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Abstract. Kimberling defines the function κ(n) = bn2
αc−nbnαc, and presents conjectures

and open problems. We present three main theorems. The theorems provide quick, effectively
computable, lower bounds on κ(n) which are useful in proving that certain values do not lie
in the range of κ. Our main contribution is describing the behavior of κ(n) within an almost
negligible error using the differences of the indices in the Zeckendorf representation of n. We
list 4 open problems connected with κ.

1. Notation and Main Results

Throughout this paper if n is a positive integer we let

n =
∑

i∈I
Fi, I = {i1, i2, . . . , im}, 2 ≤ i1 < i2 . . . < im, ij+1 − ij ≥ 2, 1 ≤ j ≤ m− 1, (1.1)

be the Zeckendorf representation of n with I an index set. We call m the weight of n. Recall
the important convention for Zeckendorf index sets that

i1 ≥ 2, ij − ik ≥ 2(j − k) ≥ 2, 1 ≤ k < j ≤ m. (1.2)

It is convenient to have notation for the shifting of indices in the Zeckendorf representation of
n. With notations as in (1.1), define

n̂ =
∑

i∈I
Fi+1.

Kimberling [2] introduces the function

κ(n) = bn2αc − nbnαc.
He presents two open problems: (a) Prove that 3 is not in the range of κ. (b) Find a closed-form
formula describing the complement (over the positive integers) of the range of the function κ

on the positive integers.
While preparing this manuscript Kimberling communicated to me that Behrend successfully

proved that 3 is not in the range of κ [1]. Our goal in this paper is to develop a general
theory about the range of κ. Since κ(n) has discontinuity jumps this is a non-trivial problem
which requires development of new methods. Our main tool will be use of the Zeckendorf
representation with a consideration of cases depending on the parity of i1, the minimal index
in the Zeckendorf representation. This approach allows explicit computations with extremely
small error terms. We next present two main theorems on the values of κ(n).
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Theorem 1.1. Define

A(I) =
∑

i∈I

(−1)i+1

√
5

, (1.3)

B(I) =
∑

i∈I

β2i

√
5
, (1.4)

C(I) =
∑

i,j∈I
j>i

(−1)i+1β
j−i

√
5
, and (1.5)

D(I) =
∑

i,j∈I
j>i

βj+i

√
5
. (1.6)

Let

c = A(I) +B(I) + 2C(I) + 2D(I). (1.7)

(a) If i1 ≡ 0 (mod 2) then

κ(n) = n+
∑

i,j∈I
j>i

(−1)i+1Fj−i + bcc.

(b) If i1 ≡ 1 (mod 2) then

κ(n) =
∑

i,j∈I
j>i

(−1)i+1Fj−i + bcc.

Theorem 1.2.
{

−m ≤ bcc ≤ m− 2, if i1 ≡ 0 (mod 2);

−(m− 1) ≤ bcc ≤ (m− 1), if i1 ≡ 1 (mod 2).

These bounds are best possible.

An outline of the rest of this paper is the following. In Section 2 we prove Theorem 1.1.
In Section 3 we show that Theorem 1.1 implies Theorem 1.2. In Section 4 we develop general
computational tools and prove a third theorem. These three theorems allow one to prove
that certain values do not lie in the range of κ. In Section 5 we illustrate application of the
computational tools.

Example 1.3. Theorems 1.1 and 1.2 give very good estimates of κ(n) with almost negligible
error. For example, if I = {900, 903, 905, 907} then m = 4, and although κ(n) is a 189-
digit number the theorems still give a quickly computable value for κ(n) with an error of only
bcc = m − 2 = 2. Similarly, if I = {900, 902, 904, 906} then bcc = −m = −4. Similarly, if
I = {901, 904, 906, 908} or I = {901, 903, 905, 907} then bcc equals -3 or 3, respectively. These
numerical examples show that the bounds for bcc are best possible. These examples are further
developed in Examples 3.1 and 4.3 below.
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2. Proof of Theorem 1.1

We begin with an elementary proposition summarizing all needed identities. These identities
follow routinely by the Binet form, the formula for the sum of geometric series and the identity
1− |β2| = |β|. Throughout the proposition n,m are assumed to be positive integers.

