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Abstract. Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural
number n is defined as the smallest natural number k such that n divides Fk. For instance,
z(Fn) = n, for all n ≥ 3. In this paper, among other things, we prove that

z(FnFn+1Fn+2) =
n(n+1)(n+2)

2
,

for all even positive integers n.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1+Fn, for n ≥ 0, where F0 = 0
and F1 = 1. These numbers are well-known for possessing amazing properties (consult [4]
together with its very extensive annotated bibliography for additional references and history).
In 1963, the Fibonacci Association was created to provide enthusiasts an opportunity to share
ideas about these intriguing numbers and their applications. We cannot go very far in the
lore of Fibonacci numbers without encountering its companion Lucas sequence (Ln)n≥0 which
follows the same recursive pattern as the Fibonacci numbers, but with initial values L0 = 2
and L1 = 1.

The study of the divisibility properties of Fibonacci numbers has always been a popular
area of research. Let n be a positive integer number, the order (or rank) of appearance of n
in the Fibonacci sequence, denoted by z(n), is defined as the smallest positive integer k, such
that n|Fk (some authors also call it order of apparition, or Fibonacci entry point). There are
several results about z(n) in the literature. For instance, z(n) < ∞ for all n ≥ 1. The proof of
this fact is an immediate consequence of the Théorème Fondamental of Section XXVI in [10,
p. 300]. Indeed, z(m) < m2 − 1, for all m > 2 (see [15, Theorem, p. 52]) and in the case of a
prime number p, one has the better upper bound z(p) ≤ p+ 1, which is a consequence of the
known congruence Fp−(p

5
) ≡ 0 (mod p), for p 6= 2, 5, where (aq ) denotes the Legendre symbol

of a with respect to a prime q > 2.
In recent papers, the author [6, 7, 8] found explicit formulas for the order of appearance of

integers related to Fibonacci numbers, such as Fm ± 1, Fmk/Fk and F k
n . In particular, it was

proved that z(F4m± 1) = 8m2− 2, if m > 1, and z(F k+1
n ) = nF k

n , for all non-negative integers
k and n > 3 with n 6≡ 3 (mod 6).

In this paper, we continue this program and study the order of appearance of product of
consecutive Fibonacci numbers. Our main results are the following.

Theorem 1.1. We have

(i) For n ≥ 3,
z(FnFn+1) = n(n+ 1).
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(ii) For n ≥ 2,

z(FnFn+1Fn+2) =

{

n(n+ 1)(n + 2), if n ≡ 1 (mod 2),
n(n+1)(n+2)

2 , if n ≡ 0 (mod 2).

(iii) For n ≥ 1,

z(FnFn+1Fn+2Fn+3) =











n(n+1)(n+2)(n+3)
2 , if n 6≡ 0 (mod 3),

n(n+1)(n+2)(n+3)
3 , if n ≡ 0, 9 (mod 12),

n(n+1)(n+2)(n+3)
6 , if n ≡ 3, 6 (mod 12).

We recall that the Fibonacci factorial of n (also called Fibonorial), denoted by nF !, is defined
as the product of the first n nonzero Fibonacci numbers (sequence A003266 in OEIS [13]). In
the search for z(nF !), we found that nF !|Fn! (and thus z(nF !)|n!) for n = 1, ..., 10 (see Table
1).

It is therefore reasonable to conjecture that z(nF !)|n! and so F1 · · ·Fn|Fn!, for all positive
integers n. However, this is not true, because z(110F !) - 110! In fact, ν11(F1 · · ·F110) = 12 >
11 = ν11(F110!). Hence, motivated by this fact, we prove that

n 1 2 3 4 5 6 7 8 9 10

z(nF !) 1! 1! 3!
2

4!
2

5!
2

6!
12

7!
12

8!
48

9!
144

10!
288

Table 1. The order of appearance of nF !, for 1 ≤ n ≤ 10.

Theorem 1.2. For all p ∈ {2, 3, 5, 7} and n ≥ 1, we have

νp(F1 · · ·Fn) ≤ νp(Fn!).

Here νp(n) denotes the p-adic order of n which, as usual, is the exponent of the highest power
of p dividing n.

We organize the paper as follows. In Section 2, we will recall some useful properties of
Fibonacci numbers such as d’Ocagne’s identity and a result concerning the p-adic order of Fn.
The last two sections will be devoted to the proof of theorems.

