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Abstract. We generalize several properties from Pascal’s triangle to Hosoya’s triangle. In
particular, we prove the GCD property for the Star of David and other polygons. We also
give a criterion to determine whether a sequence of points in a polygon or in a rhombus have
GCD equal to one.

1. Introduction

Several authors have studied the properties of a hexagon surrounding a given point in the
Pascal triangle. That hexagon gives rise to two triangles each surrounding the given point.
These two triangles form what is called Star of David. The first study of the Star of David
appeared in 1971 by Hoggatt, Jr. andW. Hansell [4]. Several other articles have been published
since then, either proving open questions or generalizations of this concept. (See for example
[1, 3, 6, 8].)

Hoggatt, Jr. and W. Hansell [4] proved that the points in a Star of David satisfy the
multiplication property. That is, a1a2a3 = b1b2b3 (see Figure 2 part (a)). In 1972 Gould
[1] conjectured that gcd(a1, a2, a3) = gcd(b1, b2, b3) in the Star of David. In 1972 Hillman
and Hoggatt [3] proved Gould’s conjecture. In 1994 Korntved [6] proved that this property
extends to other configurations. He constructed a configuration with three hexagons where
each hexagon intersects the other two in a point. This configuration satisfies that the GCD
of the alternating points is equal to the GCD of the others. For example, if Figure 3 holds in
the Pascal triangle, then gcd(a1, a2, a3, a4, a5, a6) = gcd(b1, b2, b3, b4, b5, b6).

In 1976 Hosoya [5, 7] introduced a new array of numbers that he called Fibonacci triangle.
Later the name was changed to avoid confusion with another arrangement that is also called
Fibonacci triangle. So, now Hosoya’s arrangement is called Hosoya’s triangle. Each entry of
this triangle is a product of two Fibonacci numbers (see Table 1).

Koshy [7] has a complete chapter dedicated to the study of Hosoya’s triangle and some of its
properties. Some identities and additive properties of several configurations such as triangles
and rhomboids can be found in [7, Chapter 15].

It is natural to ask the question, what properties that hold for Pascal’s triangle generalize
to Hosoya’s triangle? In 2011 Griffiths [2], using ordinary generating functions, found an
expression for the sum of the elements lying on the nth diagonal of Hosoya’s triangle.

We believe that Hosoya’s triangle may have as many properties as Pascal’s triangle. Un-
fortunately, this triangle has not been studied enough. In this paper we prove that some
properties that are true in Pascal’s triangle generalize to Hosoya’s triangle. In particular, we
prove all properties mentioned above. Those properties behave better than in Pascal’s triangle.
For instance, we prove that the GCD’s mentioned above are equal to one.

We prove the multiplication property and GCD property for the Star of David. We also
prove the GCD property for the configuration with three hexagons constructed by Korntved
(see Figure 3). It is interesting to mention that the GCD of those points is one. The main
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theorem proves that the GCD of an array of points in a rhombus is either one or two, if no
two points are in the same diagonal.

2. Preliminaries

In this section we introduce some notations and definitions and give results that are going
to be used throughout the paper. Some of them are well-known, but we prefer to restate them
here as it will avoid ambiguities.

The Hosoya’s sequence {H(r, k)}r,k≥1 is defined recursively by

H(r, k) = H(r − 1, k) +H(r − 2, k) and H(r, k) = H(r − 1, k − 1) +H(r − 2, k − 2)

where r > 2 and 1 ≤ k ≤ r with H(1, 1) = H(2, 1) = H(2, 2) = H(3, 2) = 1.

Note that {H(r, k)}r,k≥1 begins with r = 1 and k = 1, instead of r = 0 and k = 0 as in [7].

In [7] it is proved that H(r, k) = FkFr−k+1. This sequence gives rise to Hosoya’s triangle
[5, 7, 11], where the entry in position k (taken from left to right) of the rth row is equal to
H(r, k) = FkFr−k+1 (see Table 1).

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13
21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34
55 34 42 39 40 40 39 42 34 55

Table 1. Hosoya’s Triangle.

