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Abstract. The purpose of this paper is to solve for f(n) where

gr(n) =
r∑

k=0

akf(n− k), (∗)

where f(n) = 0 if n < 0, and {a0, a1, . . .} are constants. The main results are a recursive
formula and an explicit formula for the inversion of the series defined by (*).

1. Introduction

In [1], Gould studied the sequence (g(n))∞n=0, where (g(n))∞n=0 was defined by

g(n) =
n
∑

k=0

f(n− k), (1.1)

where f(n) = 0 for n < 0, with 1 ≤ r ≤ n. Gould primarily investigated how to solve Equation
(1.1) for f(n). Jamie Simpson, in writing his review for MathSciNet [2], was surprised that
no one had previously studied the inversion of Equation (1.1). In this same review, Simpson
mentioned that a natural generalization of Equation (1.1) would be

gr(n) =

r
∑

k=0

akf(n− k), (1.2)

where f(n) = 0 if n < 0, and {a0, a1, . . .} are constants. This paper studies the inversion of
Equation (1.2). The main results are Theorems 1.1 and 1.2. These theorems show how to solve
Equation (1.2) for f(n) when r ≥ 1. In particular, Theorem 1.1 provides a simple recursive
methodology for forming the inversion, while Theorem 1.2 provides an explicit formula for the
initial stage of the recurrence provided by Theorem 1.1. The explicit formula in Theorem 1.2
utilizes multinomial coefficients and generalizes Gould’s observation [1] that

f(n) =
n
∑

k=0

g(n − k)

bk

2
c

∑

j=0

(−1)k−j

(

k − j

j

)

, (1.3)

whenever g(n) = f(n) + f(n− 1) + f(n− 2), with f(n) = 0 for n < 0.
Section 3 provides an alternative explanation why, when a0 = a1 = · · · = ar = 1, the

values of g which have nonzero coefficients in the inversion obey the third order recurrence
Bn = Bn−1+Bn−2−Bn−3. Finally, Section 4 extends Simpson’s generalization to the context
of coefficients dependent on r as well as k.
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2. Inverting gr(n) =
∑r

k=0 akf(n− k)

In this section, we let (f(n))∞n=0 be an arbitrary sequence. We assume r is a fixed positive
integer. We define the sequence (gr(n))

∞
n=0 by the recurrence

gr(n) =

r
∑

k=0

akf(n− k), (2.1)

where f(n) = 0 if n < 0, and {ak}
∞
k=0 are given constants.

It is natural to ask whether the inversion of Equation (2.1) has a “nice” format. The
answer to this query, as we shall see, is yes. For example, if r = 1, Equation (2.1) implies
g1(n) = a0f(n) + a1f(n− 1). By induction, we easily show that

an+1
0 f(n) =

n
∑

k=0

(−1)n−kak0a
n−k
1 g1(k). (2.2)

Now let r = 2. Then, Equation (2.1) implies g2(n) = a0f(n) + a1f(n − 1) + a2f(n − 2).
Inverting this expression for small values of n, namely for 0 ≤ n ≤ 4, we find that

a0f(0) = g2(0)

a20f(1) = a0g2(1)− a1g2(0)

a30f(2) = a20g2(2)− a0a1g2(1) + (a21 − a0a2)g2(0)

a40f(3) = a30g2(3)− a20a1g2(2) + (a0a
2
1 − a20a2)g2(1) + (2a0a1a2 − a31)g2(0)

a50f(4) = a40g2(4)− a30a1g2(3) + (a20a
2
1 − a30a2)g2(2) + (2a0a1a2 − a0a

3
1)g2(1)

+ (a41 − 3a21a2a0 + a20a
2
2)g2(0).

By inspecting the five previous equations, we notice that the coefficient of g2(k) is a polynomial
in a0, a1, and a2. We will call this coefficient Pn

k (a0, a1, a2) = Pn
k . The Pn

k satisfy the simple
recurrence given in Lemma 2.1.

