FIBONACCI DIAGONALS

MARTIN GRIFFITHS

ABSTRACT. In this paper we obtain a closed-form expression for the sum of the elements lying on the nth diagonal of a Fibonacci triangle. This is achieved by obtaining and then utilizing the ordinary generating functions of two subsequences of the sequence of diagonal sums

1. Introduction

It is well-known that the *n*th 'diagonal sum' of Pascal's triangle is equal to F_n ; see [4] and [6]. Note that the *n*th diagonal comprises $\lfloor \frac{n+1}{2} \rfloor$ elements, where $\lfloor x \rfloor$ is the *floor function*, denoting the largest integer not exceeding x.

For example, highlighted in Pascal's triangle above are the 5th and 8th diagonals. We have

$$1+3+1=5=F_5$$
 and $1+6+10+4=21=F_8$.

In this article we consider the corresponding situation for the Fibonacci triangle \mathcal{T} shown below, which was discussed recently in [3] in connection with an infinite matrix of 0's and 1's that had been constructed from the Zeckendorf representations of the non-negative integers. This triangle also appears as A058071 in Sloane's *On-line Encyclopedia of Integer Sequences* [8]. Furthermore, some of its properties were studied in [5] and [7].

The entry in position p (taken from left to right) of the rth row of \mathcal{T} is equal to F_pF_{r-p+1} . From [2], [3] and [6] we know that the rth row-sum of \mathcal{T} is given by

$$\sum_{p=1}^{r} F_p F_{r-p+1} = \frac{1}{5} \left(r F_{r+1} + 2(r+1) F_r \right).$$

This is the sequence of Fibonacci numbers convolved with themselves, and appears in [8] as A001629.

FEBRUARY 2011 51

THE FIBONACCI QUARTERLY

 $\begin{array}{c} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 3 \\ & 3 \\ & 4 \\ & 21 \\ & 26 \\ & 24 \\ & 25 \\ & 24 \\ & 26 \\ & 21 \\ & 34 \\ & 21 \\ & 26 \\ & 24 \\ & 25 \\ & 24 \\ & 26 \\ & 21 \\ & 34 \\ & 55 \\ & 34 \\ & 42 \\ & 39 \\ & 40 \\ & 40 \\ & 39 \\ & 42 \\ & 34 \\ & 55 \\ & 89 \\ & 55 \\ & 68 \\ & 63 \\ & 65 \\ & 64 \\ & 65 \\ & 63 \\ & 68 \\ & 55 \\ & 89 \\ & \vdots \\ \end{array}$

We are interested here in studying the nth diagonal sum A_n of \mathcal{T} . The two examples highlighted in \mathcal{T} above show that

$$A_6 = 8 + 3 + 2 = 13$$
 and $A_9 = 34 + 13 + 10 + 6 + 5 = 68$.

It is clear that A_n is equal either to

$$F_1F_n + F_2F_{n-2} + F_3F_{n-4} + \ldots + F_{\frac{n+1}{2}}F_1$$

or to

$$F_1F_n + F_2F_{n-2} + F_3F_{n-4} + \ldots + F_{\frac{n}{2}}F_2,$$

depending on whether n is odd or even, respectively. In fact, more generally it is possible to write

$$A_{n} = F_{1}F_{n} + F_{2}F_{n-2} + F_{3}F_{n-4} + \dots + F_{\left\lfloor \frac{n+1}{2} \right\rfloor}F_{n-2\left\lfloor \frac{n-1}{2} \right\rfloor}$$

$$= \sum_{p=1}^{\left\lfloor \frac{n+1}{2} \right\rfloor} F_{p}F_{n-2(p-1)}.$$
(1.1)

Let us term the above expression a 'semi-stretched convolution'. In this paper we obtain various ordinary generating functions associated with the sequence $\{A_n\}$ and hence a closed-form expression for A_n .

2. Generating Functions

It is easily checked that the first few terms of $\{A_n\}$ are given by:

$$1, 1, 3, 4, 9, 13, 25, 38, 68, 106, \dots$$

Our aim in this section is to obtain the ordinary generating function R(x) for $\{A_n\}$,

$$R(x) = A_1 x + A_2 x^2 + A_3 x^3 + \cdots,$$

and two further generating functions associated with $\{A_n\}$.

It is actually very straightforward to calculate R(x). Let G(x) be the ordinary generating function for the Fibonacci numbers. Then from [6] we know that

$$G(x) = F_1 x + F_2 x^2 + F_3 x^3 + \cdots$$

$$= \frac{x}{1 - x - x^2}$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right),$$

where

$$\phi = \frac{1+\sqrt{5}}{2}$$
 and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$.