An nth diagonal in Hosoya’s triangle is the collection of all Fibonacci numbers multiplied
by Fn. We distinguish between slash diagonals and backslash diagonals, with the obvious
meaning. We write S(Fn) and B(Fm) to mean the slash diagonal and backslash diagonal,
respectively, (see Figure 1). We formally define these two diagonals as

S(Fn) = {H(n+ i− 1, n)}∞i=1 = {FiFn|i ∈ N},

and

B(Fm) = {H(m+ i− 1, i)}∞i=1 = {FmFi|i ∈ N}.

We can associate a pair of Fibonacci numbers to every element of Hosoya’s triangle. If a
is a point in Hosoya’s triangle, then there are two Fibonacci numbers Fm and Fn such that
a ∈ B(Fm) ∩ S(Fn). Thus, a = FmFn. Therefore, the element a corresponds to the pair
(Fm, Fn). We denoted this correspondence by “←→”. That is, if a ∈ B(Fm) ∩ S(Fn), then
a←→ (Fm, Fn). It is clear that this correspondence is a bijection between points of Hosoya’s
triangle and pairs of Fibonacci numbers.

The Star of David is a configuration of 6 points in Hosoya’s triangle formed by two triangles
with vertices a1, a2, a3 and b1, b2, b3 (see Figure 2 parts (a) and (b)).
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S(F4)
B(F5)

Figure 1. The slash diagonal B(F5) and backslash diagonal S(F4).
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Figure 2. Star of David.

The multiplication property of the GCD says that if a and b are co-primes, then gcd(ab, c) =
gcd(a, c) gcd(b, c). We use this property to prove Proposition 2.2, which will play a special
role throughout the paper. Proposition 2.2 is a natural relation. Therefore, we believe that it
is known, but unfortunately we have not found this property in the mathematics literature.

Let p be a prime number and A ∈ Z
k for some k ∈ N. We denote by np(A) the number of

entries in the k-tuple A that are divisible by p. For instance, n3(2, 3, 3, 6, 5, 12) = 4.

Lemma 2.1 ([7, Theorem 16.3]). gcd(Fm, Fn) = Fgcd(m,n).

Proposition 2.2. Let a, b, c and d be positive integers.

(1) If gcd(a, b) = 1 and gcd(c, d) = 1, then gcd(ab, cd) = gcd(a, c) gcd(a, d) gcd(b, c) gcd(b, d).
(2) If gcd(a, c) = gcd(b, d) = 1, then gcd(ab, cd) = gcd(a, d) gcd(b, c).

Proof. The proof of part (1) follows from the multiplication property of the GCD.
Proof of part (2). Let d1 = gcd(a, d), d2 = gcd(b, c) and x = gcd(ab, cd). It is easy to see

that d1d2 | ab and d1d2 | cd. Thus,

d1d2 | x. (2.1)

We now prove that x | d1d2. If x = 1, then it is clear that x | d1d2. We assume that x ≥ 2.
Let x = pr11 pr22 . . . prnn be the prime decomposition of x. We consider a prime power pr that
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divides x with r ≥ 1. Thus, pr | ab and pr | cd. Since gcd(b, d) = gcd(a, c) = 1, it is easy to see
that either pr | a and pr | d or pr | b and pr | c. Thus, pr | d1 or pr | d2. Therefore, p

r | d1d2.
The previous argument shows that prii | d1d2 for every i ∈ {1, . . . , n}. Since pr11 , . . . , prnn are

relatively prime, (pr11 pr22 . . . prnn ) | d1d2. That is, x | d1d2. This and (2.1) imply that x = d1d2.
This proves the lemma. �

3. Properties that Generalize from Pascal’s Triangle to Hosoya’s Triangle

Hillman and Hoggatt [3] proved that if the configuration of points in Figure 2 part (a) holds
in Pascal’s triangle, then gcd(a1, a2, a3) = gcd(b1, b2, b3). It is called the GCD property of the
Star of David. However, this property is not true for the configuration of points in Figure 2
part (b). As a counterexample we could choose

a1 =

(

3

1

)

, a2 =

(

3

2

)

, a3 =

(

6

3

)

, b1 =

(

5

2

)

, b2 =

(

5

3

)

, b3 =

(

2

1

)

.