Lemma 2.1. Let (f(n))∞n=0 be an arbitrary sequence. Let (g2(n))
∞
n=0 be defined by the recur-

rence g2(n) = a0f(n) + a1f(n− 1) + a2f(n− 2), where f(n) = 0 if n < 0, and {a0, a1, a2} are

given constants. Then for n ≥ 0,

an+1
0 f(n) =

n
∑

k=0

Pn
k g2(k), (2.3)

where, for k > 0,

Pn
k = a0P

n−1
k−1 , (2.4)

and if k = 0,

Pn
0 = −a1P

n−1
0 − a2P

n−1
1 , n ≥ 1, (2.5)

with

P 0
0 = 1, Pn

k = 0, if k > n. (2.6)

Proof of Lemma 2.1. We will prove Lemma 2.1 by induction on n in Equation (2.3). First
note that Equation (2.3) is obviously true if n = 0. Now assume Equation (2.3) is true for any
m < n. We take the recurrence g2(n) = a0f(n) + a1f(n− 1) + a2f(n− 2), and multiply both
sides by an0 . This gives us

an0g2(n) = an+1
0 f(n) + a1a

n
0f(n− 1) + a2a

n
0f(n− 2).
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By the induction hypothesis, the previous line becomes

an0g2(n) = an+1
0 f(n) + a1

n−1
∑

k=0

Pn−1
k g2(k) + a2a0

n−2
∑

k=0

Pn−2
k g2(k)

= an+1
0 f(n) + a1P

n−1
n−1 g2(n− 1) +

n−2
∑

k=0

[

a1P
n−1
k + a0a2P

n−2
k

]

g2(k).

Since we want an+1
0 f(n) =

∑n
k=0 P

n
k g2(k), the last equality implies

Pn
k = −a1P

n−1
k − a0a2P

n−2
k , k 6= n (2.7)

Pn
n = an0 . (2.8)

Using Equation (2.7), we are now in a position to prove Equation (2.4). We use induction
on n. First note P 1

1 = a0 = a0 · 1 = a0 ·P
0
0 . Also, Equation (2.8) clearly implies Pn

n = a0P
n−1
n−1 .

If k 6= n, we have

Pn
k = −a1P

n−1
k − a0a2P

n−2
k , by Equation (2.7)

= −a1a0P
n−2
k−1 − a20a2P

n−3
k−1 , by induction hypothesis

= a0
[

−a1P
n−2
k−1 − a0a2P

n−3
k−1

]

= a0P
n−1
k−1 , by Equation (2.7),

which is identically Equation (2.4).

It remains to prove Equation (2.5). By Equation (1.7), we have

Pn
0 = −a1P

n−1
0 − a2a0P

n−2
0

= −a1P
n−1
0 − a2P

n−1
1 , by Equation (2.4),

which is Equation (2.5). �

Lemma 1.1 provides a simple recursive way of determining the inversion procedure. Notice
that both Equations (2.4) and (2.5) depend on Pn

0 . Thus, it would be beneficial to find an
explicit formula for Pn

0 . Such a formula is given in Lemma 2.2.

Lemma 2.2. Let Pn
0 be as defined by Lemma 2.1. Then,

Pn
0 =

bn

2
c

∑

k=0

(−1)n−k

(

n− k

k

)

an−2k
1 ak0a

k
2 . (2.9)

Proof of Lemma 2.2. First note that Equation (2.9) implies that P 0
0 = 1, which clearly agrees

with Equation (2.6). We will use induction on n and assume that Equation (2.9) holds for all
m < n. Then, by Equation (2.7) and the induction hypothesis, we have