2. Auxiliary Results

Before proceeding further, we recall some facts on Fibonacci numbers for the convenience
of the reader.

Lemma 2.1. We have

(a) Fn|Fm if and only if n|m.
(b) gcd(Fn, Fm) = Fgcd(n,m).
(c) 2Fn|F2n, for all n ≡ 0 (mod 3).
(d) (d’Ocagne’s identity) (−1)nFm−n = FmFn+1 − FnFm+1.
(e) Fp−(p

5
) ≡ 0 (mod p), for all primes p.

Most of the previous items can be proved by using induction together with the well-known
Binet’s formula:

Fn =
αn − βn

α− β
, for n ≥ 0,

where α = (1+
√
5)/2 and β = (1−

√
5)/2. We refer the reader to [1, 3, 4, 11] for more details

and additional bibliography.
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The second lemma is a consequence of the previous one.

Lemma 2.2. We have

(a) If Fn|m, then n|z(m).
(b) If n|Fm, then z(n)|m.

Proof. For (a), since Fn|m|Fz(m), by Lemma 2.1 (a), we get n|z(m). In order to prove (b), we
write m = z(n)q + r, where q and r are integers, with 0 ≤ r < z(n). So, by Lemma 2.1 (d),
we obtain

(−1)z(n)qFr = FmFz(n)q+1 − Fz(n)qFm+1.

Since n divides both Fm and Fz(n)q, then it also divides Fr implying r = 0 (keep in mind the
range of r). Thus, z(n)|m. �

The p-adic order of Fibonacci and Lucas numbers was completely characterized, see [2, 9,
12, 14]. For instance, from the main results of Lengyel [9], we extract the following result.

Lemma 2.3. For n ≥ 1, we have

ν2(Fn) =















0, if n ≡ 1, 2 (mod 3);
1, if n ≡ 3 (mod 6);
3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12),

ν5(Fn) = ν5(n), and if p is prime 6= 2 or 5, then

νp(Fn) =

{

νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p));
0, if n 6≡ 0 (mod z(p)).

A proof of this result can be found in [9].

Lemma 2.4. For any integer k ≥ 1 and p prime, we have

k

p− 1
−

⌊

log k

log p

⌋

− 1 ≤ νp(k!) ≤
k − 1

p− 1
, (2.1)

where, as usual, bxc denotes the largest integer less than or equal to x.

Proof. Recall the well-known Legendre’s formula [5]:

νp(k!) =
k − sp(k)

p− 1
, (2.2)

where sp(k) is the sum of digits of k in base p. Since k has blog k/ log pc+ 1 digits in base p,
and each digit is at most p− 1, we get

1 ≤ sp(k) ≤ (p− 1)

(⌊

log k

log p

⌋

+ 1

)

. (2.3)

Therefore, the inequality in (2.1) follows from (2.2) and (2.3). �

Now, we are ready to deal with the proof of theorems.
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3. The Proof of Theorem 1.1

3.1. Proof of (i). For ε ∈ {0, 1}, one has that Fn+ε|FnFn+1 and so Lemma 2.2 (a) yields
n + ε|z(FnFn+1). But, gcd(n, n + 1) = 1 and therefore n(n + 1)|z(FnFn+1). On the other
hand, Fn+ε|Fn(n+1) (Lemma 2.1 (a)) and hence, FnFn+1|Fn(n+1), since gcd(Fn, Fn+1) = 1.
Now, by using Lemma 2.2 (b), we conclude that z(FnFn+1)|n(n + 1). In conclusion, we have
z(FnFn+1) = n(n+ 1). �

We remark that the same idea can be used to prove that if m1, . . . ,mk are positive integers,
such that gcd(mi,mj) = 1 or 2, for all i 6= j, then

z(Fm1 · · ·Fmk
)|m1 · · ·mk.

If m1, . . . ,mk are pairwise relatively prime, then

z(Fm1 · · ·Fmk
) = m1 · · ·mk.

3.2. Proof of (ii). For ε ∈ {0, 1, 2}, we have Fn+ε|Fn(n+1)(n+2). By Lemma 2.1 (b), the
numbers Fn, Fn+1, Fn+2 are pairwise coprime. In fact, if ε1, ε2 ∈ {0, 1, 2} are distinct, then
gcd(n+ ε1, n + ε2) = 1 or 2. In any case, we get

gcd(Fn+ε1 , Fn+ε2) = Fgcd(n+ε1,n+ε2) = 1.

