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Abstract. We assign to each pair of positive integers k ≥ 2 and n a digraph G(n, k) whose
set of vertices is H = {0, 1, . . . , n − 1} and for which there is a directed edge from a ∈ H

to b ∈ H if ak ≡ b (mod n). The digraph G(n, k) is symmetric of order M if its set of
components can be partitioned into disjoint subsets, each containing exactly M isomorphic
components. Deng and Yuan completely characterized all symmetric digraphs of order M

when M = 2 or M is divisible by an odd prime. We demonstrate that their classification is
complete by showing that there are no symmetric digraphs G(n, k) of order 2s for s ≥ 2.

1. Introduction

For n ≥ 1 set
H = {0, 1, . . . , n− 1}.

For a fixed integer k ≥ 2 and for each a ∈ H, let b ∈ H be the remainder of ak modulo n, i.e.,

b ∈ H and ak ≡ b (mod n). (1.1)

In this paper, we construct an iteration directed graph G(n, k) (called digraph) associated
with the congruence (1.1) such that there exists exactly one directed edge from a to b for
all a ∈ H. Each pair of natural numbers k ≥ 2 and n thus has a specific iteration digraph
corresponding to it.

In [2] and [3], Deng and Yuan gave necessary and sufficient conditions for a large set of
digraphs G(n, k) to be symmetric. We demonstrate that their classification of symmetric
digraphs is in fact complete by showing that symmetric digraphs G(n, k) of a certain type
cannot exist.

Figure 1. The iteration digraph G(8, 2).

For brevity we will make statements such as gcd(a, n) = 1, treating the vertex a as a number.
Moreover, when we refer, for instance, to the vertex ak, we identify it with the remainder from
H given by (1.1), see Figure 1.

This paper was supported by Grant no. IAA 100190803 of the Grant Agency of the Academy of Sciences of
the Czech Republic and RVO 67985840.
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SYMMETRY OF POWER DIGRAPHS MODULO n

Let ω(n) denote the number of distinct primes dividing n ≥ 2 and let the prime power
factorization of n be given by

n =
r
∏

i=1

pαi

i , (1.2)

where p1 < p2 < · · · < pr are primes and αi > 0, i.e., r = ω(n). For n = 1, we set ω(1) = 0.
A component of the iteration digraph is a subdigraph which is a maximal connected subgraph

of the associated nondirected graph.
The indegree of a vertex a ∈ H of G(n, k), denoted by indegkn(a), is the number of directed

edges coming into a, and the outdegree of a is the number of directed edges leaving the vertex
a. Frequently we will simply write indeg(a) when it is understood that a is a vertex in G(n, k).
Obviously, the outdegree of each vertex of G(n, k) is equal to 1. Therefore, G(n, k) with n
vertices also has exactly n directed edges. Thus, if bi, i = 1, 2, . . . , q, denote the indegrees of
all the vertices of G(n, k) having positive indegree, then

q
∑

i=1

bi = n. (1.3)

It is clear that each component has a unique cycle, since each vertex of the component has
outdegree 1 and the component has only a finite number of vertices. It is also evident that
cycle vertices have positive indegree. Cycles of length 1 are called fixed points (cf. Figure 2).

Note that 0 and 1 are always fixed points of G(n, k). Cycles of length t are called t-cycles.
Let At(G(n, k)) denote the number of t-cycles in G(n, k). Let J(n, k) be a component in
G(n, k) and let c be a cycle vertex in J(n, k). It is evident that b is a vertex in J(n, k) if and

only if bk
h
≡ c (mod n) for some positive integer h.

Definition 1.1. Let M ≥ 2 be an integer. The digraph G(n, k) is said to be symmetric of order
M if its set of components can be partitioned into disjoint subsets, each containing exactly M
isomorphic components.

We have the following proposition.

Proposition 1.2. If the digraph G(n, k) is symmetric of order M then M | n.

Proof. Suppose that G(n, k) has ` disjoint subsets of components, each containing exactly M
isomorphic components. Let each component in the ith subset, 1 ≤ i ≤ `, have ni vertices.
Then the ith subset has Mni vertices. Hence,

n =
∑̀

i=1

Mni = M
∑̀

i=1

ni,

and M | n. �

Notice that for a given symmetric digraph G(n, k) the order M is not necessarily uniquely
defined.

