21 − dy21 = 1, we have

Q2n

(
d,

x1 + 1

y1

)
=

xn

yn
.

We want to apply all these tools, and in particular the Rédei rational functions, to the
solutions of the Pell equation x2−dy2 = 1. In what follows, we will use Rédei rational functions
to find convergents of continued fractions which provide solutions of the Pell equation. Let

(x1, y1) be the minimal integer solution of the Pell equation and let
pn

qn
, for n = 0, 1, 2, . . ., be

the convergents of the continued fraction of
√
d and L the length of the period. As we have

seen in the introduction, it is well–known that (x1, y1) = (pL−1, qL−1) when L is even and
(x1, y1) = (p2L−1, q2L−1) when L is odd [10]. Furthermore, all the solutions of the Pell equation
are (pnL−1, qnL−1), when L is even, and (p2nL−1, q2nL−1), when L is odd, for n = 1, 2, . . .. Then
we have

(x1, y1)
n⊙H = (xn, yn) = (pnL−1, qnL−1)

or
(x1, y1)

n⊙H = (xn, yn) = (p2nL−1, q2nL−1),

when L is even or odd respectively, and by the last Corollary:

Q2n

(
d,

x1 + 1

y1

)
=

pnL−1

qnL−1
, L even

Q2n

(
d,

x1 + 1

y1

)
=

p2nL−1

q2nL−1
, L odd.

In other words, using Rédei rational functions, we can evaluate all the convergents of the
continued fraction of

√
d leading to the solutions of the Pell equation.

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. II: Diophantine Analysis, Carnegie Institution,
Washington, DC, 1920.

[2] L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a
discussion of the linear group, Ann. of Math., 11, (1896-1897) 65–120, 161–183.

[3] J. von zur Gathen, Tests for permutation polynomials, SIAM J. Comput., 20, (1991) 591–602.
[4] D. Gomez and A. Winterhof, Multiplicative character sums of recurring sequences with Rédei functions,
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