Thus, FnFn+1Fn+2|Fn(n+1)(n+2) and so

z(FnFn+1Fn+2)|n(n+ 1)(n + 2). (3.1)

Now, we use Fn+ε|FnFn+1Fn+2, to conclude that n+ ε divides z(FnFn+1Fn+2). So, the proof
splits in two cases:

Case 1: If n is odd, then n, n + 1, n + 2 are pairwise coprime. Therefore, n(n + 1)(n +
2)|z(FnFn+1Fn+2). This fact, together with (3.1), yields the result in this case.

Case 2: For n even, we have that Fn|Fn(n+1)(n+2)
2

and so z(FnFn+1Fn+2) divides n(n +

1)(n + 2)/2. We already know that n + ε|z(FnFn+1Fn+2) and gcd(n, n + 2) = 2. If n ≡ 0
(mod 4), then n, n + 1, (n + 2)/2 are pairwise coprime. In the case of n ≡ 2 (mod 4), the
numbers n/2, n + 1, n + 2 are pairwise coprime. Thus, in any case, we have n(n + 1)(n +
2)/2|z(FnFn+1Fn+2) and the desired result is proved. �

3.3. Proof of (iii). By the same arguments as before, we conclude that

n+ ε|z(FnFn+1Fn+2Fn+3), for ε ∈ {0, 1, 2, 3}. (3.2)

Assume first that n 6≡ 0 (mod 3). Then there exists only one pair among (n, n + 2) and
(n+1, n+3) whose greatest common divisor is 2. Without loss of generality, we suppose that
gcd(n, n+2) = 2. Again, as in the previous item, we can see that n/2a, n+1, (n+2)/2b, n+3
are pairwise coprime, for distinct a, b ∈ {0, 1} suitably chosen depending on the class of n
modulo 4. Thus,

n(n+ 1)(n + 2)(n + 3)

2
=

n(n+ 1)(n + 2)(n + 3)

2a+b
| z(FnFn+1Fn+2Fn+3).

Since there are two even numbers among n, n+1, n+2, n+3, we have that Fn+ε|Fn(n+1)(n+2)(n+3)
2

.

However, gcd(Fn, Fn+3) = Fgcd(n,n+3) = 1, because 3 - n. Thus, Fn, Fn+1, Fn+2, Fn+3 are pair-
wise coprime yielding that FnFn+1Fn+2Fn+3|Fn(n+1)(n+2)(n+3)

2

. We apply Lemma 2.2 to get

z(FnFn+1Fn+2Fn+3)|
n(n+ 1)(n + 2)(n + 3)

2
.
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This finishes the proof in this case. Now suppose that n ≡ 0 (mod 3). If 9|n, then gcd(n, (n+
3)/3) = 1, while gcd(n/3, n + 3) = 1 when 9 - n. In any case, for a suitable choice of
a, b, c, d, e, f ∈ {0, 1}, where a 6= b and only one among c, d, e, f is 1, we obtain that

n

2c3a
,
n+ 1

2d
,
n+ 2

2e
,
n+ 3

2f3b

are pairwise coprime. Here the sets {a, b} and {c, d, e, f} depend on the class of n modulo 4
and 9, respectively. Hence, by (3.2), we get

n(n+ 1)(n + 2)(n + 3)

6
=

n(n+ 1)(n + 2)(n + 3)

2c+d+e+f3a+b
|z(FnFn+1Fn+2Fn+3), (3.3)

since a+ b = c+ d+ e+ f = 1.
Note that there are 2 even numbers among n, n + 1, n + 2, n + 3 and also 3 divides both

n and n + 3. Thus Fn+ε|Fn(n+1)(n+2)(n+3)
6

, for ε ∈ {0, 1, 2, 3}. Since gcd(Fn, Fn+3) = 2 and

gcd(Fn+3, Fn+1Fn+2) = 1, then gcd(FnFn+1Fn+2, Fn+3) = 2. Now, we use that Fn, Fn+1, Fn+2

are pairwise coprime to ensure that FnFn+1Fn+2|Fn(n+1)(n+2)(n+3)
6

. Since Fn+3 also divides

Fn(n+1)(n+2)(n+3)
6

, we get

FnFn+1Fn+2Fn+3|2Fn(n+1)(n+2)(n+3)
6

|Fn(n+1)(n+2)(n+3)
3

,

where we used Lemma 2.1 (c). Thus, Lemma 2.2 (b) yields

z(FnFn+1Fn+2Fn+3)|
n(n+ 1)(n + 2)(n + 3)