Now, noting that

$$R(x) = (F_1x + F_2x^3 + F_3x^5 + \cdots) (F_1 + F_2x + F_3x^2 + \cdots),$$

we have

$$\begin{split} R(x) &= \frac{1}{x} G\left(x^{2}\right) \cdot \frac{1}{x} G(x) \\ &= \frac{1}{5x^{2}} \left(\frac{1}{1 - \phi x^{2}} - \frac{1}{1 - \hat{\phi}x^{2}}\right) \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi}x}\right). \end{split}$$

However, it turns out that this is not particularly amenable with respect to finding a closed-form expression for A_n , and the alternative approach we adopt here is to consider $\{A_n\}$ as two interleaved sequences, $\{B_n\}$ and $\{C_n\}$, such that $B_n = A_{2n-1}$ and $C_n = A_{2n}$ for $n \ge 1$. Let us now obtain the ordinary generating functions for $\{B_n\}$ and $\{C_n\}$.

First,

$$F_0 + F_2 x^2 + F_4 x^4 + \dots = \frac{1}{2} (G(x) + G(-x))$$

$$= \frac{1}{2\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} + \frac{1}{1 + \phi x} - \frac{1}{1 + \hat{\phi} x} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi^2 x^2} - \frac{1}{1 - \hat{\phi}^2 x^2} \right).$$

Thus it is the case that the generating function $Q_{even}(x)$ for the even-numbered Fibonacci numbers is given by

$$F_0 + F_2 x + F_4 x^2 + \dots = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi^2 x} - \frac{1}{1 - \hat{\phi}^2 x} \right).$$

From this it follows, on using the semi-stretched convolution (1.1), that the generating function

$$V(x) = C_1 x + C_2 x^2 + C_3 x^3 + \cdots$$

for $\{C_n\}$ may be expressed as

$$V(x) = G(x)Q_{even}(x)$$

$$= \frac{1}{5x} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi}x} \right) \left(\frac{1}{1 - \phi^2 x} - \frac{1}{1 - \hat{\phi}^2 x} \right). \tag{2.1}$$

Similarly, since

$$F_1x + F_3x^3 + F_5x^5 + \dots = \frac{1}{2} (G(x) - G(-x)),$$

FEBRUARY 2011 53

THE FIBONACCI QUARTERLY

it may be shown that the generating function $Q_{odd}(x)$ for the odd-numbered Fibonacci numbers is given by

$$F_1 + F_3 x + F_5 x^2 + \dots = \frac{1}{\sqrt{5}} \left(\frac{\phi}{1 - \phi^2 x} - \frac{\hat{\phi}}{1 - \hat{\phi}^2 x} \right),$$

and hence that the generating function

$$U(x) = B_1 x + B_2 x^2 + B_3 x^3 + \cdots$$

for $\{B_n\}$ is

$$U(x) = \frac{1}{5} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right) \left(\frac{\phi}{1 - \phi^2 x} - \frac{\hat{\phi}}{1 - \hat{\phi}^2 x} \right). \tag{2.2}$$

Both U(x) and V(x) will be utilized in Section 3. Incidentally, we may retrieve R(x) from these generating functions as follows:

$$R(x) = \frac{1}{x}U(x^2) + V(x^2)$$

$$= \frac{1}{5x^2} \left(\frac{1}{1 - \phi x^2} - \frac{1}{1 - \hat{\phi} x^2} \right) \left(\frac{1 + \phi x}{1 - \phi^2 x^2} - \frac{1 + \hat{\phi} x}{1 - \hat{\phi}^2 x^2} \right)$$

$$= \frac{1}{5x^2} \left(\frac{1}{1 - \phi x^2} - \frac{1}{1 - \hat{\phi} x^2} \right) \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right).$$

3. A FORMULA FOR A_n

Theorem 3.1.

$$A_n = \frac{1}{2} \left(F_{n+3} - F_{2 \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n-5}{2} \right\rfloor} \right).$$