Figure 2 shows a symmetric digraph G(39, 3) of order 3, while Figure 3 exhibits a symmetric
digraph of order 5. The digraph in Figure 1 is not symmetric of order M for any M ≥ 2 while
the digraphs in Figures 4, 5, and 6 are each symmetric of order 2.

In Szalay [12], it was shown that G(n, 2) is symmetric of order 2 if n ≡ 2 (mod 4) or n ≡ 4
(mod 8). In [1], it was proved that G(2rq, 2) is symmetric of order 2 if and only if r = 1, 2,
or 4, where q is a Fermat prime, that is, a prime q = 22

m
+ 1 for some nonnegative integer m

(see [7] for properties of Fermat primes).

AUGUST 2012 197



THE FIBONACCI QUARTERLY

12

30 36

8

11 220 32

5 21

24 15633

18 3431

37 287 19

38

17 23

25

4 10

13 14

29 35

26

16 22

1

3 9

270

Figure 2. The symmetric iteration digraph G(39, 3) of order 3.

In [10], we found sufficient conditions for G(n, k) to be symmetric of order M , where M ≥ 2
is an arbitrary square-free number. Kramer-Miller [6] gave necessary and sufficient conditions
for G(n, k) to be symmetric of order p when p is an odd prime, p | n, and n is square free. This
result was extended in [5], where necessary and sufficient conditions were given for G(pαn1, k)
to be symmetric of order p, where p is an odd prime, α ≥ 1, n1 ≥ 1 is square free and odd,
and p - n1.

2. Classification of All Symmetric Iteration Digraphs

By the combined results of Theorem 2.1 proved in [3] and Theorem 2.4 which was proved in
[2], Deng and Yuan determined all symmetric digraphs G(n, k) of order M when M is divisible
by an odd prime or M = 2. The following theorem which extends results given in [10] and [6]
can be extracted from the results in [3]. For gcd(n, a) = 1 let ordna denote the multiplicative
order of a modulo n.

Theorem 2.1. Let k ≥ 2 and let n =
∏r

i=1 p
αi

i as given in (1.2). If pi is odd and pi | n, let

T (pi) be the set of all odd primes pj 6= pi such that pj | n and gcd((pj − 1)p
αj−1
j , k) = p

αj−1
j .

Suppose that M is divisible by an odd prime. Then G(n, k) is symmetric of order M if and
only if condition (i) holds and one of conditions (ii)–(iv) also holds:

(i) M is square free, M | n, and k is odd,

(ii) ω(n) = 1, p1 is an odd prime such that M = p1, gcd((p1 − 1)pα1−1
1 , k) = pα1−1

1 , and
k ≡ 1 (mod p1 − 1),

(iii) 2 | M , ω(n) ≥ 2, 2‖n, and G(n/2, k) is symmetric of order M/2,
(iv) M is odd, n is divisible by at least two distinct odd primes, and for each prime pi such

that pi | M , gcd((pi − 1)pαi−1
i , k) = pαi−1

i and one of the following two subconditions
hold:

(a) G(pi, k) is symmetric of order pi, or

198 VOLUME 50, NUMBER 3



SYMMETRY OF POWER DIGRAPHS MODULO n

(b) G(pi, k) is not symmetric of order pi, T (pi) is nonempty, and either

pi | At(G(
∏

j∈T (pi)

pj , k))

or ordpi−1k | t for all t ∈ N.

Remark 2.2. We observe that the digraph G(25, 5) appearing in Figure 3 is an example to
part (ii) of Theorem 2.1 for M = k = 5 and n = 52.
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Figure 3. The symmetric and semiregular iteration digraph G(25, 5) of order 5.

Let us denote the radical of n by

rad(n) =

r
∏

i=1

pi

and let the factorization of n be as given in (1.2). We have the following corollary to Theorem
2.1.

Corollary 2.3. Let k, M , and n be defined as in Theorem 2.1. Let T be the set of primes pi
such that pi | n and gcd((pi − 1)pαi−1

i , k) = pαi−1
i . If T is nonempty, let nT =

∏

pi∈T
pi and

let m be a positive integer such that rad(m) = nT and m | n. Then G(n, k) is symmetric of
order M if and only if G(m,k) is symmetric of order M .

Theorem 2.4 given below follows from Theorems 3.1 and 5.1 of [2] and generalizes Theorem
5.1 (ii) in [10].