In this section we prove that gcd(a1, a2, a3) = gcd(b1, b2, b3) = 1 for the configuration of points
in Figure 2 parts (a) and (b) in Hosoya’s triangle. This generalizes the GCD property of the
Star of David. In Theorem 3.2 we prove that the product of gcd(a1, b2) and gcd(b1, a2) is
equal to the interior point c of the hexagon. Theorem 3.4 generalizes this property for every
polygon.

In [6] it is proved that if the configuration of points in Figure 3 in Pascal’s triangle, then
gcd(a1, a2, a3, a4, a5, a6) = gcd(b1, b2, b3, b4, b5, b6). In Proposition 3.3 we prove that this prop-
erty is also true for Hosoya’s triangle.

Lemma 3.1. Let m,n, s and t be positive integers. If |m− n| ≤ 2 and |s− t| ≤ 2, then

(1) gcd(Fm, Fn) = 1,
(2) gcd(FmFs, FnFt) = gcd(Fm, Ft) gcd(Fs, Fn) = Fgcd(m,t)Fgcd(n,s).

Proof. We prove part (1). The Lemma 2.1 and gcd(m,n) ≤ 2, imply that gcd(Fm, Fn) =
Fgcd(m,n) = F1 or F2. This proves part (1).

We now prove part (2). From part (1) we know that gcd(Ft, Fs) = gcd(Fm, Fn) = 1.
These and Proposition 2.2 part (2) imply that gcd(FmFs, FnFt) = gcd(Fm, Ft) gcd(Fs, Fn)
= Fgcd(m,t)Fgcd(s,n). �

Theorem 3.2. If a1, a2, a3 and b1, b2, b3 are the vertices of the two triangles of a Star of David
in Hosoya’s triangle with c as its interior point, then

(1) a1a2a3 = b1b2b3,
(2) gcd(a1, a2, a3) = gcd(b1, b2, b3) = 1,
(3) gcd(a1, b2) gcd(b1, a2) = c.

Proof. We prove parts (2) and (3). It is easy to see that part (1) is true. We take a1, a2, a3
and b1, b2, b3 as the vertices of the two triangles of the Star of David in Figure 2 part (a). The
proof for the Star of David in Figure 2 part (b) is similar and we omit it.

We choose a1 = H(r, k) = FkFr−k+1. So,

a2 = H(r + 2, k + 1) = Fk+1Fr−k+2, a3 = H(r + 1, k + 2) = Fk+2Fr−k,
b1 = H(r, k + 1) = Fk+1Fr−k, b2 = H(r + 2, k + 2) = Fk+2Fr−k+1,
b3 = H(r + 1, k) = FkFr−k+2, c = H(r + 1, k + 1) = Fr−k+1Fk+1.

Proof of part (2). We first prove that gcd(a1, a2, a3) = 1. Thus,
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gcd(a1, a2, a3) = gcd(FkFr−k+1, Fk+1Fr−k+2, Fk+2Fr−k)
= gcd(gcd(FkFr−k+1, Fk+1Fr−k+2), Fk+2Fr−k).

Lemma 3.1 part (2) with m = k, s = r − k + 1, n = k + 1 and t = r − k + 2 implies that

gcd(FkFr−k+1, Fk+1Fr−k+2) = gcd(Fk, Fr−k+2) gcd(Fr−k+1, Fk+1)
= Fgcd(k,r−k+2)Fgcd(r−k+1,k+1).

Thus,

gcd(gcd(FkFr−k+1, Fk+1Fr−k+2), Fk+2Fr−k) = gcd(Fgcd(k,r−k+2)Fgcd(r−k+1,k+1), Fk+2Fr−k).

It is easy to see that

gcd(Fgcd(k,r−k+2), Fk+2) = Fgcd(k,r−k+2,k+2) = F1 or F2

and

gcd(Fgcd(r−k+1,k+1), Fr−k) = Fgcd(r−k+1,k+1,r−k) = F1 = 1.