3
. (3.4)

Combining (3.3) and (3.4), we get

z(FnFn+1Fn+2Fn+3) ∈
{

n(n+ 1)(n + 2)(n + 3)

6
,
n(n+ 1)(n + 2)(n + 3)

3

}

(3.5)

holds for all positive integers n ≡ 0 (mod 3). In order to complete the proof, it suffices to
prove that

FnFn+1Fn+2Fn+3 - Fn(n+1)(n+2)(n+3)
6

, for all n ≡ 0, 9 (mod 12) (3.6)

and

FnFn+1Fn+2Fn+3 | Fn(n+1)(n+2)(n+3)
6

, for all n ≡ 3, 6 (mod 12). (3.7)

We claim that (3.6) is true. In fact, if n ≡ 0 (mod 12), then n + 3 ≡ 3 (mod 6). On the
one hand, by setting n = 12` and by Lemma 2.3, we have

ν2(FnFn+1Fn+2Fn+3) = ν2(Fn) + ν2(Fn+3) = ν2(n) + 3 = ν2(`) + 5.

On the other, n(n+1)(n+2)(n+3)
6 = 12`(12` + 1)(6` + 1)(4`+ 1) and so

ν2(Fn(n+1)(n+2)(n+3)
6

) = ν2(12`(12` + 1)(6`+ 1)(4` + 1)) + 2 = ν2(`) + 4.

This means that ν2(FnFn+1Fn+2Fn+3) > ν2(Fn(n+1)(n+2)(n+3)
6

) which is enough to prove (3.6).

A similar argument holds for the case n ≡ 9 (mod 12).
Now to prove (3.7), we shall show that

νp(FnFn+1Fn+2Fn+3) ≤ νp(Fn(n+1)(n+2)(n+3)
6

),

for all primes p. In fact,
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Case 1: If p = 5, then

ν5(FnFn+1Fn+2Fn+3) = ν5(Fn+j) = ν5(n+ j) = ν5(Fn(n+1)(n+2)(n+3)
6

).

Case 2: If p 6= 2 or 5, then p divides at most one among Fn, Fn+1, Fn+2, Fn+3. Suppose
that this is the case (otherwise νp(FnFn+1Fn+2Fn+3) = 0 and we are done). Then, let j be
the integer belonging to {0, 1, 2, 3} such that p|Fn+j . Thus,

νp(FnFn+1Fn+2Fn+3) = νp(Fn+j) = νp(n+ j) + νp(Fz(p)).

On the other hand,

νp(Fn(n+1)(n+2)(n+3)
6

) = νp(n(n+ 1)(n+ 2)(n + 3)) − νp(6) + νp(Fz(p)).

If p > 3, νp(6) = 0 and the desired inequality follows. In the case of p = 3, we have

ν3(Fn(n+1)(n+2)(n+3)
6

) = ν3(n) + ν3(n+ 3)− 1 + νp(Fz(p))

≥ v3(n+ j) + ν3(Fz(p)) = ν3(FnFn+1Fn+2Fn+3).

Case 3: When p = 2, we use that n ≡ 3, 6 (mod 12). Let us suppose that n ≡ 3 (mod 12)
(the other case can be handled in the same way). Then n + 3 ≡ 6 (mod 12) and by Lemma
2.3, we obtain

ν2(FnFn+1Fn+2Fn+3) = ν2(Fn) + ν2(Fn+3) = 4.

However, if n = 12`+ 3, then

ν2(Fn(n+1)(n+2)(n+3)
6

) = ν2(F12(4`+1)(3`+1)(12`+5)(2`+1))

= ν2(12(4` + 1)(3` + 1)(12` + 5)(2`+ 1)) + 2 = 4.

The proof is then complete. �

4. The Proof of Theorem 1.2

For p = 5, we have

ν5(F1 · · ·Fn) =

n
∑

j=1

ν5(Fj) =

n
∑

j=1

ν5(j) = ν5(n!) = ν5(Fn!).