Theorem 2.4. Let k ≥ 2 and n = 2αn1, where α ≥ 0 and n1 ≥ 1 is odd. Then G(n, k) is
symmetric of order 2 if and only if condition (i) holds and one of conditions (ii)–(vi) holds:

(i) α ≥ 1,
(ii) α = 1, k ≥ 2,
(iii) α = 2, 2 | k,
(iv) α ≥ 3, 2α−2 | k, k > 2,
(v) α = 4, k = 2,
(vi) α = 5, k = 4.

Moreover, G(2αn1, k) is symmetric of order 2 if and only if G(2α, k) is symmetric of order 2.
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Remark 2.5. We note that the digraph G(14, 2) in Figure 4 is an example to Theorem 2.4
(ii), the digraph G(12, 2) in Figure 6 is an example to Theorem 2.4 (iii), and the digraph
G(16, 2) in Figure 5 is an example to Theorem 2.4 (v).
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Figure 4. The symmetric iteration digraph G(14, 2) of order 2.

Definition 2.6. The digraph G(n, k) is semiregular if there exists a positive integer d such
that indegkn(a) = 0 or d for all vertices a ∈ G(n, k).

Semiregular digraphs are given in Figures 3 and 5. The digraphs in the remaining figures
are not semiregular. We note that the definition of a semiregular graph includes the case in
which the digraph G(n, k) is regular, that is, all the vertices in the digraph have the same
indegree.

Figure 5. The symmetric and semiregular iteration digraph G(16, 2) of order 2.

In [3], Deng and Yuan show that there is a close link between symmetric and semiregular
digraphs. The following theorem is a special case of results given in Theorem 2.4 of [8] and
Theorem 4.4 of [9].

Theorem 2.7. Suppose that p is an odd prime and α ≥ 1.

(i) G(pα, k) is semiregular if and only if gcd((p− 1)pα−1, k) = pα−1.
(ii) G(2α, k) is semiregular if and only if one of the conditions (ii)–(vi) in Theorem 2.4

holds.

We have the following corollaries to Theorem 2.1 and 2.4, respectively, which relate sym-
metric digraphs to semiregular digraphs.
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Corollary 2.8. Consider the digraph G(n, k), where n has the factorization given in (1.2).
Suppose that M is square free and has an odd prime divisor and M | n. Then G(n, k) is
symmetric of order M only if G(pαi

i , k) is semiregular for each prime pi such that pi | M .

Corollary 2.9. Let n = 2αn1, where α ≥ 1 and n1 ≥ 1 is odd. Then G(2αn1, k) is symmetric
of order 2 if and only if G(2α, k) is semiregular if and only if G(2α, k) is symmetric of order 2.

The following examples show that the condition given in Corollary 2.8 for G(n, k) to be
symmetric is necessary, but not sufficient. We see by Theorem 2.7 (i) and Theorem 2.1 (ii)
that G(5, 3) is regular but not symmetric of order M for any M ≥ 2. Similarly, we find that
G(25, 15) is semiregular, but not regular and not symmetric of order M for any M ≥ 2.

The next theorem demonstrates that the classification of symmetric digraphs G(n, k) of
order M given by Deng and Yuan in Theorems 2.1 and 2.4 is in fact complete.

Theorem 2.10. There are no symmetric digraphs G(n, k) of order 2s for s ≥ 2.

A proof of Theorem 2.10 will be given in Section 9.

Corollary 2.11 below follows from Theorems 2.1, 2.4, and 2.10.

Corollary 2.11. There exists a symmetric digraph G(n, k) of order M ≥ 2 if and only if M
is square free.

3. Two Special Subdigraphs of G(n, k)

We specify two particular subdigraphs of G(n, k). Let G1(n, k) be the induced subdigraph of
G(n, k) on the set of vertices which are coprime to n and G2(n, k) be the induced subdigraph
on the remaining vertices not coprime with n. We observe that G1(n, k) and G2(n, k) are
disjoint and that G(n, k) = G1(n, k) ∪ G2(n, k), that is, no edge goes between G1(n, k) and
G2(n, k). Since gcd(a, n) = 1 if and only if gcd(ak, n) = 1, it follows that both G1(n, k) and
G2(n, k) are unions of components of G(n, k). For example, the second component of Figure 6
is G1(12, 2) whereas the remaining three components make up G2(12, 2). It is clear that 0 is
always a fixed point of G2(n, k). If n > 1, then 1 and n− 1 are always vertices of G1(n, k).

