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Abstract. Joint rankings of certain sets yield sequences called lower and upper s-Wythoff
sequences. These generalizations of the classical Wythoff sequences include pairs of com-
plementary Beatty sequences, both nonhomogeneous and homogeneous. There is a unique
sequence Ψ such that the Ψ-Wythoff sequence of Ψ is Ψ. Finally, the Beatty discrepancy of
a certain form of complementary equation is determined.

1. Introduction

Two well-known sequences associated with the golden ratio τ = (1 +
√
5)/2 are the lower

and upper Wythoff sequences:

(bnτc) = (1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, . . .),

(
⌊

nτ2
⌋

) = (bnτc+ n) = (2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, . . .).

These Beatty sequences are indexed as A000201 and A001950 in [14], where many properties
and references are given.

In many settings, Beatty sequence means a sequence of the form (bnuc). Such sequences
occur in complementary pairs, (bnuc) and (bnvc), where u is an irrational number greater than
1 and v = u/(u − 1). Here, however, we apply Beatty sequence more generally: a sequence
of the form (bnu+ hc), where u > 1 and 1 ≤ u + h; elsewhere ([2, 3, 5, 12]), if h 6= 0, the
sequence (bnu+ hc) is called a nonhomogeneous Beatty sequence.

Consider the following procedure for generating the classical Wythoff sequences. Write N
in a row, write 1 at the beginning of a second row, and 2 at the beginning of a third row.
Then generate row 2, labeled a, and row 3, labeled b, by taking a(n) to be the least number
missing from the set

{a(1), a(2), . . . , a(n − 1), b(1), b(2), . . . , b(n − 1)} (1.1)

and b(n) = n+ a(n). The rows appear as follows:

n : 1 2 3 4 5 6 7 8 . . .
a : 1 3 4 6 8 9 11 12 . . .
b : 2 5 7 10 13 15 18 20 . . . .

The generalization indicated by the title stems from replacing N by an arbitrary nondecreasing
sequence s of positive integers and putting b(n) = s(n)+a(n), where a(n) is given by (1.1). We
call the resulting complementary sequences a and b the lower and upper s-Wythoff sequences.

In Section 2, formulas for various Beatty sequences are derived. In Section 3, we formulate
s-Wythoff sequences for certain arithmetic sequences s. In Section 4, the procedure used to
define s-Wythoff sequences is iterated, resulting in unique lower and upper limiting sequences.
In Section 5, the notion of Beatty discrepancy is applied to certain s-Wythoff sequences.
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Historical notes are of interest. The term Beatty sequence stems from a 1926 problem
proposal, but Beatty’s theorem – that the pairs of sequences are complementary – was known
as early as 1894 by John William Strutt (Lord Rayleigh) [13]. The term Wythoff sequence
stems from the winning pairs (a(n), b(n)) for the Wythoff game [17]. Aviezri Fraenkel and
others [2, 4, 6, 7, 8, 10] have studied Beatty sequences and generalizations of the Wythoff
game, some of which have winning pairs (a(n), b(n)) in which a and b are s-Wythoff sequences
for various choices of s.

2. Joint Ranking of Two Sets

Suppose that u is a real number greater than 1, not necessarily irrational, and let v =
u/(u − 1). Note that u < v if and only if u < 2, and u = v if and only if u = 2. We assume
that 1 < u < v, and if c is a real number for which the sets

S1 = { i
u
+ c : i ≥ 1} and S2 = { j

v
: j ≥ 1} (2.1)

are disjoint, we call (u, c) a regular pair. Suppose that the numbers in S1 ∪ S2 are jointly
ranked. Let a(n) be the rank of n/u+ c and b(n) the rank of n/v. Obviously, every positive
integer is in exactly one of the sequences a = (a(n)) and b = (b(n)). In Theorem 1, we
formulate a(n) and b(n) in terms of n, u, v, and c.

Theorem 1. Suppose that (u, c) is a regular pair. Then the complementary joint-rank se-
quences a(n) and b(n) are given by

a(n) =

{

n if n ≤ (1 + cu)/(u − 1)
bnu− cuc if n > (1 + cu)/(u − 1)

b(n) = bnv + cvc ,
for n ≥ 1.

Proof. Clearly the number of numbers j for which j/v ≤ n/v is n. To find the number of
numbers i satisfying i/u + c ≤ n/v, first note that the inequality must be strict since S1 ∩ S2

is empty, so that we seek the number of i such that

i < nu/v − cu,

or equivalently, i < −n+un− cu, since u/v = u− 1. If −n+un− cu ≤ 1, the number of such
i is zero; otherwise, the number is b−n+ nu− cuc. Thus, the rank of n/v is the number a(n)
as stated. The same argument, together with the hypothesis that u < v, shows that the rank
of n/u+ c is b(n). �

The condition that n > (1 + cu)/(u − 1) in Theorem 1 ensures that the sequences a and b
are Beatty sequences if the condition holds for n = 1. This observation leads directly to the
following corollary.

