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Abstract. The Hofstatder Q sequence is defined by the recurrence relation Q(n) = Q(n−

Q(n − 1)) + Q(n − Q(n − 2)), with the initial conditions Q(1) = Q(2) = 1. Here we prove
that other initial conditions can be used that cause the recurrence relation to generate the
Fibonacci sequence.

1. Introduction

The term “meta-Fibonacci”, first introduced in [5], has occurred in the title of a number of
papers published in recent decades in the mathematical literature [4, 9, 10, 13, 1]. However,
these papers scarcely mention the Fibonacci numbers! Why then, is that term used? A typical
meta-Fibonacci recurrence relation is given below.

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2)), with Q(1) = Q(2) = 1. (1.1)

Now the reason is apparent; it is because the recurrence for Q(n) involves the addition of two
terms, one containing Q(n− 1) and the other containing Q(n− 2). The sequence of numbers
Q(1), Q(2), Q(3), . . . is very different from the Fibonacci sequence. For example, the numbers
do not exhibit exponential growth; in fact, we seem to need Q(n) < n for the recurrence
to be well-defined. Nor are they monotone. The numbers generated by (1.1) are known as
“Hofstadter’s Q sequence,” named after a sequence first introduced in [11]. Very little is known
about this sequence, including whether it is well-defined for all n > 1.

If one changes the initial conditions to Q(1) = 3, Q(2) = 2, Q(3) = 1, then the resulting
sequence is quasi-periodic with a quasi-period of 3. More precisely Q(3k+1) = 3, Q(3k+2) =
3k+2, and Q(3k) = 3k− 2. This example was discovered by Golomb [8], and seems to be the
only solved case of the Hofstadter Q recursion. There are some other nested recursions that
give rise to the Fibonacci numbers, but these are not meta-Fibonacci; see Barbeau and Tanny
[2], [3].

One way to make the Q sequence well-defined is to simply specify the initial values of Q
for all n < 1, for example, that Q(n) = 0 if n < 1. We adopt that strategy here, and then
determine initial conditions so that the Fibonacci sequence occurs in some natural way.

2. Finding Fibonacci Buried in Hofstadter

Define the Fibonacci sequence by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 if n > 2. Introduce
the notation P (m, j) := Q(3m+ j) where (typically) 0 ≤ j < 3.
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Now suppose that the following formal solution to (1.1) holds for some unknown increasing
positive sequence of integers α0, α1, α2, . . .. What properties must αm have?

P (m, j) =



















0 if 3m+ j < 0

3 if j = 0

6 if j = 1

αm if j = 2.

(2.1)

We inductively check (1.1), first for j = 0, and later for j = 1, 2.

P (m, 0) = Q(3m)

= Q(3m−Q(3(m− 1) + 2)) +Q(3m−Q(3(m− 1) + 1))

= Q(3m− P (m− 1, 2)) +Q(3m− P (m− 1, 1))

= P (m, 0− P (m− 1, 2)) + P (m, 0− P (m− 1, 1))

= P (m,−αm−1) + P (m,−6)

= 0 + P (m− 2, 0)

= 3.

The last two equalities hold if 3m − αm−1 < 0 and m − 2 ≥ 0. We will now do a similar
calculation for j = 1 and j = 2, skipping some of the more obvious steps.

P (m, 1) = P (m, 1− P (m, 0)) + P (m, 1− P (m− 1, 2))

= P (m, 1− 3) + P (m, 1− αm−1)

= P (m− 1, 1) + 0

= 6.

The last two equalities hold if m− 1 ≥ 0 and 3m+ 1− αm−1 < 0.

P (m, 2) = P (m, 2 − P (m− 1, 1)) + P (m, 2− P (m− 1, 0))

= P (m,−4) + P (m,−1)

= P (m− 2, 2) + P (m− 1, 2)

= αm−2 + αm−1.

The equalities hold if m− 2 ≥ 0 and αm = αm−2 +αm−1. Note that the Fibonacci recurrence
relation has (somewhat mysteriously) appeared. If we satisfy the various inequalities that have
occurred and supply the appropriate initial conditions, then we should be able to generate the
Fibonacci sequence.

All the constraints in the three cases are subsumed by m ≥ 2 and 3m + 1 < αm−1. When
m = 1 the second constraint is 4 < α0, and when m = 2 it is 7 < α1. The smallest consecutive
Fibonacci numbers that satisfy these constraints are α0 = 5 and α1 = 8. Thus if we make
P (0, 2) = 5 = F5 and P (1, 2) = 8 = F6 as initial conditions (along with P (0, 0) = P (1, 0) = 3
and P (0, 1) = P (1, 1) = 6), then for m ≥ 2, successive αm will be successive Fibonacci
numbers. In conclusion we state the following theorem.
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Theorem 2.1. If Q(n) is defined by the following recurrence relation

Q(n) =







































0 if n < 0

3 if n = 0, 3

6 if n = 1, 4

5 if n = 2

8 if n = 5

Q(n−Q(n− 1)) +Q(n−Q(n− 2)) if n > 5

(2.2)

then, for all m ≥ 0,

Q(3m+ 2) = Fm+5.

3. Open Problems

The result given in this paper is meant to whet the reader’s appetite. Below we list some
questions that await further investigation.

• Both of the known quasi-periodic solutions to the Hofstadter recurrence have quasi-
period 3. Are other quasi-periods possible?

• Are there other quasi-periodic solutions to the Hofstadter recurrence that yield Fi-
bonacci numbers?

• Are there quasi-periodic solutions to other meta-Fibonacci recurrences, such as the
Conolly or Tanny recurrences [5, 15]?

• The answer to the previous question is certainly affirmative, but one could ask, for
example, whether every rational sequence occurs as the quasi-periodic solution to some
meta-Fibonacci recurrence.
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