Figure 6. The symmetric iteration digraph G(12, 2) of order 2.

We also specify two components in G1(n, k) and G2(n, k), which will be used in Section 9.
These are C1 containing the fixed point 1 and C0 containing the fixed point 0, respectively. It
is clear that if p is a prime and α ≥ 1, then G2(p

α, k) = C0.

4. Properties of the Carmichael Lambda-Function

Before proceeding further, we need to review some properties of the Carmichael lambda-
function λ(n). Its definition is a modification of the definition of the Euler totient function
φ(n).
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Definition 4.1. Let n be a positive integer. Then the Carmichael lambda-function λ(n) is
defined as follows:

λ(1) = 1 = φ(1),

λ(2) = 1 = φ(2),

λ(4) = 2 = φ(4),

λ(2k) = 2k−2 =
1

2
φ(2k) for k ≥ 3,

λ(pk) = (p − 1)pk−1 = φ(pk) for any odd prime p and k ≥ 1,

λ(pk11 pk22 · · · pkrr ) = lcm[λ(pk11 ), λ(pk22 ), . . . , λ(pkrr )],

where p1, p2, . . . , pr are distinct primes and ki ≥ 1 for all i ∈ {1, . . . , r}.

It immediately follows from Definition 4.1 that

λ(n) | φ(n)

for all n and that λ(n) = φ(n) if and only if n ∈ {1, 2, 4, qk, 2qk}, where q is an odd prime
and k ≥ 1.

The following theorem generalizes the well-known Euler’s Theorem which says (see [7, p. 20])

that aφ(n) ≡ 1 (mod n) if and only if gcd(a, n) = 1. It shows that λ(n) is the smallest possible
universal order modulo n.

Theorem 4.2. (Carmichael) Let a, n ∈ N. Then

aλ(n) ≡ 1 (mod n)

if and only if gcd(a, n) = 1. Moreover, there exists an integer g such that

ordng = λ(n).

For the proof, see [7, p. 21].

5. Results on Cycles

Consider a digraph G(n, k) and factorize λ(n) as

λ(n) = uv, (5.1)

where u is the largest divisor of λ(n) relatively prime to k. We will need the following theorems
to prove our main results.

Theorem 5.1. There exists a t-cycle in G1(n, k) if and only if

t = orddk

for some factor d of u. Moreover, the longest cycle in G1(n, k) has length equal to orduk.

This was proved in [13, pp. 232–233].

Theorem 5.2. ([11, Theorem 7.1]) If there exists a t-cycle in G2(n, k), then there exists a
t-cycle in G1(n, k).
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Theorem 5.3. ([10, Theorem 6.6]) Let n have the factorization given in (1.2) and let t be a
positive integer. Then

At(G(n, k)) =
1

t





r
∏

i=1

(δi gcd(λ(p
αi

i ), kt − 1) + 1)−
∑

d|t, d6=t

dAd(G(n, k))



 , (5.2)

where δi = 2 if 2 | kt − 1 and 8 | pαi

i , and δi = 1 otherwise.

6. An Example to Theorem 2.1

Looking at Figure 2, we see that G(39, 3) = G(3 · 13, 3) is symmetric of order 3. Making
use of part (ii) of Theorem 2.1, we find that the digraph G(39, 3) satisfies condition (iv)(a) of
Theorem 2.1. However, it is not immediately clear that there exists a digraph G(n, k) which
actually satisfies the hypotheses of part (iv)(b) of Theorem 2.1. Example 6.1 given below
shows that this can indeed occur. This is a slightly changed version of Example 38 in [5].

Example 6.1. Let n = pα1

1 p2, where p1 = 7, α1 = 2 and p2 = 103, and let k = 35. Consider
the digraph

G(n, k) = G(72 · 103, 35) = G(5047, 35).

We shall demonstrate that condition (iv)(b) of Theorem 2.1 is satisfied, and thus, G(72 ·103, 35)
is symmetric of order 7.

We first note that p1 = 7 | M = 7, while p2 = 103 - M = 7,

gcd((p1 − 1)pα1−1
1 , k) = gcd(42, 35) = 7 = pα1−1

1 ,

and

gcd(p2 − 1, k) = gcd(102, 35) = p02 = 1.