Proof. We start by obtaining a formula for C_n . The right-hand side of (2.1) is multiplied out and then, employing the method of partial fractions, is expressed in the form

$$\frac{1}{5x} \left(\frac{a}{1 - \phi^2 x} + \frac{b}{1 - \hat{\phi}^2 x} + \frac{c}{1 - \phi x} + \frac{d}{1 - \hat{\phi} x} \right)$$

for some $a, b, c, d \in \mathbb{R}$. Subsequently, by expanding each term as a power series in x, comparing coefficients on both sides of (2.1) and using the results

$$F_n = \frac{1}{\sqrt{5}} \left(\phi^n - \hat{\phi}^n \right)$$
 and $F_n + 2F_{n-1} = \phi^n + \hat{\phi}^n$,

which may be found in [1] and [6], it can be shown that

$$C_n = \frac{1}{2} (F_{2n+3} - F_{n+3}).$$

Adopting a similar method with (2.2) leads to the result

$$B_n = \frac{1}{2} \left(F_{2n+2} - F_{n+1} \right).$$

From these expressions for B_n and C_n it does indeed follow that

$$A_n = \frac{1}{2} \left(F_{n+3} - F_{2 \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{n-5}{2} \right\rfloor} \right).$$

To take an example,

$$A_8 = \frac{1}{2} \left(F_{11} - F_{2\lfloor \frac{8}{2} \rfloor - \lfloor \frac{3}{2} \rfloor} \right)$$
$$= \frac{1}{2} \left(F_{11} - F_7 \right)$$
$$= 38.$$

We note here that the sequence $\{A_n\}$ does not appear in [8].

4. Further Comments

First, as is noted in [7], the following recurrence relations, valid for $n \ge 1$, follow very easily from the structure of \mathcal{T} :

$$A_{2n+1} = A_{2n} + A_{2n-1} + F_{n+1}$$
 and $A_{2n+2} = A_{2n+1} + A_{2n}$,

where $A_1 = A_2 = 1$.

Next, it is interesting that both $\{B_n\}$ and $\{C_n\}$ have mathematical lives of their own. We state here, without proof, a number of results associated with these sequences. The interested reader might like to consult [8] in this regard, where $\{B_n\}$ and $\{C_n\}$ appear as A094292 and A056014, respectively.

The sequence $\{B_n\}$ is associated with a particular one-dimensional random walk. Indeed, B_n gives the number of finite integer sequences (m_1, m_2, \ldots, m_n) of length n such that $m_1 = 2$ and $m_n = 4$, where $1 \le m_j \le 4$ and $|m_j - m_{j-1}| \le 1$ for $j = 2, 3, \ldots, n-1$ and $j = 2, 3, \ldots, n$, respectively. Furthermore, B_n satisfies, for $n \ge 5$, the recurrence relation

$$B_n = 4B_{n-1} - 3B_{n-2} - 2B_{n-3} + B_{n-4},$$

with $B_1 = 1$, $B_2 = 3$, $B_3 = 9$ and $B_4 = 25$. In addition we have the following formulas:

$$B_n = \frac{2}{5} \sum_{k=0}^{4} \sin\left(\frac{2\pi k}{5}\right) \sin\left(\frac{4\pi k}{5}\right) \left(1 + 2\cos\left(\frac{\pi k}{5}\right)\right)^{n+1}$$

and

$$B_n = \frac{1}{2} \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {n-k \choose k} (-1)^k F_{3(n-k)}.$$

The sequence $\{C_n\}$ is also associated with a one-dimensional random walk, the same one in fact as mentioned above in connection with $\{B_n\}$, except that now $m_1 = 1$. Also, C_n satisfies the same recurrence relation as B_n , but with the initial conditions $C_1 = 1$, $C_2 = 4$, $C_3 = 13$ and $C_4 = 38$.

References

- [1] D. M. Burton, Elementary Number Theory, McGraw-Hill, 1998.
- [2] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Second Edition, Addison-Wesley, 1998.
- [3] M. Griffiths, Digit proportions in Zeckendorf representations, The Fibonacci Quarterly, 48.2 (2010), 168– 174.
- [4] M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust, 2008.
- [5] H. Hosoya, Fibonacci triangle, The Fibonacci Quarterly, 14.2 (1976), 173–179.
- [6] D. E. Knuth, The Art of Computer Programming, Volume 1, Addison-Wesley, 1968.
- [7] A. G. Shannon, A note on some diagonal, row and partial column sums of a Zeckendorf triangle, Notes on Number Theory and Discrete Mathematics, 16 (2010), 33–36.

FEBRUARY 2011 55

THE FIBONACCI QUARTERLY

[8] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2010. http://www.research.att.com/~njas/sequences/.

MSC2010: 05A15, 11B39

School of Education, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

E-mail address : martin.griffiths@manchester.ac.uk