Proposition 2.1.

βn < 0, if n ≡ 1 (mod 2); βn > 0, if n ≡ 0 (mod 2). (2.1)

αFn = Fn+1 − βn. (2.2)
∑

n≥n0≥2
n≡n0 (mod 2)

|β|n = |β|n0−1. (2.3)

Fnβ
m = (−1)mFn−m + Fmβn, (2.4)

1 + 2|β| =
√
5. (2.5)

The next proposition has intrinsic interest in its own right since it gives a closed formula
for bnαc and nbnαc in terms of Zeckendorf representations.

Proposition 2.2.

nbnαc =
{

nn̂, if i1 ≡ 1 (mod 2),

nn̂− n, if i1 ≡ 0 (mod 2).
(2.6)

Proof.

αn = α
∑

i∈I
Fi, by (1.1),

=
∑

i∈I
Fi+1 −

∑

i∈I
βi, by (2.2),

= n̂−
∑

i∈I
βi.



































(2.7)

Hence, by (1.2), (2.3), and (2.1), bnαc equals n̂ or n̂ − 1 depending on whether i1 is odd or
even, respectively. Equation (2.6) follows immediately. �

We can now prove Theorem 1.1.

Proof. By (1.1) and (2.7) we immediately have

n2α = n(nα) = nn̂−
∑

i∈I
Fi

∑

j∈I
βj . (2.8)

Since nα > bnαc, we have n2α− nbnαc > 0. Hence, by (2.8) and (2.6) we have

n2α− nbnαc =















n−
∑

i∈I
Fi

∑

j∈I
βj , if i1 ≡ 0 (mod 2),

−
∑

i∈I
Fi

∑

j∈I
βj , if i1 ≡ 1 (mod 2).

(2.9)

Therefore, to prove Theorem 1.1 it suffices to show that

−
∑

i∈I
Fi

∑

j∈I
βj =

∑

i,j∈I
j>i

(−1)i+1Fj−i +A(I) +B(I) + 2C(I) + 2D(I). (2.10)
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To accomplish this we view the summands in the product of the two sums on the left side of
(2.10) as lying in a square whose rows are labeled by Fi and whose columns are labeled by βj.
We sum the diagonal, upper and lower triangles of this square separately.

The Diagonal. By the Binet form, (1.3), (1.4) and the identity αβ = −1, we have

−
∑

i∈I
Fiβ

i = −
∑

i∈I

αi − βi

√
5

βi = A(I) +B(I). (2.11)

The Upper Triangle. Again, by the Binet form, (1.5), (1.6) and the identity αβ = −1,
we have

−
∑

i,j∈I
j>i

Fiβ
j = −

∑

i,j∈I
j>i

αi − βi

√
5

βiβj−i = C(I) +D(I). (2.12)

The Lower Triangle. By (2.4) and (2.12) we have

−
∑

i,j∈I
j>i

Fjβ
i =

∑

i,j∈I
j>i

(−1)i+1Fj−i −
∑

i,j∈I
j>i

Fiβ
j =

∑

i,j∈I
j>i

(−1)i+1Fj−i + C(I) +D(I). (2.13)

Equations (2.11)–(2.13) yield (2.10), completing the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

We must deal with four cases depending on the parity of i1 and whether we are estimating
upper or lower bounds. For purposes of exposition we estimate lower bounds for the case
i1 ≡ 1 (mod 2), the proof of the other three cases being similar.