We next observe that G(7, 35) is not symmetric of order 7 by Theorem 2.1 (ii), since k =
35 6≡ 1 (mod 7). We further note that

ordp1−1k = ord635 = 2 (6.1)

and

ordp2−1k = ord10235 = 2. (6.2)

Thus, it follows from (6.2) and Theorems 5.1 and 5.2 that the longest cycle in G(103, 35) has
length 2. Thus, G(103, 35) only has t-cycles for t = 1 or t = 2. By Theorem 5.3,

A1(G(103, 35)) = gcd(102, 34) + 1 = 35.

Hence,

p1 = 7 | A1(G(p2, k)) = 35.

We also note that when t = 2, then

ordp1−1k = 2 | t = 2.

Moreover, At(G(103, 35)) = 0 when t > 2. We now see that G(72 · 103, 35) indeed satisfies
condition (iv)(b) of Theorem 2.1.
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7. Digraph Products

Let n = n1n2, where gcd(n1, n2) = 1, n1 > 1, and n2 ≥ 1. We show that we can represent
G(n, k) as a product of the two digraphs G(n1, k) and G(n2, k). By the Chinese Remainder
Theorem, we can uniquely represent each vertex a ∈ G(n, k) as the ordered pair (a1, a2), where
0 ≤ a1 ≤ n1 − 1, 0 ≤ a2 ≤ n2 − 1, a ≡ a1 (mod n1), and a ≡ a2 (mod n2). For a = (a1, a2)
define

ak = (a1, a2)
k = (ak1 , a

k
2), (7.1)

where we assume that ak, ak1, and ak2 are all reduced modulo n, n1, and n2, respectively.
Let G(n1, k) × G(n2, k) denote the digraph whose vertices are the ordered pairs (a1, a2),

where 0 ≤ a1 ≤ n1 − 1 and 0 ≤ a2 ≤ n2 − 1. In addition, 〈(a1, b1), (a2, b2)〉 is a directed edge
of G(n1, k)×G(n2, k) if and only if a2 ≡ ak1 (mod n1) and b2 ≡ bk1 (mod n2) (see [4]).

From (7.1), it follows that

G(n, k) ∼= G(n1, k)×G(n2, k)

and for simplicity we write

G(n, k) = G(n1, k)×G(n2, k). (7.2)

If n has the factorization given in (1.2), it follows from (7.2) that

G(n, k) = G(pα1

1 , k)×G(pα2

2 , k) × · · · ×G(pαr
r , k).

8. Further Results

We will need the following results in order to prove our main results on symmetric digraphs.

Theorem 8.1. Let p be a prime and α ≥ 1. Let a be a vertex of positive indegree in G1(p
α, k).

Then

indegkpα(a) = ε gcd(λ(pα), k),

where ε = 2 if 2 | k and 8 | pα, and ε = 1 otherwise.

This is proved in [13, pp. 231–232].

Lemma 8.2. ([10, Lemma 3.2]) Let p be a prime and let α ≥ 1 and k ≥ 2 be integers. Then

indegkpα(0) = pα−dα/ke.

Lemma 8.3. ([6, Lemma 5]) Let n = n1n2, where gcd(n1, n2) = 1. Let a = (a1, a2) be a
vertex in G(n, k) = G(n1, k)×G(n2, k). Then

indegkn(a) = indegkn1
(a1) indeg

k
n2
(a2).

Theorem 8.4. ([10, Theorem 6.7]) Let c = (c1, c2) be a vertex in G(n, k) = G(n1, k)×G(n2, k).
Then c is a cycle vertex in G(n, k) if and only if ci is a cycle vertex in G(ni, k) for i = 1, 2.

Theorem 8.5. ([10, Theorem 6.8]) Assume that n = n1n2 and gcd(n1, n2) = 1. Let J(n1, k)
be a union of components of G(n1, k) and let L(n2, k) be a union of components of G(n2, k).
Then J(n1, k)×L(n2, k) is a union of components of G(n, k) = G(n1, k)×G(n2, k). Moreover,
if

J(n1, k) =

m1
⋃

i=1

Ei(n1, k)
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and

L(n2, k) =

m2
⋃

j=1

Fj(n2, k),

where Ei(n1, k) and Fj(n2, k) are distinct components of G(n1, k) and G(n2, k), respectively,
then

J(n1, k)× L(n2, k) =
⋃

i,j

Ei(n1, k)× Fj(n2, k), (8.1)

where the union in (8.1) is a disjoint union.