Lemma 2.1 and Proposition 2.2 part (2) imply that

gcd(a1, a2, a3) = gcd(Fgcd(k,r−k+2)Fgcd(r−k+1,k+1), Fk+2Fr−k)

= gcd(Fgcd(k,r−k+2), Fk+2) gcd(Fgcd(r−k+1,k+1), Fr−k)

= Fgcd(k,r−k+2,k+2)Fgcd(r−k+1,k+1,r−k)

= F1F1 or F2F1

= 1.

The proof of gcd(b1, b2, b3) = 1 is similar and we omit it. This proves part (2).
Proof of part (3). We prove that gcd(a1, b2) gcd(b1, a2) = c. The choice of a1, a2, b1, and

b2, and Lemma 2.1 imply that

gcd(a1, b2) = gcd(FkFr−k+1, Fk+2Fr−k+1)

= Fr−k+1 gcd(Fk, Fk+2)

= Fr−k+1Fgcd(k,k+2)

= Fr−k+1.

Similarly we obtain that gcd(b1, a2) = Fk+1. Thus, gcd(a1, b2) gcd(b1, a2) = Fr−k+1Fk+1 =
c. This proves part (3). �

Proposition 3.3. If a1, . . . , a5 and b1, . . . , b5 are points in Hosoya’s triangle as in Figure 3,
then gcd(a1, a2, a3, a4, a5) = gcd(b1, b2, b3, b4, b5) = 1.

Proof. We prove this proposition for the points in Hosoya’s triangle as in Figure 3 part (a),
the proof for the points as in Figure 3 part (b) is similar and we omit it.

We prove gcd(a1, a2, a3, a4, a5) = 1. The proof of gcd(b1, b2, b3, b4, b5) = 1 is similar. We
choose a1 = H(r, k) = FkFr−k+1. So,

a2 = H(r, k − 2) = Fk−2Fr−k+3, a3 = H(r + 2, k − 1) = Fk−1Fr−k+4,

a4 = H(r + 4, k + 1) = Fk+1Fr−k+4, a5 = H(r + 3, k + 2) = Fk+2Fr−k+2.
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a1a2

a3

b1 b2

b3

a4

a5

a6

b4

b5

b6

(a)

a1a2

a3

b1 b2

b3

a4

a5

a6

b4

b5

b6

(b)

Figure 3

We know that gcd(a2, a1, a3, a4, a5, a6) = gcd(gcd(a1, a2), gcd(a3, a4), a5). This is equal to

gcd(gcd(FkFr−k+1, Fk−2Fr−k+3), gcd(Fk−1Fr−k+4, Fk+1Fr−k+4), Fk+2Fr−k+2). (3.1)

Lemma 3.1 part (2) with m = k, s = r − k + 1, n = k − 2 and t = r − k + 3 implies that

gcd(FkFr−k+1, Fk−2Fr−k+3) = Fgcd(k,r−k+3)Fgcd(r−k+1,k−2). (3.2)

It easy to see that gcd(Fk−1Fr−k+4, Fk+1Fr−k+4) = Fr−k+4 gcd(Fk−1, Fk+1). This and
Lemma 3.1 part (1) imply

gcd(Fk−1Fr−k+4, Fk+1Fr−k+4) = Fr−k+4.

From this and the equalities, (3.1) and (3.2) we obtain that

gcd(a1, a2, a3, a4, a5) = gcd(Fgcd(k,r−k+3)Fgcd(r−k+1,k−2), Fr−k+4, Fk+2Fr−k+2)
= gcd(Fgcd(k,r−k+3)Fgcd(r−k+1,k−2), Fk+2Fr−k+2, Fr−k+4).

(a)

Since gcd(k, r− k+3, k +2) = 1 or 2 and gcd(r− k+ 1, k− 2, r− k+2) = 1, we have that

gcd(Fgcd(k,r−k+3), Fk+2) = Fgcd(k,r−k+3,k+2) = 1

and
gcd(Fgcd(r−k+1,k−2), Fr−k+2) = Fgcd(r−k+1,k−2,r−k+2) = 1.