Proof. Since i1 is assumed odd we have, using the notation of (1.1),

i1 ≥ 3, i2 ≥ 5. (3.1)

By (1.3) and the assumption of oddness of i1, we have

A(I) ≥ 1− (m− 1)√
5

≥ −m− 2√
5

. (3.2)

By (1.4), (2.3), and (3.1) we have

|B(I)| ≤ 1√
5

∑

i≥i1

|β|2i = |β|2i1−1

√
5

≤ |β|5√
5
. (3.3)

Similarly, by (1.6), (2.3), (1.2), and (3.1) we have

|D(I)| ≤ 1√
5

∑

j∈I
j>i

|β|j
∑

i∈I
|β|i ≤ 1√

5

∑

j∈I
j>i

|β|j+i1−1 ≤ 1√
5
|β|i2+i1−2 ≤ 1√

5
|β|6. (3.4)

By (2.3), (1.5), and (1.2) we have

|C(I)| ≤ 1√
5

m
∑

j=2

j−1
∑

k=1

|β|ij−ik ≤ 1√
5

m
∑

j=2

∞
∑

k=1

|β|2k ≤ 1√
5

m
∑

j=2

|β| ≤ m− 1√
5

|β|. (3.5)

By (3.2)–(3.5) and (2.5), a lower bound for A(I) +B(I) + 2C(I) + 2D(I) is

−(m− 2)
1 + 2|β|√

5
− 2|β|6 + |β|5 + 2|β|√

5
= −(m− 2)− 0.642956 . . . .
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Therefore, by (1.7), bcc ≥ −(m− 1), as was to be shown.
To complete the proof of Theorem 1.2, we must show the bounds in Theorem 1.2 best possi-

ble. We accomplish this by generalizing the numerical illustrations presented in Example 1.3.

Example 3.1. We generalize the numerical examples presented in Example 1.3 which show
the bounds in Theorem 1.2 best possible.

If i is odd, define I1(i) = {i, i+2, i+4, i+6}, i ≥ 3. It is easy to compute (for small values
of i) that if n(I1(i)) = n is given by (1.1) then κ(n) =

∑

i,j∈I
j>i

(−1)i+1Fj−i + 3 = 17+ (m− 1).

Similarly, if we define I2(i) = {i, i+ 3, i+ 5, i+7}, i ≥ 2, i ≡ 1 (mod 2), then for small odd i,
κ(n(I2(i)) =

∑

i,j∈I
j>i

(−1)i+1Fj−i − 3 = 15− (m− 1).

If i ≥ 4 is even, then the computation for small i shows κ(n(I1(i))−n(I1(i) =
∑

i,j∈I
j>i

(−1)i+1Fj−i−

4 = −17−m and κ(n(I2(i)) − n(I2(i) =
∑

i,j∈I
j>i

(−1)i+1Fj−i + 2 = −15 + (m− 2).

Corollary 4.2 of Section 4 will allow us to prove that κ(n(I1(i))) ≡ 20 and κ(n(I2(i))) ≡ 12
for all odd integers i ≥ 3; we will also show that κ(n(I1(i)))−n(I1(i)) ≡ −21 and κ(n(I2(i)))−
n(I2(i)) ≡ −13 for all even integers i ≥ 4.

This completes the proof of Theorem 1.2. �

4. Tools For Computing κ(n)

The goal of this section is to provide quick effectively computable tools for determining if a
particular value lies in the range of κ. It would appear that the density of integers not in the
range of κ is positive. For example, a quick numerical check shows that

#{i ≤ n : (∃m ≤ 1, 000, 000)(i = κ(m))}
n

∈ {0.370, 0.50}, for n ∈ {100k : 1 ≤ k ≤ 15}

where # indicates cardinality. The theorems presented in this section allow us to reduce
checking whether a value is in the range of κ to a few computations with relatively small
numbers.

Motivated by the difference of indices occurring in the summands occurring on the right
hand side of the equations in Theorem 1.1(a) and (b) we introduce some notation. Using (1.1)
we define

J = J(I) = {d1, d2, . . . , dm}, with dj = ij − i1, 1 ≤ j ≤ m. (4.1)

Notice the elementary fact that

ij − ik = dj − dk, 1 ≤ k < j ≤ m.

