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Abstract. Horadam sequences are second-order linear recurrence sequences which depend
on a family of four parameters (two in the defining recursion itself, and two initial values). In
this article we find necessary and sufficient conditions for the periodicity of complex Horadam
sequences, under general initial values, characterizing sequence behavior for degenerate and
non-degenerate characteristic solution types. Inner and outer boundaries for regions contain-
ing periodic orbits are also determined.

1. Introduction

Let a, b, p and q be complex numbers, and denote by {wn(a, b; p, q)}∞n=0 the sequence defined
by the recurrence

wn+2 − pwn+1 + qwn = 0, w0 = a,w1 = b. (1.1)

Following the work of A. F. Horadam—who initiated the investigation of this general recursion
in two seminal 1965 papers [5] and [6]—the sequence arising from (1.1) is called a Horadam
sequence which contains many well-known sequences as special cases. A historical perspective
on results related to Horadam sequences is given in a survey paper by Larcombe et al. [8].
Under certain conditions Horadam sequences can be periodic. A comprehensive list of periodic
recurrence sequences is detailed in [2, Chapter 3], with an emphasis on sequences defined on
finite fields.

In this paper we establish necessary and sufficient conditions for the periodicity of complex
Horadam sequences using closed forms for the general term wn(a, b; p, q). The results are
formulated in terms of initial sequence values a, b, and so called generators z1, z2 which are
solutions of the quadratic characteristic equation

z2 − pz + q = 0, (1.2)

associated with the recurrence (1.1) and connect the fundamental characteristic polynomial
z2 − pz + q to the sequence it creates through the relations z1 + z2 = p, z1z2 = q. After some
preliminary results Horadam sequences are characterized for degenerate and non-degenerate
characteristic root cases, exploring the roles of both initial values and generators in peri-
odic (and non-periodic) sequence behavior. To finish, inner and outer boundaries for regions
containing periodic orbits are also determined. This article forms the basis of a systematic
examination of Horadam sequence cyclicity which, in the light of [8], opens up a new topic of
study in what is a long established field within discrete mathematics.

2. Preliminary Results

In this section we discuss the behavior of a sequence {zn}∞n=0 for an arbitrary value of z ∈ C.
We begin with a corollary of Weyl’s criterion in the theory of Diophantine equations [9] which
gives, as a consequence, that the set of fractional parts of multiples of an irrational number
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is equally distributed in [0, 1] (see [3, Chapter 2]). An adapted and simplified version of the
proof presented in [4] is detailed here, which shows that the fractional part of multiples of an
irrational number is dense in [0, 1].

Let bxc = max {m ∈ Z | m ≤ x} and {x} = x− bxc be the (resp.) floor and fractional part
of x.

Lemma 2.1. The set M = {{nx} | n ∈ N} is dense in the interval [0, 1] for every x ∈ R\Q.

Proof. As x is irrational, the numbers {nx} are distinct and so the set M contains infinitely
many terms. For 2 ≤ m ∈ N the interval [0, 1] can be partitioned into m subintervals

[

0,
1

m

]

,

[

1

m
,
2

m

]

, . . . ,

[

m− 1

m
, 1

]

, (2.1)

and we will show that each of these intervals contains at least one term {nx}.
From the well-known Pigeonhole Principle there is an interval containing at least two of the

first m + 1 terms, say {m1x} and {m2x} (0 ≤ m1 < m2 ≤ m), which satisfy the relations
|{m2x}−{m1x}| < 1

m
and (m2−m1)x = bm2xc−bm1xc+{m2x}−{m1x}. If {m1x} < {m2x}

then {(m2−m1)x} = {m2x}−{m1x} < 1

m
. The same argument applies when {m1x} > {m2x},

hence one can write {(m2 − m1)x} = 1 + {m2x} − {m1x} ∈ (1 − 1

m
, 1). The presence of

{m1x} and {m2x} in the same interval of length 1/m ensures the existence of at least one
sequence term {nx} in each of the intervals of (2.1), and will complete the proof. Writing
α = {m1x} − {m2x} > 0 (the case α < 0 is similar), and Nα = b 1

α
c, one obtains {k(m2 −

m1)x} = {k (b(m2 −m1)xc+ 1− α)} = {k(1 − α)} = 1 − {kα} = 1 − kα, for k = 0, . . . , Nα

and 0 ≤ kα ≤ 1. As the distance between consecutive terms of the sequence {k(m2−m1)x}∞k=0

is less than 1/m, each of the intervals of (2.1) contains at least one term. �

The following lemma describes the behavior of a sequence {zn}∞n=0 for an arbitrary value of
z ∈ C.