This and Proposition 2.2 part (2), imply that

gcd(Fgcd(k,r−k+3)Fgcd(r−k+1,k−2), Fk+2Fr−k+2) = Fgcd(k,r−k+3,r−k+2)Fgcd(r−k+1,k−2,k+2)

= F1Fgcd(r−k+1,k−2,k+2).

This and (a) imply that

gcd(a2, a1, a3, a4, a5) = gcd(Fgcd(r−k+1,k−2,k+2), Fr−k+4) = Fgcd(r−k+1,k−2,k+2,r−k+4). (b)

We now suppose that

d = gcd(r − k + 1, k − 2, k + 2, r − k + 4) = gcd(gcd(k − 2, k + 2), gcd(r − k + 1, r − k + 4)).

Thus, d | gcd(k − 2, k + 2) and d | gcd(r − k + 1, r − k + 4). Since gcd(k − 2, k + 2) is
1, 2 or 4 and gcd(r − k + 1, r − k + 4) is 1 or 3, we have that d = 1. This and (b) imply that
gcd(a2, a1, a3, a4, a5) = F1 = 1. �
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Any set of the form {FkFj , FkFj+1, . . . , FkFj+l} where l ≥ 1, is called a subdiagonal of
Hosoya’s triangle. It is clear that any subdiagonal of Hosoya’s triangle is included in either
S(Fk) or B(Fk). In Theorem 3.4 we generalize Theorem 3.2 part (3).

Theorem 3.4. Let P be a polygon in Hosoya’s triangle. If D1 and D2 are two diagonals of
P such that

(1) D1 and D2 are subdiagonals of Hosoya’s triangle,
(2) D1 ∩D2 = {c},
(3) |D1| ≥ 3 and |D2| ≥ 3,

then gcd (D1 − {c}) gcd (D2 − {c}) = c.

Proof. First we suppose that |D1| = |D2| = 3 and prove gcd (D1 − {c}) gcd (D2 − {c}) = c.
There are 9 relative positions for the diagonals D1 and D2 as shown in Figure 4. We prove
cases (a) and (e). The proofs of other seven cases are similar to the proof of case (e). The
proof of case (a) follows from Theorem 3.2 part (3).

Proof of case (e). We choose c = H(r, k) = FkFr−k+1. So,

a1 = H(r − 1, k) = FkFr−k, a2 = H(r + 1, k) = FkFr−k+2,
b1 = H(r + 1, k + 1) = Fk+1Fr−k+1, b2 = H(r + 2, k + 2) = Fk+2Fr−k+1.

Therefore,

gcd (D1 − {c}) gcd (D2 − {c}) = gcd (a1, a2) gcd (b1, b2)

= gcd (FkFr−k, FkFr−k+2) gcd (Fk+1Fr−k+1, Fk+2Fr−k+1)

= Fk gcd (Fr−k, Fr−k+2)Fr−k+1 gcd (Fk+1, Fk+2)

= FkFr−k+1 = c.

This proves case (e).
We now prove that gcd (D1 − {c}) gcd (D2 − {c}) = c when |D1| > 3 or |D2| > 3. Thus,

there are D′
1, D

′
2, A and B such that D1 = D′

1 ∪A and D2 = D′
2 ∪B where

(1) D′
1 and D′

2 are subdiagonals of Hosoya’s triangle,
(2) D′

1 ∩D′
2 = {c},

(3) |D′
1| = |D

′
2| = 3.