Corollary 1. If (u, c) is a regular pair and 1− 2/u < c ≤ 1− 1/u, then the sequences a and b
in Theorem 1 are complementary Beatty sequences: a(n) = bnu− cuc and b(n) = bnv + cvc.

Next, suppose that a(n) = bnu+ hc is a Beatty sequence. We wish to formulate its com-
plement using Theorem 1. Specifically, we wish to find conditions on u and h under which
there is a number h′ such that the sequence given by b(n) = bnv + h′c is the complement of a.
In order to match bnu+ hc and bnv + h′c to bnu− cuc and bnv + cvc, respectively, we take
c = −h/u and h′ = −hv/u = h− hv. The result is stated here as a second corollary.
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Corollary 2. Suppose that u > 1, and let v = u/(u − 1). Suppose that h is a number such
that 1− u ≤ h < 2− u and the sets {i/u − h : i ≥ 1} and {j/v : j ≥ 1} are disjoint. Let a be
the sequence given by a(n) = bnu+ hc and let b be the complement of a. Then

b(n) = bnv + h− hvc
for n ≥ 1.

3. Generalized Wythoff Sequences

Suppose that s = (s(n)) is a nondecreasing sequence of positive integers. Define a(1) = 1,
b(1) = 1, and for n ≥ 2, define

a(n) = mex{a(1), a(2), . . . , a(n− 1), b(1), b(2), . . . , b(n− 1)};
b(n) = s(n) + a(n).

(The notation mex S, for minimal excludant (of a set S), means the least positive integer
not in S; see the preprint of Fraenkel and Peled, Harnessing the Unwieldy MEX Function,
downloadable from [9].) In the special case that s(n) = n for all n ≥ 1, the sequences a and
b are the lower and upper Wythoff sequences, as in Section 1. In general, we call a the lower
s-Wythoff sequence and b the upper s -Wythoff sequence. In this section, we shall prove that
these are Beatty sequences when s is an arithmetic sequence of the form s(n) = kn−w, where
k is a nonnegative integer and w ∈ {−1, 0, 1, 2, 3, . . . , n− 1}.
Example 1. If s is the constant sequence given by s(n) = 1 for n ≥ 1, then a(n) = 2n − 1
and b(n) = 2n for every n ≥ 1.

Example 2. If s(n) = 2n, then a(n) =
⌊√

2n
⌋

and b(n) = 2n + a(n) for every n ≥ 1, a pair
of homogeneous Beatty sequences.

Example 3. If s(n) = n + 1, then a(n) =
⌊

τ(n+ 2−
√
5)
⌋

and b(n) =
⌊

τ2(n+ 2−
√
5)
⌋

, a
pair of Beatty sequences (A026273 and A026274 in [14]), as in the next lemma.

Lemma 1. Suppose that s(n) = kn−w, where k ≥ 1 and −1 ≤ w ≤ k − 1. Let d =
√
k2 + 4.

The sequences

A(n) =

⌊

d+ 2− k

2
(n+

w

d+ 2
)

⌋

(3.1)

B(n) =

⌊

d+ 2 + k

2
(n− w

d+ 2
)

⌋

(3.2)

are complementary.

Proof. In order to apply Corollary 1 to (3.1) and (3.2), let u = (d+2−k)/2 and c = −w/(d+2),
and let S1 and S2 be as in (2.1) with v = u/(u−1). To see that S1 and S2 are disjoint, suppose
for some i and j that i/u+ c = j/v. In order to express j in a certain manner, note that

c = − w

2 +
√
4 + k2

,

v =
(2 + k +

√
4 + k2)

2
,

cv =
(2− k −

√
4 + k2)

2k
w,
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so that

j =
iv

u
+ cv =

w

k
+

(ik − w)(k +
√
4 + k2)

2k
. (3.3)

However,
√
4 + k2 is irrational for all k ≥ 1, so that the right-hand side of (3.3) is not an

integer, proving that S1 and S2 are disjoint. By Corollary 1, the sequences (3.1) and (3.2) are
a pair of complementary Beatty sequences. �

Theorem 2. Suppose that s(n) = kn−w, where k ≥ 1 and −1 ≤ w ≤ k−1. Let d =
√
k2 + 4,

and let a and b be the lower and upper s-Wythoff sequences. Then a = A and b = B, where A
and B are given by (3.1) and (3.2).

Proof. Clearly, A(1) = a(1), and it is easy to check that B(n) = kn − w + A(n) for all n, so
that B and b arise from B = s +A and b = s + a. Therefore, all we need to do is prove that
if n ≥ 2 and

m = mex{A(1), A(2), . . . , A(n − 1), B(1), B(2), . . . , B(n− 1)},
then m = A(n), but this is a direct consequence of Lemma 1. �

4. Limiting Sequences

Let Ψ denote the sequence

A003159 = (1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, . . .)

in the Encyclopedia of Integer Sequences [14]; Ψ(n) is then the nth positive integer whose
binary representation ends in an even number of 0’s. The complement of Ψ is the sequence
Λ = A036554 = 2 ∗ A003159 of numbers whose binary representation ends in an odd number
of 0’s. We shall prove that these two sequences are left fixed by the algorithm used to form
s-Wythoff sequences. Then we shall prove that they are the unique limiting sequences when
the procedure is iterated. (To say that lim

m→∞

am = Ψ means that for every H > 0 there exists

M such that if m > M , then am(h) = Ψ(h) for all h ≤ H.)

