FIBONACCI DIAGONALS

MARTIN GRIFFITHS

ABSTRACT. In this paper we obtain a closed-form expression for the sum of the elements
lying on the nth diagonal of a Fibonacci triangle. This is achieved by obtaining and then
utilizing the ordinary generating functions of two subsequences of the sequence of diagonal
sums.

1. INTRODUCTION

It is well-known that the nth ‘diagonal sum’ of Pascal’s triangle is equal to F},; see [4] and
[6]. Note that the nth diagonal comprises |22 | elements, where |z is the floor function,

denoting the largest integer not exceeding x.

1
11
1 21
1 3 31
146 41
1 510105 1
1 6 15 2015 6 1
1 7 2133217 1
1 8 28 56 70 56 28 8 1

For example, highlighted in Pascal’s triangle above are the 5th and 8th diagonals. We have
1+34+1=5=F;s and 1+64+10+4=21=F;.

In this article we consider the corresponding situation for the Fibonacci triangle 7 shown
below, which was discussed recently in [3] in connection with an infinite matrix of 0’s and 1’s
that had been constructed from the Zeckendorf representations of the non-negative integers.
This triangle also appears as A058071 in Sloane’s On-line Encyclopedia of Integer Sequences
[8]. Furthermore, some of its properties were studied in [5] and [7].

The entry in position p (taken from left to right) of the rth row of 7 is equal to FpFy,_pi1.
From [2], [3] and [6] we know that the rth row-sum of 7T is given by

T
1
> FF = = (PP +2(r + 1)F).
p=1
This is the sequence of Fibonacci numbers convolved with themselves, and appears in [8] as

A001629.
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1
11
21 2
3 2 2 3
5 3 435
8 56 6 5 8
13 8 10 910 8 13
2113 16 15 15 16 13 21
34 21 26 24 25 24 26 21 34
05 34 42 39 40 40 39 42 34 55
89 55 68 63 65 64 65 63 68 55 89

We are interested here in studying the nth diagonal sum A, of 7. The two examples
highlighted in 7 above show that

Ag=8+3+2=13 and Ag=34+134+10+6+ 5= 68.
It is clear that A, is equal either to
BB, +FyF, o+ F3F_4+...+ FnTHFl

or to
FF,+ FyF, o+ F3F,_4,+ ...+ F’%FQ,

depending on whether n is odd or even, respectively. In fact, more generally it is possible to
write

Ay =HFF, +BF, o+ F3F,_4+...+ FLnTHJFn_2|~%J
[%5]
= > BFaspon (1.1)
p=1
Let us term the above expression a ‘semi-stretched convolution’. In this paper we obtain

various ordinary generating functions associated with the sequence {A,} and hence a closed-
form expression for A,,.

2. GENERATING F'UNCTIONS

It is easily checked that the first few terms of {A,} are given by:
1,1,3,4,9,13,25, 38,68, 106, ... . .
Our aim in this section is to obtain the ordinary generating function R(x) for {4,},
R(z) = A1z + Agx® + Aza® + -+ |
and two further generating functions associated with {4, }.
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It is actually very straightforward to calculate R(z). Let G(z) be the ordinary generating
function for the Fibonacci numbers. Then from [6] we know that

G(x) = Fll’ + F2x2 + Fgﬂ:s + -
x

Cl—z— a2

1 1 1
‘ﬁ(l—m_l_&)’
where
1 —
2

1 .
¢ = +2 and ¢ =

S
I&

Now, noting that
R(z) = (Fia + Foa® + Fa® + - ) (F + Fox + Fya® + ),

we have

1 1 1 1
“w (e ) (Fa )

However, it turns out that this is not particularly amenable with respect to finding a closed-
form expression for A,, and the alternative approach we adopt here is to consider {4, } as
two interleaved sequences, {B,} and {C,}, such that B, = Ag,_1 and C,, = Ay, for n > 1.
Let us now obtain the ordinary generating functions for {B,} and {C,}.