It is easy to see that gcd (D1 − {c}) = gcd (D′
1 − {c}) and gcd (D2 − {c}) = gcd (D′

2 − {c}).
Since |D′

1| = 3 and |D′
2| = 3, gcd (D′

1 − {c}) gcd (D
′
2 − {c}) = c. Therefore, we have that

gcd (D1 − {c}) gcd (D2 − {c}) = c. This proves the theorem. �

4. The GCD Property in a Polygon

Hosoya [5, 7] proved several interesting properties for his sequence using algebra and the
geometry involved in Hosoya’s triangle. Some of those properties are algebraic identities that
show the relationship between Hosoya’s sequence and the Fibonacci and Lucas sequences.
In his work there are algebraic identities that show the relationship between the algebra of
points and their location in Hosoya’s triangle. Koshy [7, Chapter 15] has a complete chapter
dedicated to the study of Hosoya’s triangle and the arithmetic of points located in a rhomboid
or in a triangle.

The main purpose of this section is the study of the GCD properties for a special configu-
ration of points in any n × n rhombus of Hosoya’s triangle. The last corollary of this section
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Figure 4. Diagonals in a polygon with c = H(r, k) = FkFr−k+1.

shows that the GCD of a particular configuration of n points in any polygon is always 1 or 2.
Theorem 3.2 part (2) can be also proved using Theorem 4.3.

An n×n rhombus R in Hosoya’s triangle is an arrangement of n2 points forming a rhombus.
Formally, we denote by Rn(t, k) the n× n rhombus

Rn(t, k) =
n
⋃

i,j=1

B(Ft+i) ∩ S(Fk+j) where k, t ∈ N.

Figure 5 depicts the rhombus R4(2, 1).

S(F2)
S(F3)

S(F5)

S(F4)

B(F3)

B(F4)

B(F5)

B(F6)

Figure 5. The rhombus R4(2, 1).

We say that A = {a1, . . . , am} is a collection of non-attacking points of Hosoya’s triangle if
no two distinct points in A may be in the same slash diagonal or backslash diagonal. This
resembles the definition of non-attacking rooks on a board (see [9, pages 36-37 and 46-54] or
[10]).
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Let a1, . . . , an be n non-attacking points in a n×n rhombus of Hosoya’s triangle. Theorems
4.3 and 4.5 show that gcd (a1, . . . , an) is always 1 or 2, and give a complete characterization for
when either case occurs. We give a combinatorial proof for the first theorem and an algebraic
proof for the second one. The proof of Lemma 4.1 is straightforward and we omit it.

We recall from Section 2 that if A ∈ Z
k, then the number np(A) represents the cardinality

of {i ∈ {1, . . . , k} | p divides A(i)}. We also recall that S(Fm) and B(Fm) denote the slash
and backslash diagonal, respectively.

Lemma 4.1. Suppose that x1 < x2 < . . . < xn are integer numbers with n ≥ 3. If p is a
prime that divides at most one integer of {xi, xi+1, xi+2} where 1 ≤ i ≤ n− 2, then

np (x1, x2, . . . , xn) ≤
⌈n

3

⌉

.

Lemma 4.2. Suppose that Fl+1, Fl+2, . . . , Fl+n are Fibonacci numbers where n ≥ 3 and l ≥ 1.
If p is a prime, then

np(Fl+1, Fl+2, . . . , Fl+n) ≤
⌈n

3

⌉

.

Proof. We know that gcd(Fm, Ft) = 1 for any two m and t with |m− t| ≤ 2. This implies that
p divides, at most, one Fibonacci number in the set {Fl+i, Fl+i+1, Fl+i+2} for every i. Since
Fl+1 < Fl+2 < · · · < Fl+n, we can apply Lemma 4.1 to the sequence Fl+1, Fl+2, . . . , Fl+n.
Thus, np(Fl+1, Fl+2, . . . , Fl+n) ≤

⌈

n
3

⌉

. �

Theorem 4.3. Let n ≥ 3 be an integer with n 6= 4. If a1, . . . , an are distinct non-attacking
points in a n× n rhombus R of Hosoya’s triangle, then gcd(a1, . . . , an) = 1.