For integer i we use the notation i+ J = {i, i + d2, . . . , i+ dm}. In particular, i1 + J = I.

Theorem 4.1.

A(I) = (−1)i1A(J). (4.2)

B(I) = β2i1B(J). (4.3)

C(I) = (−1)i1
∑

m≥j>k≥1

βdj−dk . (4.4)

D(I) = β2i1D(J). (4.5)

Proof. (1.3)–(1.6) and (4.1). �
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Corollary 4.2. Suppose i1 ≡ k (mod 2), with k = k(i1) ∈ {2, 3}. Then

lim
i→∞

i≡k (mod 2)

A(i+ J) +B(i+ J) + 2C(i+ J) + 2D(i+ J) = (−1)k
(

A(J) + 2C(J)
)

.

Furthermore, the sequence

{

A(k+2i+J)+B(k+2i+J)+2C(k+2i+J)+2D(k+2i+J)

}

i≥0
is monotone.

Example 4.3. To illustrate the computational usefulness of Corollary 4.2 we revisit Exam-
ples 1.3 and 3.1. We have I = {900, 903, 905, 907}, J = {0, 3, 5, 7}, and k = k(900) = 2. We
compute (−1)k

(

A(J)+2C(J)
)

= 2.0308, and A(k+J)+B(k+J)+2C(k+J)+2D(k+J) =
2.0575. Hence, by Corollary 4.2 we have for all non-negative integer i,

2.0308 < A(k + 2i+ J) +B(k + 2i+ J) + 2C(k + 2i+ J) + 2D(k + 2i+ J) ≤ 2.0575,

and therefore, by (1.7), we have
bcc = 2.

But Theorem 1.1 states that if n(i) =
∑

l∈k+2i+J Fl, i ≥ 0, then

κ(n(i)) − n(i) =
∑

1≤j<l≤m

(−1)dj+1Fdl−dj + bcc =
∑

1≤j<l≤m

(−1)dj+1Fdl−dj + 2.

It immediately follows that for all non-negative integer i,

κ(n(i)) = n(i) +
∑

1≤j<l≤m

(−1)dj+1Fdl−dj + 2 = n(i)− 13.

So for example, κ(53) = 40, κ(139) = 126, κ(364) = 351, . . ..
Using the notations of Example 3.1 we can show κ(n(I1(i)) ≡ 20, i ≥ 3, i ≡ 1 (mod 2),

κ(n(I2(i)) ≡ 12, i ≥ 3, i ≡ 1 (mod 2), and κ(n(I1(i)) ≡ n(I1(i)) − 21, i ≥ 4, i ≡ 0 (mod 2).
Note the unusual feature that κ(n(I1(2)) ≡ n(I1(2)) − 20, i ≥ 4, since c > −3 for i = 2 while
c < −3 for i ≥ 4, i ≡ 0 (mod 2).

The following theorem gives a lower bound useful in computing the value of κ(n) using
Theorem 1.1(a) and (b). We use the notations of (1.1).

Theorem 4.4. (a) If i1 ≡ 1 (mod 2) then

∑

1≤j<k≤m

(−1)ij+1Fik−ij ≥ Fd2 +
m
∑

k=3

Fdk−1 + (m− 2). (4.6)

(b) If i1 ≡ 0 (mod 2) then

n+
∑

1≤j<k≤m

(−1)ij+1Fik−ij ≥ Fi1 +

m
∑

j=2

Fij−2 + (m− 1). (4.7)

(c) These bounds are best possible.