Lemma 2.2. Let z = re2πix ∈ C be a complex number (r > 0). The orbit of {zn}∞n=0 is

(i) a regular k-gon if r = 1, and x = j/k ∈ Q with gcd(j, k) = 1;
(ii) a dense subset of the unit circle for r = 1 and x ∈ R \Q;
(iii) an inward spiral for r < 1;
(iv) an outward spiral for r > 1.

Proof.

(i) For r = 1 the terms of the sequence {zn}∞n=0 are located on the unit disk. When
x = j/k ∈ Q is an irreducible fraction, z is a primitive kth root of unity. As zk = 1,
the sequence {zn}∞n=0 = {1, z, . . . , zk−1, . . .} is periodic and describes a closed finite
orbit.

[The result is illustrated in Figure 1 for (a) k = 5 and (b) k = 8.]
(ii) As the argument of zn is 2πnx, the principal arguments of the terms in the sequence

{zn}∞n=0 form the set {2π{nx}} which, from Lemma 2.1, is dense in the interval [0, 2π].
Thus, the orbit of {zn}∞n=0 is a dense subset of the unit circle.

(iii) For r < 1 we have limn→∞ ‖zn‖ = limn→∞ ‖z‖n = limn→∞ rn = 0, therefore the
sequence {zn}∞n=0 converges to the origin.

[The terms of the sequence {zn}∞n=0 are all real for {x} ∈ {0, 1/2}. When x = j/k ∈
Q is an irreducible fraction (k ≥ 3) the orbit of the sequence {zn}∞n=0 forms an inward
spiral whose points are aligned with the vertices of a regular polygon, as shown in
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Figure 1. Orbit of {zn}∞n=0 obtained for r = 1 and (a) x = 1/5; (b) x = 1/8.
Arrows indicate the direction of the orbit, and the dashed line represents the
unit circle. The generator z = r exp(2πix) is shown as a square.

Figure 2(a) for x = 1/5 and r = 0.98. When x ∈ R \Q the orbit also converges to the
origin but this time the resulting points form a spiral, as in Figure 2(b) for x =

√
2/10

and r = 0.98.]
(iv) For r > 1 we have limn→∞ ‖zn‖ = limn→∞ ‖z‖n = limn→∞ rn = ∞, therefore the

sequence {zn}∞n=0 diverges to infinity.
[The terms of the sequence {zn}∞n=0 are all real for {x} ∈ {0, 1/2}. When x = j/k ∈

Q is an irreducible fraction (k ≥ 3) the orbit of the sequence {zn}∞n=0 forms a set
of rays aligned with the vertices of a regular polygon, as depicted in Figure 3(a) for
x = 1/10 and r = 1.01. When x ∈ R\Q the orbit also diverges to infinity but this time
the points form a spiral, as illustrated in Figure 3(b) for x =

√
2/10 and r = 1.01.]

�
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Figure 2. Partial orbit of {zn}∞n=0 (71 terms) obtained for r = 0.98 and (a)

x = 1/5; (b) x =
√
2/10. Arrows indicate the direction of the orbit, and the

dashed line represents the unit circle. The generator z = r exp(2πix) is shown
as a square.
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Figure 3. Partial orbit of {zn}∞n=0 (101 terms) obtained for r = 1.01 and (a)

x = 1/10; (b) x =
√
2/10. Arrows indicate the direction of the orbit, and the

dashed line represents the unit circle. The generator z = r exp(2πix) is shown
as a square.

If one of the roots of the characteristic equation (1.2) is zero then the Horadam recurrence
is reduced to first order and the analysis of sequence periodicity is straightforward.

Remark 2.3. For roots z1, z2 of the characteristic polynomial z2 − pz + q of (1.2), z1z2 = 0
implies q = 0 for which the Horadam sequence reduces to a first-order recurrence sequence.
Assuming z2 = 0, the general term of the Horadam sequence {wn}∞n=0 is wn = bzn−1

1
(n ≥ 1).

For z1 6= 0 and b 6= 0 the sequence {wn}∞n=0 is periodic if and only if the sequence {zn1 }∞n=0 is
periodic, which from Lemma 2.2 is equivalent to z1 being a kth root of unity for some k ∈ N.
When b = 0 or z1 vanishes, the recurrence is satisfied by wn = 0 (n ≥ 2), with the only
non-zero terms being potentially w0, w1.

