LIMITS OF POLYNOMIAL SEQUENCES

CLARK KIMBERLING

ABSTRACT. Certain sequences of recursively defined polynomials have limiting power series.
This fact is proved for a class of second-order recurrences, and the problem for higher order

recurrences is stated.

We begin with an example and then generalize. Let po(z) = 1, p1(z) =1+ x, and

Pn(z) = —zpn_1(z) + (2 + 22)pp_o(z) + x + 1

for n > 2. Polynomials determined by these conditions are shown here:

po(x) =1

pi(z) =14z

po(x) =142z

p3(z) =142z + 2%+ 23

pa(z) =1+ 22 + 322 + 2% — 2*

ps(z) = 14 22 + 322 + 23 + 221 + 22°

pe(x) = 1+ 2z + 322 + 52 + 4a* — 325 — 32°

pr(x) =1+ 2z + 322 + 523 + 25 + 92° + 527
(2) = 1

+ 22 + 322 + 523 + 8x* + 132° — 325 — 1827 — 8x8.

(1)

The list suggests that the polynomials “approach” a limiting series. The purpose of this

note is to examine such limiting behavior.

Throughout, all polynomials have integer coefficients. The expression “ lim p, exists” is
n—oo

defined from (2) as follows: for every k > 0, there exists N such that if n > N, then p(n+1,k) =
p(n, k). That is, the coefficient of z* in p, (z) eventually becomes constant. Writing that

common coefficient as s and putting

S(x) = so + s12 + spx? + - -

gives
lim p, = S.
n—o0
For the example above, the limiting coefficients are Fibonacci numbers, and
1+
S(r) = —.
(z) 11—z — 22

To generalize, suppose that

pn = pn(z) = p(n,0) + p(n,Dx + -+ 4+ p(n,n)z"
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are polynomials given by po(x) = r, p1(z) = sx + t, and

pn(z) = (az + b)pp_1(x) + (cx? + dx + €)pp_2(x) + fr + g (3)

for n > 2, where a # 0. For each n > 0, we seek recurrence relations for the numerical
sequence p(n,k), for k = 0,1,2,.... These coefficients p(n, k) are related to derivatives of
pn(x) by Cauchy’s formula,

p(n, k) = p{F(0) /! (4)
First,

Pl =apn_1+dpn_o +bpl, | +epl o+ f+a(apl, | + 2cpn_o +dpl, o) + cxpl,_,, (5)

from which it follows inductively that

P = k(apl D + dp Y + (k= Dep ) + 0™+ e,
+ x(apglk_)l + 2k‘cpg€__21) + dp,(f_)2) + C$2p£Lk_)1 (6)

for k£ > 2. Putting z = 0 in (6) and applying (4),
p(n,k) =ap(n— 1,k —1)+dp(n —2,k — 1)+ cp(n — 2,k — 2)
+bp(n—1,k) +ep(n —2,k)
for n > 2 and k > 2. Initial values are given by
p(0,0) =7, p(1,0) = ¢, p(1,1) = s,
p(2,0) = bt +er+g,
p(2,1) = at +dr + bs + f,

and, for n > 3,

p(nv 1) = ap(n -1, 0) + dp(n -2, 0) + bp(n -1, 1) + ep(n -2, 1) + f. (7)
Suppose now that b =e = 0 in (3). Then by (7),

Also, p(n,0) = g for all n > 2, by (3), and p(n,1) = p,,(0) = ag + dg + f for all n > 4, by (5).
Consequently, by (8),

p(n,2) = (a+d)(ag +dg + f) +cg
for all n > 6. Inductively, therefore, by (8), the coefficient p(n, k) is constant for all n > 2k+2,
for all £ > 0. Accordingly, li_)rn pr, exists, and substituting S(z) for each of p,(x), pn—1(z),

and p,_o(z) in (3) yields

+ fz
S) = 1-— (ag+ d{x —cx?’
We close with questions.
(1) Can nh_)H;O P, exist when b and e are not both 07
(2) Do these results generalize for recurrences of higher order? Specifically, if m > 3 and
polynomials p,(z) satisfy a recurrence

pn(x) - Q1($)pn—1(l’) + -+ Qm(x)pn—m(x) + Tm(x)y
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where ¢;(x) is a polynomial of degree ¢ for 1 < ¢ < m and r,,(z) is a polynomial
of degree m — 1, then what conditions on the polynomials g;(z) ensure that li_)m Dn
n o0

exists?
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