Proof. (a) Assume i1 ≡ 1 (mod 2). Then

∑

1≤j<k≤m

(−1)ij+1Fik−ij ≥
m
∑

j=2

Fij−i1 +
m
∑

k=3

k−1
∑

j=2

(−1)ij+1Fik−ij . (4.8)

There are two cases to consider according to the parity of i2.
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Case - i2 even. Since i1 ≡ 1 (mod 2) and i2 ≡ 0 (mod 2), by (1.2), we have

i2 − i1 ≥ 3. (4.9)

To estimate (4.8), we will need the well-known Lucas identity [3, p. 71]
∑

i≥0
n−2i≥2

Fn−2i = Fn+1 − 1. (4.10)

By (4.8), we therefore have

∑

1≤j<k≤m

(−1)ij+1Fik−ij ≥
m
∑

j=2

Fij−i1 −
m
∑

j=3

j−1
∑

k=2

Fij−ik ,

≥
m
∑

j=2

Fij−i1 −
m
∑

j=3

(

Fij−i2+1 − 1
)

, by (4.10),

≥ Fi2−i1 +
m
∑

j=3

(

Fij−i1 − Fij−i2+1

)

+ (m− 2),

≥ Fi2−i1 +

m
∑

j=3

(

Fij−i1−1

)

+ (m− 2),by (4.9),

= Fd2 +

m
∑

j=3

(

Fdj−1

)

+ (m− 2),by (4.1).

The proof for odd i2 is similar and omitted.
The proof of Theorem 4.4(b) is similar to the proof of Theorem 4.4(a) and is omitted.
Proof of (c). For integer n ≥ 4, define In = {3, 6, 8, . . . , 2n}. It is straightforward to verify

(using the identities in the above proof) that m = m(In) = n− 1 and

∑

1≤j≤k≤(n−1)

(−1)ij+1Fik−ij = F2n−3 + (n− 1)− 2 = Fd2 +

m
∑

j=3

Fdk−1 +m− 2.

This shows the bounds best possible for (4.6).
Similarly, by defining the sets In = {2, 4, . . . , 2n}, n ≥ 2, we can verify that m = m(In) = n

and

n+
∑

1≤j≤k≤n

(−1)ij+1Fik−ij = F2n−1 + n− 1 = Fi1 +

m
∑

j=2

Fij−2 +m− 1,

proving the bounds best for (4.7). �

5. Applications

In this section we show how the theorems of the previous sections can reduce proof of
the impossibility of a specific value being in the range of κ to a finite quick computational
verification. We have chosen to illustrate by showing the impossibility that κ(n) = 3. Even
though this result has already been proven [1] it is the computationally easiest case. This
example also has sufficient richness to fully illustrate all machinery developed in this paper.
Additionally many of the intermediate results needed have intrinsic interest in their own right.
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We shall present the proof by a series of computational facts. Throughout, we assume the
notations of (1.1).

Computational Fact 5.1. If i1 ≡ 1 (mod 2) and m ≥ 4 then κ(n) 6= 3.

Proof. By (1.2) and (4.1), d2 ≥ 2, d3 ≥ 4, and d4 ≥ 6. Therefore, by (4.6), Theorems 1.1
and 1.2, κ(n) ≥ F2 + F4−1 + F6−1 + (m− 2)− (m− 1) ≥ 7. �

Computational Fact 5.2. If i1 ≡ 0 (mod 2) and m ≥ 3 then κ(n) 6= 3.

Proof. By (1.2),(4.7), Theorems 1.2 and 1.1, κ(n) ≥ F2 + F2 + F4 + (m− 1)−m ≥ 4. �

Computational Fact 5.3. If m = 1 then

κ(n) =

{

0, if i1 ≡ 1 (mod 2),

n− 1, if i1 ≡ 0 (mod 2).

Hence for all n, κ(n) 6= 3.

Proof. Note that since m = 1, the sum of Fibonacci numbers on the right hand side of

Theorem 1.1(a), (b) is 0. Similarly C(I) = 0, D(I) = 0, A(I) = (−1)i1+1 1√
5
, and B(I) = β2i1√

5
.

To apply Theorems 1.1 and 1.2 note that if i1 ≥ 3 is odd then Corollary 4.2 implies that 1√
5
=

0.4472 < c < 1+β2i1√
5

≤ 0.4721 implying κ(n) = 0, while if i1 ≥ 2 is even then Corollary 4.2

implies that −0.3820 ≤ −1+b2i1√
5

< c < − 1√
5
= −0.4472, implying κ(n) = n− 1. �

Computational Fact 5.4. If m = 2 then κ(n) 6= 3 for all n.