3. Main Results

For the purpose of simplification, the general Horadam sequence {wn(a, b; p, q)}∞n=0 is written
{wn}∞n=0 hereafter. In this section necessary and sufficient conditions for the periodicity of the
sequence {wn}∞n=0 are established when the characteristic solutions z1, z2 of (1.2) are distinct
or identical.

3.1. Non-Degenerate Case. Here the conditions for periodicity are examined in the case
when the characteristic solutions z1, z2 are distinct.

Theorem 3.1. (Sufficient condition for periodicity.) Let z1 6= z2 be distinct kth roots of unity
(k ≥ 2), and let the polynomial P (x) be

P (x) = (x− z1)(x− z2), x ∈ C. (3.1)

The recurrence sequence {wn}∞n=0 generated by the characteristic polynomial (3.1), and the
arbitrary initial values w0 = a, w1 = b, is periodic.

Proof. The general term of the sequence {wn}∞n=0, for distinct roots z1, z2 of P (x), is given by
(see, for example, [1, Chapter 7], [2, Chapter 1] or [7])

wn = Azn1 +Bzn2 , (3.2)
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where A and B are constants obtained by solving the simultaneous equations

w0 = A+B = a,

w1 = Az1 +Bz2 = b. (3.3)

As zk1 = zk2 = 1, the sequence {wn}∞n=0 is periodic. The period is a divisor of k, and is simply
lcm(ord(z1), ord(z2)) (where ord(z) is the order of z). By elementary algebra,

A =
az2 − b

z2 − z1
, B =

b− az1
z2 − z1

, (3.4)

so the general Horadam term can be written explicitly as

wn =
1

z2 − z1
[(az2 − b)zn1 + (b− az1)z

n
2 ] (3.5)

in terms of the initial values and generators. From (3.2) one can deduce that the following
degenerate (in the sense that not both generators contribute to wn) periodic cases are possible.
When B = 0 one obtains b = az1, therefore wn = azn1 (n ≥ 0), while A = 0 gives wn = azn2
(n ≥ 0). When A = B = 0 we have b = az1 = az2, therefore a = b = 0 and wn = 0 (n ≥ 0). �

From Lemma 2.2 it is expected that periodic sequences should employ only roots of unity,
since otherwise the orbits of the sequences {zn1 }∞n=0 and {zn2 }∞n=0 have infinitely many distinct
terms. A necessary condition is presented next.

Theorem 3.2. (Necessary condition for periodicity.) Let z1 6= z2 be the distinct roots of the
characteristic polynomial (3.1). The recurrence sequence {wn}∞n=0 generated by z1, z2, and
arbitrary initial values w0 = a, w1 = b, is periodic only if there exists k ∈ N s.t.

A(zk1 − 1)z1 = 0,

B(zk2 − 1)z2 = 0, (3.6)

where A and B are given by (3.4). Explicitly, these conditions allow for the following subcases:

(i) z1 and z2 are kth roots of unity (for some natural number k ≥ 2) (non-degenerate);
(ii) z1 or z2 is a kth root of unity and the other is zero (regular polygon);
(iii) z1 or z2 is a kth root of unity and satisfies b = az1 or b = az2, resp. (regular polygon);
(iv) z1 and z2 are arbitrary, and a = b = 0 (degenerate orbit).

Proof. Let us assume that the sequence is periodic, and let k ∈ N be the period. Under this
assumption the periodicity can be expressed trivially as

wn = wn+k, for all n ∈ N. (3.7)

As z1 6= z2 relations (3.2) and (3.7) give

wn = Azn1 +Bzn2 = Azn+k
1

+Bzn+k
2

= wn+k, for all n ∈ N, (3.8)

which can further be written as

A(zk1 − 1)zn1 +B(zk2 − 1)zn2 = 0, for all n ∈ N. (3.9)

The case when 0 = z1z2 (already discussed in Remark 2.3) clearly implies (3.6). Assuming
that z1, z2 6= 0 and that there exists non-zero numbers α and β such that, for all n ∈ N,
αzn1 + βzn2 = 0, one can evaluate (3.9) for n = 1, 2 to obtain

−α

β
=

z22
z2
1

=
z2
z1

, (3.10)
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which is equivalent to z1 = z2 and a contradiction. The periodicity of {wn}∞n=0 gives, therefore,