Pn
0 = −a1P

n−1
0 − a0a2P

n−2
0

=

bn−1

2
c

∑

k=0

(−1)n−k

(

n− 1− k

k

)

an−2k
1 ak0a

k
2 +

bn−2

2
c

∑

k=0

(−1)n−1−k

(

n− 2− k

k

)

an−2−2k
1 ak+1

0 ak+1
2

=

bn−1

2
c

∑

k=0

(−1)n−k

(

n− 1− k

k

)

an−2k
1 ak0a

k
2 +

bn−2

2
c+1

∑

k=1

(−1)n−k

(

n− 1− k

k − 1

)

an−2k
1 ak0a

k
2 . (2.10)
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We must now simplify Equation (2.10). This simplification has two cases. First, if n is even,
note that

⌊

n
2

⌋

=
⌊

n−2
2

⌋

+ 1 and
⌊

n−1
2

⌋

=
⌊

n
2

⌋

− 1. Equation (2.10) becomes

Pn
0 =

bn

2
c−1

∑

k=0

(−1)n−k

(

n− 1− k

k

)

an−2k
1 ak0a

k
2 +

bn

2
c

∑

k=1

(−1)n−k

(

n− 1− k

k − 1

)

an−2k
1 ak0a

k
2

=

bn

2
c−1

∑

k=1

(−1)n−k

[(

n− 1− k

k

)

+

(

n− 1− k

k − 1

)]

an−2k
1 ak0a

k
2 + (−1)nan1 + (−1)b

n

2
ca

bn

2
c

0 a
bn

2
c

2

=

bn

2
c

∑

k=0

(

n− k

k

)

an−2k
1 ak0a

k
2 ,

where the last equality follows from Pascal’s Identity.
Now suppose n is odd. In that case,

⌊

n
2

⌋

=
⌊

n−1
2

⌋

and
⌊

n−2
2

⌋

+ 1 =
⌊

n
2

⌋

. Equation (2.10)
becomes

Pn
0 =

bn

2
c

∑

k=0

(−1)n−k

(

n− 1− k

k

)

an−2k
1 ak0a

k
2 +

bn

2
c

∑

k=1

(−1)n−k

(

n− 1− k

k − 1

)

an−2k
1 ak0a

k
2

=

bn

2
c

∑

k=1

(−1)n−k

(

n− k

k

)

an−2k
1 ak0a

k
2 + (−1)nan1

=

bn

2
c

∑

k=0

(−1)n−k

(

n− k

k

)

an−2k
1 ak0a

k
2 .

�

An equivalent way to write Equation (2.9) is given by Lemma 2.3. To see that Equation
(2.11) is equivalent to Equation (2.9), simply let p = n− 2k.

Lemma 2.3. Let Pn be as previously defined. Then,

Pn
0 =

∑

∀p,k≥0
p+2k=n

(−1)p+k

(

p+ k

p

)

a
n−p−k
0 a

p
1a

k
2 . (2.11)

2.1. Inverting gr(n) for r ≥ 3. We now discuss how to invert Equation (2.1) for arbitrary
integers r ≥ 3. Fortunately, the techniques used for the case of r = 2 easily generalize for
r ≥ 3. In particular, Lemma 2.1 becomes Theorem 2.1. Since the proof of Theorem 2.1 is
similar to that of Lemma 2.1, we omit the proof. Details are available upon request.

Theorem 2.1. Let (f(n))∞n=0 be an arbitrary sequence. Let r be a positive integer. Let

(gr(n))
∞
n=0 be defined by the recurrence gr(n) =

∑r
k=0 akf(n − k), where f(n) = 0 if n < 0,

and {ai}
r
i=0 are given constants. Define Pn

k = Pn
k (a0, a1, . . . , ar). Then, for n ≥ 0,

an+1
0 f(n) =

n
∑

k=0

Pn
k gr(k), (2.12)

where, for k > 0,

Pn
k = a0P

n−1
k−1 , (2.13)
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and if k = 0,

Pn
0 = −

r−1
∑

i=0

ai+1P
n−1
i , n ≥ 1, (2.14)

with

P 0
0 = 1, Pn

k = 0, if k > n. (2.15)

