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Abstract. Certain sequences of recursively defined polynomials have limiting power series.

This fact is proved for a class of second-order recurrences, and the problem for higher order

recurrences is stated.

We begin with an example and then generalize. Let p0(x) = 1, p1(x) = 1 + x, and

pn(x) = −xpn−1(x) + (x2 + 2x)pn−2(x) + x+ 1 (1)

for n ≥ 2. Polynomials determined by these conditions are shown here:

p0(x) = 1
p1(x) = 1 + x
p2(x) = 1 + 2x
p3(x) = 1 + 2x+ x2 + x3

p4(x) = 1 + 2x+ 3x2 + x3 − x4

p5(x) = 1 + 2x+ 3x2 + x3 + 2x4 + 2x5

p6(x) = 1 + 2x+ 3x2 + 5x3 + 4x4 − 3x5 − 3x6

p7(x) = 1 + 2x+ 3x2 + 5x3 + x5 + 9x6 + 5x7

p8(x) = 1 + 2x+ 3x2 + 5x3 + 8x4 + 13x5 − 3x6 − 18x7 − 8x8.

The list suggests that the polynomials “approach” a limiting series. The purpose of this
note is to examine such limiting behavior.

Throughout, all polynomials have integer coefficients. The expression “ lim
n→∞

pn exists” is

defined from (2) as follows: for every k ≥ 0, there existsN such that if n ≥ N , then p(n+1, k) =
p(n, k). That is, the coefficient of xk in pn (x) eventually becomes constant. Writing that
common coefficient as sk and putting

S(x) = s0 + s1x+ s2x
2 + · · ·

gives
lim
n→∞

pn = S.

For the example above, the limiting coefficients are Fibonacci numbers, and

S(x) =
1 + x

1− x− x2
.

To generalize, suppose that

pn = pn(x) = p(n, 0) + p(n, 1)x+ · · · + p(n, n)xn (2)
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are polynomials given by p0(x) = r, p1(x) = sx+ t, and

pn(x) = (ax+ b)pn−1(x) + (cx2 + dx+ e)pn−2(x) + fx+ g (3)

for n ≥ 2, where a 6= 0. For each n ≥ 0, we seek recurrence relations for the numerical
sequence p(n, k), for k = 0, 1, 2, . . .. These coefficients p(n, k) are related to derivatives of
pn(x) by Cauchy’s formula,

p(n, k) = p(k)n (0)/k! (4)

First,

p′n = apn−1 + dpn−2 + bp′n−1 + ep′n−2 + f + x(ap′n−1 + 2cpn−2 + dp′n−2) + cx2p′n−2, (5)

from which it follows inductively that

p(k)n = k(ap
(k−1)
n−1 + dp

(k−1)
n−2 + (k − 1)cp

(k−2)
n−2 ) + bp

(k)
n−1 + ep

(k)
n−2

+ x(ap
(k)
n−1 + 2kcp

(k−1)
n−2 + dp

(k)
n−2) + cx2p

(k)
n−1 (6)

for k ≥ 2. Putting x = 0 in (6) and applying (4),

p(n, k) = ap(n− 1, k − 1) + dp(n− 2, k − 1) + cp(n− 2, k − 2)

+ bp(n− 1, k) + ep(n − 2, k)

for n ≥ 2 and k ≥ 2. Initial values are given by

p(0, 0) = r, p(1, 0) = t, p(1, 1) = s,

p(2, 0) = bt+ er + g,

p(2, 1) = at+ dr + bs+ f,

and, for n ≥ 3,

p(n, 1) = ap(n− 1, 0) + dp(n− 2, 0) + bp(n− 1, 1) + ep(n − 2, 1) + f. (7)

Suppose now that b = e = 0 in (3). Then by (7),

p(n, 1) = ap(n− 1, 0) + dp(n− 2, 0) + f. (8)

Also, p(n, 0) = g for all n ≥ 2, by (3), and p(n, 1) = p′n(0) = ag + dg + f for all n ≥ 4, by (5).
Consequently, by (8),

p(n, 2) = (a+ d)(ag + dg + f) + cg

for all n ≥ 6. Inductively, therefore, by (8), the coefficient p(n, k) is constant for all n ≥ 2k+2,
for all k ≥ 0. Accordingly, lim

n→∞

pn exists, and substituting S(x) for each of pn(x), pn−1(x),

and pn−2(x) in (3) yields

S(x) =
g + fx

1− (a+ d)x− cx2
.

We close with questions.

(1) Can lim
n→∞

pn exist when b and e are not both 0?

(2) Do these results generalize for recurrences of higher order? Specifically, if m ≥ 3 and
polynomials pn(x) satisfy a recurrence

pn(x) = q1(x)pn−1(x) + · · ·+ qm(x)pn−m(x) + rm(x),
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where qi(x) is a polynomial of degree i for 1 ≤ i ≤ m and rm(x) is a polynomial
of degree m − 1, then what conditions on the polynomials qi(x) ensure that lim

n→∞

pn

exists?
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