A(zk1 − 1) = 0,

B(zk2 − 1) = 0, (3.11)

which implies (3.6) and completes its proof.
The only non-degenerate solution of (3.9) (in which both generators have a non-zero con-

tribution) requires zk1 = zk2 = 1, which represents Case (i). If either A or B is zero (but not
both), (3.2) shows that the sequence is determined by only one of the generators which leads
to Cases (ii) and (iii). Finally, if both A and B are zero we obtain a degenerate orbit (Case
(iv)). �

Theorems 3.1 and 3.2 highlight the importance of both the generators and initial values to
the periodicity of the orbits of Horadam sequences; we see this again in the degenerate roots
instance.

3.2. Degenerate Case. Here the conditions for periodicity are examined in the case when
the characteristic solutions z1, z2 are equal.

Theorem 3.3. (Sufficient condition for periodicity.) Let z be a kth root of unity (k ≥ 2), and
let the polynomial P (x) be

P (x) = (x− z)2, x ∈ C. (3.12)

The recurrence sequence {wn}∞n=0 generated by the characteristic polynomial (3.12), and arbi-
trary initial values w0 = a, w1 = b, is periodic when b = az, being otherwise divergent.

Proof. When the characteristic roots are equal (z1 = z2 = z, say) the general term of the
associated Horadam sequence is given by

wn = Azn +Bnzn, (3.13)

where A and B are found from the equations

w0 = A = a,

w1 = (A+B)z = b; (3.14)

explicitly, then,

wn =

[

a+

(

b

z
− a

)

n

]

zn. (3.15)

This closed form shows that {wn}∞n=0 diverges (and is clearly not periodic) whenever B 6= 0.
For B = 0 one obtains b = az, and in turn a periodic orbit with general term wn = azn

(n ≥ 0), while A = 0 gives wn = bnzn−1 (n ≥ 1) for which the sequence {wn}∞n=0 represents a
(non-periodic) divergent spiral. When A = B = 0 we have a = 0 = b and the trivial sequence
with wn = 0 (n ≥ 0). �

Proposition 3.4. When generated by a repeated kth root of unity, the terms of the divergent
subsequence {wNk+j}∞N=0

are collinear for each value of j ∈ {0, . . . , k − 1}.
Proof. For a fixed value of j ∈ {0, . . . , k − 1}, the general term of {wNk+j}∞N=0

from (3.13) is

wNk+j = [A+B(Nk + j)]zNk+j = [A+B(Nk + j)]zj , for all N ∈ N, (3.16)

therefore
wNk+j − wj = NkBzj, (3.17)
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Figure 4. First N terms of the sequence {wn}∞n=0 for initial values a =

1.5 exp(2πi/30), b = 1.2 exp(2πi/7) (shown as stars) for (a) N = 18, z = e2πi
1

6 ;

(b) N = 11, z = e2πi
2

6 . Arrows indicate the direction of the sequence trajectory.

whose argument is independent of N . This proves that the terms of the (infinite) subsequence
{wNk+j}∞N=0

are collinear for every value of j ∈ {0, . . . , k − 1}, as depicted in Figure 4 where
sequence terms are calculated from (3.15). �

The number of rays formed by aligned sequence terms for each value of j ∈ {0, . . . , k − 1}
is equal to k/gcd(j, k), as seen in Figure 4 for (a) k = 6, j = 1 and (b) k = 6, j = 2.

Theorem 3.5. (Necessary condition for periodicity.) The recurrence sequence {wn}∞n=0 gen-
erated by the characteristic polynomial (3.12), and arbitrary initial values w0 = a, w1 = b, is
periodic only if one of the following is true:

z = 0,

zk − 1 = 0, B = 0,

zk − 1 6= 0, A = B = 0. (3.18)

Explicitly, these conditions give the subcases

(i) z = 0 (degenerate orbit);
(ii) z is a kth root of unity (for some natural number k ≥ 2) and b = az (regular polygon);
(iii) z is arbitrary and a = b = 0 (degenerate orbit).