Theorem 3. There exists a unique sequence Ψ such that the lower Ψ-Wythoff sequence of Ψ
is Ψ.

Proof. Suppose that f = (f(n)) is a sequence such that the lower f -Wythoff sequence of f is
f . Let g be the upper f -Wythoff sequence. Clearly g = 2f . Since f(1) = 1, we have g(1) = 2,
so that

f(2) = mex{f(1), g(1)} = 3 and f(2) = 6.

As an inductive step, suppose for arbitrary n ≥ 2 that f(i) is uniquely determined for i ≤ n−1.
Let

Tn−1 = {1, 3, . . . , f(n− 1), 2, 6, . . . , 2f(n− 1)}.
Then mex(Tn−1) is given by one of two cases: f(n) = f(n−1)+1 if this number is not in Tn−1

or else f(n) = f(n− 1) + 2 since neighboring terms of the set {2, 6, . . . , 2f(n− 1)} necessarily
differ by at least 2. In both cases, f(n) and hence g(n) are uniquely determined. �

Henceforth we shall refer to Ψ and Λ as the lower and upper invariant Wythoff sequences.
The next result indicates the special role played by these two sequences under iterations.
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Theorem 4. Suppose that s is a nondecreasing sequence in N . Let a1 and b1 be the lower
and upper s-Wythoff sequences, respectively. Let s1 = a1, and let a2 and b2 be the lower and
upper s1-Wythoff sequences. Inductively, for m ≥ 2, let sm−1 = am−1, and let am and bm be
the lower and upper sm−1-Wythoff sequences. Then lim

m→∞

am exists and is the lower invariant

Wythoff sequence Ψ.

Proof. As a first induction step, note that s1(1) = 1 = Ψ(1) even if s(1) > 1. As an induction
hypothesis, suppose for m ≥ 1 and n ≥ that sm(h) = am(h) = Ψ(h) for h = 1, 2, . . . , n. Then

a(n + 1) = mex{a(1), a(2), . . . , a(n− 1), b(1), b(2), . . . , b(n− 1)}
= mex{Ψ(1),Ψ(2), . . . ,Ψ(n− 1),Λ(1),Λ(2), . . . ,Λ(n − 1)}

by the induction hypothesis, so that a(n + 1) = Ψ(n + 1) by Theorem 3. Consequently, by
induction, lim

m→∞

am = lim
m→∞

sm = Ψ. �

5. Beatty Discrepancy

The notion of the Beatty discrepancy of a complementary equation is introduced in [14]
at A138253. In this section we shall determine the Beatty discrepancy of certain equations
of the form b(n) = s(n) + a(n). We begin with definitions. Quoting from [11]: “Under the
assumption that sequences a and b partition the sequence N = (1, 2, 3, . . .) of positive integers,
the designation complementary equations applies to equations such as b(n) = a(a(n)) + 1 in
much the same way that the designations functional equations, differential equations, and
Diophantine equations apply elsewhere. Indeed, complementary equations can be regarded as
a class of Diophantine equations.”

Now suppose that a and b are solutions of a complementary equation f(a, b) = 0 and that
the numbers r = lim

n→∞

a(n) and s = lim
n→∞

b(n) exist. Let α(n) = brnc and β(n) = bsnc for

n ≥ 1, so that α and β are a pair of complementary Beatty sequences. The Beatty discrepancy
of the equation f(a, b) = 0 is the sequence D = (D(n)) defined by D(n) = f(α, β).

Theorem 5. Suppose that s(n) = kn−w, where k ≥ 1 and w ∈ {−1, 0, 1, 2, 3, . . . , n− 1}. Let

d =
√
k2 + 4, and let a and b be the lower and upper s-Wythoff sequences. Then the Beatty

discrepancy of the equation b = s+ a is the constant sequence given by D(n) = w.

Proof. Using A and B as in (3.1) and (3.2), we have

D(n) =

⌊

d+ 2 + k

2
n

⌋

− (kn− w)−
⌊

d+ 2− k

2
n

⌋

=

⌊

d+ 2− k

2
n

⌋

+ bknc − kn+ w −
⌊

d+ 2− k

2
n

⌋

,

so that D(n) = w for all n. �

6. Concluding Comments

The Online Encyclopedia of Integer Sequences [14] includes several s-Wythoff sequences. For
a guide to these and a Mathematica program for generating them, see A184117. In Theorems
1 and 5, the seed sequence s is an arithmetic sequence. It seems likely that these theorems
can be generalized to cover a much wider class of nearly linear sequences.
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