Lemma 8.6. ([6, Lemma 1]) Let n = n1n2, where gcd(n1, n2) = 1. Let E(n1, k) be a compo-
nent of G(n1, k) and let J(n2, k) be a component of G(n2, k). Let s be the length of E(n1, k)’s
cycle and let t be the length of J(n2, k)’s cycle. Then D(n, k) = E(n1, k) × J(n2, k) is a
subdigraph of G(n, k) consisting of gcd(s, t) components each having cycles of length lcm(s, t).

9. Proof of the Main Theorem 2.10

Proof. We note that if G(n, k) is symmetric of order 2s, s ≥ 1, then it is symmetric of order 2.
We now define an equivalence relation on the set of components of G(n, k). We say that two
components in G(n, k) are in the same equivalence class if and only if they are isomorphic.
Given any digraph G(n, k) that is symmetric of order 2, we will find an equivalence class
containing exactly two members of components of G(n, k). It will then follow that no digraph
G(n, k) can be symmetric of order 2s for s ≥ 2.

Suppose that G(n, k) is symmetric of order 2. Let n = 2αn1, where n1 ≥ 1 is odd. By
Proposition 1.2, α ≥ 1. If α = 1, then G(n, k) cannot be symmetric of order 2s for s > 1 by
Proposition 1.2.

From here on, we suppose that α ≥ 2. Then by Theorem 2.4, 2 | k. Since λ(2α) | 2α−1, it

follows from Theorem 4.2 that if a ∈ G1(2
α, k), then ak

i
≡ 1 (mod 2α) when i ≥ α−1. Hence,

G(2α, k) consists of exactly the two components C1 = G1(2
α, k) and C0 = G2(2

α, k), where
C1 and C0 are the components in G(2α, k) containing the fixed points 1 and 0, respectively.
Moreover, it follows from Theorem 2.4 that G(2α, k) is symmetric of order 2, which implies
that C1

∼= C0. In particular, if n1 = 1, then G(n, k) = G(2α, k) is symmetric of order 2, but is
not symmetric of order 2s for s > 1.

We assume from now on that n1 > 1. Let

n1 =
m
∏

i=1

pβi

i .

Consider the subdigraph of G(n1, k) given by the digraph product

A =
m
∏

i=1

G2(p
βi

i , k).

Noting that G2(p
βi

i , k) consists of a single component containing the fixed point 0 for i =
1, 2, . . . ,m, we see by Theorem 8.4 that A consists of a unique component having the fixed
point a = (0, 0, . . . , 0). It follows from Lemmas 8.2 and 8.3 that the indegree of a is odd, since

indegkn1
(a) =

m
∏

i=1

p
βi−d

βi
k
e

i .
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Let B be the union of all components in G(n1, k) that are distinct from A, that is, G(n1, k) =
A ∪ B. Let b = (b1, b2, . . . , bm) be a cycle vertex in B. Then there exists j, 1 ≤ j ≤ m,

such that bj ∈ G1(p
βj

j , k). Let qj = p
βj

j . Noting that pj is odd and k is even, it follows from

Theorem 8.1 that indegkqj(bj) is even. Hence, by Lemma 8.3, we have 2 | indegkn1
(b).

Let e = α− dαk e. Then

indegk2α(0) = 2e = indegk2α(1).

By Theorem 8.5,

G(n, k) = G(2α, k) ×G(n1, k) = (C0 ×A) ∪ (C0 ×B) ∪ (C1 ×A) ∪ (C1 ×B).

It follows from Lemma 8.6 that C0×A and C1×A each consists of a single component containing
the fixed points a0 = (0, 0, . . . , 0) and a1 = (1, 0, . . . , 0), respectively. Since C0

∼= C1, we find
that C0 ×A ∼= C1 ×A. Let b∗ be any cycle vertex in (C0 ×B)∪ (C1 ×B). We see by Lemma
8.3 that

2e‖indegkn(a0), 2e‖indegkn(a1), and 2e+1 | indegkn(b
∗).

Hence, the equivalence class of the component C0×A in G(n, k) contains exactly two members,
namely C0 ×A and C1 ×A. Therefore, G(n, k) is not symmetric of order 2s for s > 1. �
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