Proof. For z1 = z2 = z, the general term (3.13) and periodicity property (3.7) together give

wn = Azn +Bnzn = Azn+k +B(n+ k)zn+k = wn+k, for all n ∈ N. (3.19)

This can be written as
[

A(zk − 1) +Bkzk +Bn(zk − 1)
]

zn = 0, for all n ∈ N. (3.20)

The case z = 0 (already discussed in Remark 2.3) clearly implies (3.18). When z 6= 0 one has

A(zk − 1) +Bkzk +Bn(zk − 1) = 0, for all n ∈ N. (3.21)

34 VOLUME 51, NUMBER 1



ON THE CHARACTERIZATION OF PERIODIC COMPLEX HORADAM SEQUENCES

As this is true for every value of n, the l.h.s. linear polynomial in n is null, hence

A(zk − 1) +Bkzk = 0,

B(zk − 1) = 0. (3.22)

It follows readily that if zk − 1 = 0 we have B = 0, while zk − 1 6= 0 implies A = B = 0. The
only non-degenerate case occurs, therefore, when b = az, with z a kth root of unity (k ≥ 2).
This ends the proof. �

4. Further Results

To finish, we use elementary properties of complex numbers to prescribe inner and outer
boundaries of those regions containing the orbits of periodic Horadam sequences.

Theorem 4.1. When the Horadam sequence {wn}∞n=0 is periodic, the orbit is subject to the
following geometric boundaries:

(i) For z1 6= z2 the orbit is located inside the annulus

{z ∈ C : | |A| − |B| | ≤ |wn| ≤ |A|+ |B|}, for all n ∈ N, (4.1)

where the constants A and B are given by (3.4);
(ii) For z1 = z2 = z the orbit is either a subset (regular k-gon) of the circle

S(0, |a|) = {z ∈ C : |z| = |a|} (4.2)

for a 6= 0, or else the zero set {0} for a = 0.

Proof. Any two complex numbers u and v satisfy the well-known triangle inequalities

| |u| − |v| | ≤ |u+ v| ≤ |u|+ |v|. (4.3)

(i) For z1 6= z2 the general term of the sequence (3.2), combined with (4.3), gives

| |Azn1 | − |Bzn2 | | ≤ |wn| = |Azn1 +Bzn2 | ≤ |Azn1 |+ |Bzn2 |, (4.4)

which as |z1| = |z2| = 1 (from the Theorem 3.2 periodicity condition) is equivalent to

| |A| − |B| | ≤ |wn| = |Azn1 +Bzn2 | ≤ |A|+ |B|. (4.5)

[We illustrate this result in Figure 5 for sequences obtained when z1 and z2 are (a)
5th roots and (b) 6th roots of unity. One should note that in the proof we have only
used the fact that z1 and z2 lie on the unit circle.]

(ii) When z1 = z2 = z then, from Theorem 3.5, the sequence can be periodic only when
B = 0 and z is a kth primitive root, in which case wn = azn (n ≥ 0) and the orbit is
a regular k-gon with |wn| = |a|; when a is also zero the sequence terms vanish.

�

5. Summary

It is almost half a century since, in one of his initial publications [5], Horadam himself made
a passing remark about two periodic p, q sequence instances {wn(a, b;±1, 1)}∞n=0. Since that
time—as evident from the survey article [8]—the notion of periodicity in Horadam sequences
has, somewhat surprisingly, not been given any proper scrutiny until now.

In developing the results given here, it has become clear that there are a variety of interesting
facets to the self-repeating behavior of such sequences which are of mathematical interest per
se and whose underpinning theoretical basis yields potential applications in computing. Such
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Figure 5. Orbit of a periodic Horadam sequence {wn}∞n=0 computed for (a)

z1 = e2πi
2

5 , z2 = e2πi
3

5 , a = 4 + 5i, b = 2 − 3i; (b) z1 = e2πi
1

6 , z2 = e2πi
5

6 ,
a = 1 + 2i, b = 3 − 2i. Also plotted are the initial values a, b (stars), the
generators z1, z2 (squares), the unit circle S(0, 1) (solid line) and boundaries of
the annulus U(0, | |A| − |B| |, |A| + |B|) (dashed lines).

work, however, lies beyond the remit of this particular paper which serves merely to introduce
the reader to the concept of Horadam cyclicity and its salient governing conditions. Regarding
further analytical work planned, this includes examining in detail geometrical aspects of peri-
odic complex orbits, and looking separately at the issue of periodicity through a matrix-based
approach which appeals to the theory of eigenvectors and eigenvalues. There also remains, of
course, the possibility that results on cyclicity might be formulated for a generalized Horadam
sequence which satisfies a linear recurrence of arbitrary order.
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