We also are able to generalize Lemma 2.3 to the case when r ≥ 3 and obtain an explicit
formula for Pn

0 . To arrive at such a generalization, we need to use Pascal’s Theorem for
multinomial coefficients, namely

(

p1 + p2 + · · · + pr

p1, p2, . . . , pr

)

=

(

p1 + p2 + · · ·+ pr − 1

p1 − 1, p2, . . . , pr

)

+

(

p1 + p2 + · · ·+ pr − 1

p1, p2 − 1, . . . , pr

)

+ · · ·+

(

p1 + p2 + · · ·+ pr − 1

p1, p2, . . . , pr − 1

)

, (2.16)

where the right side of Equation (2.16) is a sum of r terms.
We will also need a generalization of Equation (2.7). This generalization, obtained by the

back-substitution technique of Lemma 2.1, is

Pn
k = −

r
∑

i=1

ai−1
0 aiP

n−i
k , k 6= n (2.17)

Pn
n = an0 . (2.18)

By using Equations (2.16), (2.17), and (2.18) in the appropriate locations of the proof of
Lemma 2.2, we are able to prove Theorem 2.2. Details are available upon request.

Theorem 2.2. Let r ≥ 1. Let Pn
0 be as defined in Theorem 2.1. Then,

Pn
0 =

∑

∀pi≥0,1≤i≤r∑
r

i=1
ipi=n

(−1)
∑

r

i=1
pi

(

p1 + p2 + · · ·+ pr

p1, p2, . . . , pr

)

a
n−

∑
r

i=1
pi

0

r
∏

i=1

a
pi
i . (2.19)

3. Inverting g(n) =
∑

r

k=0
f(n− k)

We will discuss the special case of Equation (2.1) when all ai = 1 for 0 ≤ i ≤ r and r is any
positive integer. Gould discussed this situation in [1]. When inverting Equation (0.1), and
solving for f(n), Gould discovered that the g′s are evaluated at only certain numbers between
0 and n. For a fixed n, Gould found a formula which determines which values of g occur in
the inversion. Perhaps the best way to understand Gould’s formula is to look at the following
example. Assume r = 2 and g(n) = f(n) + f(n − 1) + f(n− 2). Gould showed on page 3 of
[1] that

f(9) = g(9) − g(8) + g(6) − g(5) + g(3) − g(2) + g(0).

Notice that g(7), g(4), and g(1) do not appear. To determine which values of g do appear
in f(9), we use the following procedure. Given 9, 8, and 6, the next value to be found is
6 + 8 − 9 = 5. Then, we evaluate at 5 + 6 − 8 = 3. Next, we use 3 + 5 − 6 = 2, and
finally 2 + 3 − 5 = 0. The process terminates at 0 or 1. Gould showed in Theorem 2 of
[1] that for any r, the values at which g is evaluated in forming the inverse satisfy a third
order recurrence relation of the form Bn = Bn−1 + Bn−2 − Bn−3. Gould proves Theorem 2
via generating functions. We now provide another, slightly simpler, proof of Theorem 2 of
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[1]. By using Theorem 2.1 and Equation (2.17), we will be able to see why the inversion of
gr(n) =

∑r
k=0 f(n− k) is evaluated at the terms provided by Bn = Bn−1 +Bn−2 −Bn−3.

First, when ai = 1 for all i, Equation (2.17) becomes

Pn
k = −

r
∑

i=1

Pn−i
k

. (3.1)

We should note that Equation (3.1) implies for r ≥ 2

P 0
0 = 1 (3.2)

P 1
0 = −1 (3.3)

P 2
0 = P 3

0 = ... = P r
0 = 0. (3.4)

Furthermore, by induction on n, Equation (3.1) implies that

Pn
k = Pn+r+1

k . (3.5)

Next, we should note that Equation (1.12) becomes

Pn
k = Pn−1

k−1 , (3.6)

while Equation (1.11) becomes

f(n) =

n
∑

k=0

Pn
k gr(k). (3.7)

Then, by using Equations (3.5) and (3.6) in Equation (3.7), we deduce that

Pn
k = Pn

k−(r+1), k ≥ r + 1. (3.8)

Finally, note that Equations (2.3) to (2.5) and Equation (3.8) are equivalent to Theorem 2 of
[1].