Proof. We prove this theorem by contradiction. We assume that gcd(a1, . . . , an) > 1. Thus,
there is a prime number p such that

p | ai for every i ∈ {1, . . . , n}. (4.1)

Since R is a n× n rhombus, there are integers t and k such that R = Rn(t, k). Thus,

Rn(t, k) =

n
⋃

i,j=1

B(Ft+i) ∩ S(Fk+j). (4.2)

If we identify each point ai with its corresponding ordered pair of Fibonacci numbers, then
ai = FsiFri ←→ (Fsi , Fri) for i ∈ {1, . . . , n}. This and (4.1) imply that

p | Fs1 or p | Fr1 ,

p | Fs2 or p | Fr2 ,
...

...
p | Fsn or p | Frn .

(4.3)

Since {a1, . . . , an} is a collection of non-attacking points, equation (4.2) implies that

{Fs1 , . . . , Fsn} = {Ft+1, . . . , Ft+n} and {Fr1 , . . . , Frn} = {Fk+1, . . . , Fk+n}.

This and (4.3) imply that the 2n−tuple (Ft+1, . . . , Ft+n, Fk+1, . . . , Fk+n) contains at least n

entries divisible by p. Thus, it is clear that

n ≤ np (Ft+1, . . . , Ft+n, Fk+1, . . . , Fk+n) = np (Ft+1, . . . , Ft+n) + np (Fk+1, . . . , Fk+n)

≤
⌈n

3

⌉

+
⌈n

3

⌉

.

MAY 2012 171



THE FIBONACCI QUARTERLY

Therefore,
⌈

n
3

⌉

+
⌈

n
3

⌉

≥ n. That is a contradiction, because n ≥ 3 and n 6= 4. This proves the
theorem. �

S(F3)

S(F5)

S(F4)
B(F3)

B(F4)
B(F5)

B(F6) S(F6)

Figure 6. A 4× 4 rhombus with 4 non-attacking points.

The conclusion of Theorem 4.3 is not always true when n = 4. For example, if a1 = 6,
a2 = 6, a3 = 40 and a4 = 40 for the rhombus shown in Figure 6, then gcd(a1, a2, a3, a4) = 2.
This is not a coincidence; we prove that for any configuration of non-attacking points a1, a2, a3
and a4 in a 4× 4 rhombus, gcd(a1, a2, a3, a4) = 1 or 2.

There are 4! ways in which we can choose 4 non-attacking points in a 4 × 4 rhombus (see
[9, 10]). We divide these 24 configurations into two types. A 4 × 4 rhombus with four non-
attacking points is called a configuration of type I if at least one of the non-attacking points
is in a corner, it is a configuration of type II if there are no non-attacking points in any corner
of the rhombus. That is, a configuration is of type II if it is not of type I.

It is easy to see that each configuration of type I contains a configuration of three non-
attacking points in a 3× 3 rhombus. This can be done by “ignoring” one of the non-attacking
points on the corner of the 4 × 4 rhombus (see Figure 7). Note that there are exactly 4
configurations of type II. These configurations are depicted in Figure 8.

A 3× 3 rhombus

A 3× 3 rhombus

Figure 7. Some configurations of type I.
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a1 a2

a4 a3

a1 a1

a1a2

a2 a2

a3 a3

a3
a4

a4 a4

(a) (b) (c) (d)

Figure 8. All configurations of type II.

Lemma 4.4. Let R be a configuration of type II with a1, a2, a3 and a4 its non-attacking points.
If there are t and k in N such that R = R4(t, k), then gcd(a1, a2, a3, a4) = Fgcd(k+1,k+4,t+1,t+4).

Proof. We prove that gcd(a1, a2, a3, a4) = Fgcd(k+1,k+4,t+1,t+4) for the configuration in Figure 8
part (a); the proofs for the other three configurations are similar. From the positions of a1,
a2, a3, and a4 in R = R4(t, k) shown in the Figure 8 part (a), we can see that a1 = Fk+1Ft+2,
a2 = Fk+2Ft+1, a3 = Fk+4Ft+3 and a4 = Fk+3Ft+4. Therefore,

gcd(a1, a2, a3, a4) = gcd(Fk+1Ft+2, Fk+2Ft+1, Fk+4Ft+3, Fk+3Ft+4)

= gcd(gcd(Fk+1Ft+2, Fk+2Ft+1), gcd(Fk+4Ft+3, Fk+3Ft+4)). (a)