In the case of p = 2, we first use Mathematica to see that the result holds for all 1 ≤ n ≤ 48.
So, we shall assume n ≥ 49. Now, we note that ν2(Fn) 6= 0 if and only if 3|n. Thus, the only
terms with non-zero 2-adic order among F1, . . . , Fn are F3, . . . , F3bn/3c and so

ν2(F1 · · ·Fn) = [ν2(F3) + ν2(F6) + ν2(F9)] + ν2(F12)

+ [ν2(F15) + ν2(F18) + ν2(F21)] + ν2(F24)

+ · · ·+ ν2(F12bn/12c) + `,

where ` ∈ {0, 1, 4, 5} and depends on the residue class of n modulo 12. By Lemma 2.3, each
bracketed term in the above sum is 5 and thus,

ν2(F1 · · ·Fn) = 5
⌊ n

12

⌋

+

bn/12c
∑

j=1

ν2(F12j) + ` = 9
⌊ n

12

⌋

+ ν2(
⌊ n

12

⌋

!) + `.

We now apply Lemma 2.4 (with p = 2) together with the fact that ` ≤ 5, to get the bound

ν2(F1 · · ·Fn) ≤
5n

6
+ 4. (4.1)
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On other other hand, since 12|n! (because n > 3), Lemma 2.3 yields

ν2(Fn!) = ν2(n!) + 2.

Again, we use Lemma 2.4 to obtain

ν2(Fn!) ≥ n−
⌊

log n

log 2

⌋

+ 1. (4.2)

The proof of this case finishes by noting that the right-hand side of (4.2) is greater than
5n/6 + 4, for n ≥ 49.

When p = 3 or 7, we again use Lemma 2.3 to get

νp(F1 · · ·Fn) =

bn/z(p)c
∑

j=1

(νp(z(p)j) + νp(Fz(p)))

=

⌊

n

z(p)

⌋

νp(Fz(p)) + νp

(⌊

n

z(p)

⌋

!

)

,

where we used that νp(z(p)) = 0, since by Lemma 2.1 (e), p|Fp±1 and so by Lemma 2.2 (b),
one has that z(p)|(p ± 1). Now, we apply Lemma 2.4 to obtain

νp(F1 · · ·Fn) ≤
⌊

n

z(p)

⌋

νp(Fz(p)) +

⌊

n
z(p)

⌋

− 1

p− 1
. (4.3)

On the other hand, νp(Fn!) = νp(n!) + νp(Fz(p)) and hence, again by Lemma 2.4, we have

νp(Fn!) ≥
n

p− 1
−

⌊

log n

log p

⌋

− 1 + νp(Fz(p)). (4.4)

By combining (4.3) and (4.4), it suffices to prove for p = 3 that

n ≥ 3
⌊n

4

⌋

+ 2

⌊

log n

log 3

⌋

and for p = 7 that

n ≥ 7
⌊n

8

⌋

+ 6

⌊

log n

log 7

⌋

+ 4.

However, both these inequalities hold for all n ≥ 123. For the remaining cases, we use a simple
Mathematica routine to check that νp(F1 · · ·Fn) ≤ νp(Fn!) is also valid for n = 1, . . . , 122. This
completes the proof. �
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References

[1] A. Benjamin and J. Quinn, The Fibonacci numbers–exposed more discretely, Math. Mag., 76.3 (2003),
182–192.

[2] J. H. Halton, On the divisibility properties of Fibonacci numbers, The Fibonacci Quarterly, 4.3 (1966),
217–240.

[3] D. Kalman and R. Mena, The Fibonacci numbers–exposed, Math. Mag., 76.3 (2003), 167–181.
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[5] A. M. Legendre, Theorie des Nombres, Firmin Didot Freres, Paris, 1830.
[6] D. Marques, On integer numbers with locally smallest order of appearance in the Fibonacci sequence,

Internat. J. Math. Math. Sci., Article ID 407643 (2011), 4 pages.

138 VOLUME 50, NUMBER 2



ORDER OF APPEARANCE OF PRODUCTS OF FIBONACCI NUMBERS

[7] D. Marques, On the order of appearance of integers at most one away from Fibonacci numbers, (to appear
in The Fibonacci Quarterly).

[8] D. Marques, On the order of appearance of powers of Fibonacci and Lucas numbers, Preprint.
[9] T. Lengyel, The order of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 33.3 (1995),

234–239.
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