4. Inverting gr(n) =
∑r

k=0 ar,kf(n− k)

We now discuss another generalization of Equation (2.1) Once again, we let (f(n))∞n=0 be
an arbitrary sequence and r be a fixed positive integer. We define the sequence (gr(n))

∞
n=0 by

the recurrence

gr(n) =

r
∑

k=0

ar,kf(n− k), (4.1)

where f(n) = 0 if n < 0, and {ar,k}
r
k=0 is the set of coefficients which depend on both r and

k. The difference between Equations (2.1) and (4.1) is subtle. In Equation (2.1) the fixed
set of coefficients {ak}

∞
k=0 have no r dependence. Hence, no matter what r we choose, for

any 0 ≤ i ≤ r, f(n − i) always has the same coefficient, namely ai. On the other hand, the
coefficients in Equation (4.1) do vary with r. For example, take ar,k =

(

r
k

)

. Then, Equation
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(4.1) implies

g1(n) =

1
∑

k=0

(

1

k

)

f(n− k) = f(n) + f(n− 1)

g2(n) =

2
∑

k=0

(

2

k

)

f(n− k) = f(n) + 2f(n− 1) + f(n− 2)

g3(n) =

3
∑

k=0

(

3

k

)

f(n− k) = f(n) + 3f(n− 1) + 3f(n− 2) + ffn− 3).

Notice that the coefficient of f(n − 1) varies depending on r. This variation is the difference
between Equation (4.1) and the previous situation.

Our goal is to invert Equation (4.1). Fortunately, the techniques used in Theorems 2.1 and
2.2 directly translate to this situation. In particular, Theorems 2.1 and 2.2 become Theorems
4.1 and 4.2, respectively.

Theorem 4.1. Let (f(n))∞n=0 be an arbitrary sequence. Let r be a positive integer. Let

(gr(n))
∞
n=0 be defined by the recurrence gr(n) =

∑r
k=0 ar,kf(n − k), where f(n) = 0 if n < 0,

and {ar,k}
r
k=0 is an array of given constants. Then, for n ≥ 0,

an+1
r,0 f(n) =

n
∑

k=0

Pn
k (ar,0, ar,1, . . . , ar,r)gr(k), (4.2)

where, for k > 0,

Pn
k (ar,0, ar,1, . . . , ar,r) = ar,0P

n−1
k−1 (ar,0, ar,1, . . . , ar,r), (4.3)

and if k = 0,

Pn
0 (ar,0, ar,1, . . . , ar,r) = −

r−1
∑

i=0

ar,r+1P
n−1
i (ar,0, ar,1, . . . , ar,r), n ≥ 1, (4.4)

with

P 0
0 (ar,0, ar,1, . . . , ar,r) = 1, Pn

k (ar,0, ar,1, . . . , ar,r) = 0, if k > n. (4.5)

Theorem 4.2. Let r ≥ 1. Let Pn
0 (ar,0, ar,1, . . . , ar,r) be as defined in Theorem 4.1. Then,

Pn
0 (ar,0, ar,1, . . . , ar,r) =

∑

∀pi≥0,1≤i≤r∑
r

i=1
ipi=n

(−1)
∑

r

i=1
pi

(

p1 + p2 + · · ·+ pr

p1, p2, . . . , pr

)

a
n−

∑
r

i=1
pi

r,0

r
∏

i=1

a
pi
r,i. (4.6)
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