Lemma 3.1 part (2) implies that (a) is equal to

gcd
(

Fgcd(k+1,t+1)Fgcd(t+2,k+2), Fgcd(k+4,t+4)Fgcd(t+3,k+3)

)

. (b)

Since gcd(k+1, k+3) = 1 or 2 and gcd(t+1, t+3) = 1 or 2, gcd(k+1, k+3, t+1, t+3) =
1 or 2. This and Lemma 2.1 imply that

gcd
(

Fgcd(k+1,t+1), Fgcd(t+3,k+3)

)

= Fgcd(k+1,t+1,t+3,k+3) = F1 or F2.

Similarly, we get that gcd(k + 2, k + 4, t+ 2, t+ 4) = 1 or 2. This and Lemma 2.1 imply that

gcd
(

Fgcd(t+2,k+2), Fgcd(k+4,t+4)

)

= Fgcd(t+2,k+2,t+4,k+4) = F1 or F2.

These and Proposition 2.2 part (2) shows that (b) is equal to

gcd
(

Fgcd(k+1,t+1), Fgcd(k+4,t+4)

)

gcd
(

Fgcd(t+3,k+3), Fgcd(t+2,k+2)

)

.

This, (a), (b) and gcd
(

Fgcd(t+3,k+3), Fgcd(t+2,k+2)

)

= 1 prove the lemma. �

Theorem 4.5. Let a1, a2, a3 and a4 be non-attacking points in a 4 × 4 rhombus R. If there
are t and k in N such that R = R4(t, k), then

(1) if R is of type I, then gcd(a1, a2, a3, a4) = 1.
(2) if R is of type II and gcd(k + 1, t+ 1, 3) = 1, then gcd(a1, a2, a3, a4) = 1.
(3) R is of type II and gcd(k + 1, t+ 1, 3) = 3 if and only if gcd(a1, a2, a3, a4) = 2.

Proof. We prove part (1). We assume that R is of type I. We suppose that a4 is in a corner
of R. Thus, a1, a2 and a3 form a configuration of 3 non-attacking points in a 3× 3 rhombus.
This and Theorem 4.3 imply that gcd(a1, a2, a3) = 1. Therefore, gcd(a1, a2, a3, a4) = 1. This
proves part (1).

We now prove part (2). We assume that R is of type II and gcd(k + 1, t + 1, 3) = 1. If
d = gcd(k+1, k+4, t+1, t+4), then d | 3. This and gcd(k+1, t+1, 3) = 1 imply that d = 1.
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Therefore, Lemma 4.4 implies that gcd(a1, a2, a3, a4) = Fgcd(k+1,k+4,t+1,t+4) = F1 = 1. This
proves part (2).

We prove part (3). For the sufficient condition we assume that R is of type II and that
gcd(k+1, t+1, 3) = 3. If d = gcd(k+1, k+4, t+1, t+4), then d | 3. This and gcd(k+1, t+1, 3) =
3 imply that 3 | d. So, d = 3. Therefore, Lemma 4.4 implies that

gcd(a1, a2, a3, a4) = Fgcd(k+1,k+4,t+1,t+4) = F3 = 2.

This proves the sufficient condition.
Conversely, if gcd(a1, a2, a3, a4) = 2, then parts (1) and (2) imply that R is not a configu-

ration of type I and gcd(k + 1, t+ 1, 3) 6= 1. Thus, R is of type II and gcd(k + 1, t+ 1, 3) = 3.
This proves part (3). �

We collect the results of Theorems 4.3 and 4.5 in the following corollary. So, the proof is a
direct application of these two theorems.

Corollary 4.6. Let P be a polygon in Hosoya’s triangle and let A = {a1, . . . , an} be a collection
of non-attacking points in P with n ≥ 3. If there are t and k in N such that A ⊂ Rn(t, k),
then

gcd(a1, . . . , an) =

{

2, if n = 4, R is of type II and gcd(k + 1, t+ 1, 3) = 3;

1, otherwise.
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