First,

(G(z) + G(-x))

N =

F0+F2x2+F4x4+~'=

1 < LS R S )
S 2B\l—¢r 1—¢a 1+¢z 144

1 1 1

s ee T )
Thus it is the case that the generating function Qeyen(z) for the even-numbered Fibonacci
numbers is given by

1 1 1
F+F3:+F:E2—|—---:—< — . >
o ! VE\1—=¢?z 11— @2

From this it follows, on using the semi-stretched convolution (1.1), that the generating function
V(:E) = Cll’ + 023}2 + 03:E3 + -
for {C,,} may be expressed as

V(z) = G()Qeven(2)
_ 5% (1 _1(% -~ _1@) <1 _1¢2x - _1&%) . (2.1)

(G(x) = G(=x)),

Similarly, since

F133‘+F3:E3—|-F5:E5—|—"':
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it may be shown that the generating function Q,qq(z) for the odd-numbered Fibonacci numbers

is given by
1 ¢ é
Fi+Fa+Fya?+- = — — .
1+ F3x+ Fsx” + \/3<1—<;52x 1—¢2x>7

and hence that the generating function

U(x) = Bz + Byx?® + Baa® + -

BYaE! 1 ¢ ¢
U(m)—g<1_¢x—1_&> <1_¢2x—1_$%>. (2.2)

Both U(z) and V(z) will be utilized in Section 3. Incidentally, we may retrieve R(x) from
these generating functions as follows:

for {B,} is

Rz) = U () +V (s?)
1 1 1 1+ ¢z 1+ ¢x
_@<1—¢$2_1—<{5x2> 1—¢2!E2_1—g§2x2

_1(1 1><1 1)
T2 \1-ga? 1 gu2) \1-dz 1 gz

3. A FormuLA For A4,

Theorem 3.1. )

A= (Fovs = gy 252))

Proof. We start by obtaining a formula for C),. The right-hand side of (2.1) is multiplied out
and then, employing the method of partial fractions, is expressed in the form

1 a n b N c N d

Sse\1—-¢%r 1-¢2x 1—¢z 1— gz
for some a, b, c,d € R. Subsequently, by expanding each term as a power series in x, comparing
coefficients on both sides of (2.1) and using the results

1 n mn _n mn
Fo= e (9"=4") and Fit2Fy ="+
which may be found in [1] and [6], it can be shown that

1
Cn = 5 (F2n+3 - Fn+3) .

Adopting a similar method with (2.2) leads to the result

1
Bn = §(F2n+2 _Fn-l—l)'

From these expressions for B,, and C,, it does indeed follow that

A =5 (Fusa = Byg) o5
U
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To take an example,

A= (Fu - Faggy )
= % (F11 — F7)
= 38.

We note here that the sequence {A,} does not appear in [§].

4. FURTHER COMMENTS

First, as is noted in [7], the following recurrence relations, valid for n > 1, follow very easily
from the structure of 7T

Aopt1 = Agp + Aop—1 + Fry1 and  Agyqo = Aopy1 + Aoy,

where A; = A9 = 1.

Next, it is interesting that both {B,} and {C),} have mathematical lives of their own. We
state here, without proof, a number of results associated with these sequences. The interested
reader might like to consult [8] in this regard, where {B,} and {C),,} appear as A094292 and
A056014, respectively.

The sequence {B,} is associated with a particular one-dimensional random walk. Indeed,
B, gives the number of finite integer sequences (my,ma, ..., m,) of length n such that m; = 2
and m,, =4, where 1 <mj; <4 and |mj —m;_1| <1forj=2,3,...,n—1land j =2,3,...,n,
respectively. Furthermore, B,, satisfies, for n > 5, the recurrence relation

B, =4B,_1—3B,_2— 2Bn—3 + Bn—47
with By =1, By =3, B3 =9 and B4y = 25. In addition we have the following formulas:

4 n+1
2 27k 4k k
B, = 5 kgzosin <%> sin <%> <1 + 2 cos (%))

5]
1 n — k k
The sequence {C),} is also associated with a one-dimensional random walk, the same one in
fact as mentioned above in connection with {B,}, except that now m; = 1. Also, C,, satisfies
the same recurrence relation as B,,, but with the initial conditions C; = 1, Cy =4, C3 = 13
and Cy = 38.

and
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