Comment. It is an instructive exercise, similar to our treatment of the m = 1 case, to use
Theorems 1.1 and 1.2 to derive a complete set of exact values for κ(n). For example, we can
show that

κ(n) =











Fd2 + 1, for d2 ∈ {2, 4}, and any odd i1,

Fd2 , for d2 ≥ 6, d2 ≡ 0 (mod 2), and any odd i1,

Fd2 − 1, for d2 odd, d2 ∈ {3, 5, 7}, and any odd i1.

However for d2 ≥ 9, κ(n) equals Fd2 , for odd i1 ≤ u(d2), but equals Fd2 −1, for odd i1 > u(d2)
where u(d2) is a non-decreasing function. For example, u(9) = 3, u(11) = 3, u(13) = 5, u(15) =
5, u(17) = 7, . . .. The numerical evidence suggests the conjecture that u(4m+1) = u(4m+3) =
2m − 1. Thus, even in the relatively simple case of m = 2, i1 odd, a complete description of
values of κ(n) is complex. As m grows, the number of cases to consider increases significantly.
Therefore, we must introduce a different proof approach.

Proof. First suppose i1 ≡ 1 (mod 2). Then by Theorems 1.1 and 1.2, κ(n) ≥ Fd2 + bcc ≥
Fd2−1, implying that if d2 ≥ 5, κ(n) ≥ 4. Therefore, to complete the proof of the impossibility
of κ(n) = 3 for the i1 odd case, we only need to numerically verify the impossibility for
d2 ∈ {2, 3, 4}.

Similarly if i1 ≡ 0 (mod 2), then by Theorem 1.1 κ(n) ≥ n − Fd2 + bcc. But n = Fi1 +
Fi1+d2 ≥ F2 + F2+d2 , and by Theorem 1.2, c ≥ −2. It follows that κ(n) ≥ Fd2+1 − 1. The
proof of the impossibility of κ(n) = 3 is completed by numerically verifying the impossibility
for d2 ∈ {2, 3}. �
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To complete the proof that for all n, κ(n) 6= 3, in light of Computational Facts 5.1 and 5.2,
we are left to deal with the case m = 3 and i1 ≡ 1 (mod 2). We use the proof approach
presented for the m = 2 case.

Computational Fact 5.5. If i1 ≡ 1 (mod 2) and m = 3, then for all positive integer n,
κ(n) 6= 3.

Proof. By (1.2), (4.1) and Theorems 1.1 and 1.2, κ(n) ≥ Fd2 + Fd3 − Fd3−d2 − 2, with di ≥
2, i = 2, 3 and d3 − d2 ≥ 2. Clearly Fd3−d2 ≤ Fd3−2, implying κ(n) ≥ Fd2 + Fd3−1 − 2. So for
d3 ≥ 6, κ(n) ≥ 4. The proof is completed by checking all integer lattice points (d2, d3) with
2 ≤ d2 < d2 + 2 ≤ d3 < 6. This completes the proof. �

6. Conclusion

Kimberling’s κ function has many interesting properties. Because of its discontinuities,
classical continuous methods do not suffice to analyze it. Nevertheless, κ(n) has well-defined
algebraic and analytic properties allowing us to obtain bounds.

Connected with κ(n) there are many interesting conjectures and unsolved problems which
appear solvable by the methods introduced in this paper. We list a few unsolved problems.

1. (Kimberling) Describe the complement of the range of κ.
2. Describe those n such that κ(m) = n has (in)finitely many solutions.
3. Prove that the set of values (not) in the range of κ has positive density and compute

this density.
4. We have seen that proofs of impossibility may require analyzing many cases depending

on parity. Find and prove theorems which reduce the number of cases necessary to
consider.

The methods of this paper as well as the four problems just enumerated should be of interest
to those who work with Beatty sequences in general and with Wythoff sequences in particular.
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