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Abstract. Let Fn be the nth Fibonacci number and let Ln be the nth Lucas number. The
order of appearance z(n) of a natural number n is defined as the smallest natural number k
such that n divides Fk. For instance, z(Ln) = 2n, for all n > 1. In this paper, among other
things, we prove that

z(LnLn+1Ln+2Ln+3) =
n(n+1)(n+2)(n+3)

3
,

for all positive integers n ≡ 0 (mod 3).

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1+Fn, for n ≥ 0, where F0 = 0
and F1 = 1. These numbers are well-known for possessing amazing properties (consult [4]
together with its very extensive annotated bibliography for additional references and history).
We cannot go very far in the lore of Fibonacci numbers without encountering its companion
Lucas sequence (Ln)n≥0 which follows the same recursive pattern as the Fibonacci numbers,
but with initial values L0 = 2 and L1 = 1.

The study of the divisibility properties of Fibonacci numbers has always been a popular
area of research. Let n be a positive integer number, the order (or rank) of appearance of n
in the Fibonacci sequence, denoted by z(n), is defined as the smallest positive integer k, such
that n | Fk (some authors also call it order of apparition, or Fibonacci entry point). There are
several results about z(n) in the literature. For instance, z(m) < m2 − 1, for all m > 2 (see
[13, Theorem, p. 52]) and in the case of a prime number p, one has the better upper bound
z(p) ≤ p+ 1, which is a consequence of the known congruence Fp−(p

5
) ≡ 0 (mod p), for p 6= 2,

where (aq ) denotes the Legendre symbol of a with respect to a prime q > 2. Very recently, it

was proved that all fixed points of z(n) are of the form 5k or 12 · 5k, for some k ≥ 0 (see [10]).
In recent papers, the author [6, 7, 8, 9] found explicit formulas for the order of appearance of

integers related to Fibonacci numbers, such as Fm ± 1, FnFn+1Fn+2 and F k
n . We remark that

most of those results have a “Lucas-version”. For example, it was proved that z(L4n+1 +1) =
4n(2n + 1), and z(Lk+1

n ) = nLk
n/4, for all integers k ≥ 4 and n ≡ 6 (mod 12). However, for

instance, nothing was proved about z(LnLn+1Ln+2Ln+3).
In this note, in order to bridge this gap, we will study the order of appearance of product

of consecutive Lucas numbers. Our main result is the following.

Theorem 1.1. We have

(i) For n ≥ 1,
z(LnLn+1) = 2n(n+ 1).
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(ii) For n ≥ 1,

z(LnLn+1Ln+2) =

{

2n(n+ 1)(n + 2), if n ≡ 1 (mod 2),
n(n+ 1)(n+ 2), if n ≡ 0 (mod 2).

(iii) For n ≥ 1,

z(LnLn+1Ln+2Ln+3) =

{

n(n+ 1)(n + 2)(n + 3), if n 6≡ 0 (mod 3),
(n(n+ 1)(n + 2)(n + 3))/3, if n ≡ 0 (mod 3).

We organize the paper as follows. In Section 2, we will recall some useful properties of
Fibonacci and Lucas numbers such as a result concerning the p-adic order of Fn and Ln. The
last section will be devoted to the proof of the theorem.

2. Auxiliary Results

Before proceeding further, we recall some facts on Fibonacci numbers for the convenience
of the reader.

Lemma 2.1. We have

(a) Fn | Fm if and only if n | m.
(b) Ln | Fm if and only if n | m and m/n is even.
(c) Ln | Lm if and only if n | m and m/n is odd.
(d) F2n = FnLn.
(e) gcd(Ln, Ln+1) = gcd(Ln, Ln+2) = 1.

Proofs of these assertions can be found in [4]. We refer the reader to [1, 3, 4, 11] for more
details and additional bibliography.

The second lemma is a consequence of the previous one.

Lemma 2.2. (Cf. Lemma 2.2 of [7]) We have

(a) If Fn | m, then n | z(m).
(b) If Ln | m, then 2n | z(m).
(c) If n | Fm, then z(n) | m.

The p-adic order (or valuation) of r, νp(r), is the exponent of the highest power of a prime p
which divides r. Throughout the paper, we shall use the known facts that νp(ab) = νp(a)+νp(b)
and that a | b if and only if νp(a) ≤ νp(b), for all primes p.

We remark that the p-adic order of Fibonacci and Lucas numbers was completely character-
ized, see [2, 5, 12]. For instance, from the main results of Lengyel [5], we extract the following
two results.

Lemma 2.3. For n ≥ 1, we have

ν2(Fn) =















0, if n ≡ 1, 2 (mod 3);
1, if n ≡ 3 (mod 6);
3, if n ≡ 6 (mod 12);
ν2(n) + 2, if n ≡ 0 (mod 12),

ν5(Fn) = ν5(n), and if p is prime 6= 2 or 5, then

νp(Fn) =

{

νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p));
0, otherwise.

Lemma 2.4. Let k(p) be the period modulo p of the Fibonacci sequence. For all primes p 6= 5,
we have
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ν2(Ln) =







0, if n ≡ 1, 2 (mod 3);
2, if n ≡ 3 (mod 6);
1, if n ≡ 0 (mod 6)

and νp(Ln) =

{

νp(n) + νp(Fz(p)), if k(p) 6= 4z(p) and n ≡ z(p)
2 (mod z(p));

0, otherwise.

Observe that the relation L2
n = 5F 2

n + 4(−1)n implies that ν5(Ln) = 0, for all n ≥ 1.
In view of strong relations between Fibonacci and Lucas numbers, the similarities between

items (i) and (ii) of [8, Theorem 1.1] and our Theorem 1.1 are very natural. However, the
“surprise” appears by comparing their item (iii). While there are three possibilities for n(n+
1)(n + 2)(n + 3)/z(FnFn+1Fn+2Fn+3) (namely, 2, 3 and 6), the sequence n(n+ 1)(n + 2)(n +
3)/z(LnLn+1Ln+2Ln+3) assumes only the values 1 and 3. The reason is that the number
n(n+ 1)(n+ 2)(n+ 3) is always divisible by 24 and so the 2-adic order of Fn(n+1)(n+2)(n+3) is
at least 5 (Lemma 2.3). On the other hand, ν2(LnLn+1Ln+2Ln+3) is at most 3.

With all of the above tools in hand, we now move to the proof of Theorem 1.1.

3. The Proof of Theorem 1.1

3.1. Proof of (i). For ε ∈ {0, 1}, one has that Ln+ε|LnLn+1 and so Lemma 2.2 (b) yields 2(n+
ε) | z(LnLn+1). But either gcd(2n, n + 1) = 1 or gcd(n, 2(n + 1)) = 1 according to the parity
of n. Thus, 2n(n + 1) | z(LnLn+1). On the other hand, F2n(n+1) = Fn(n+1)Ln(n+1) (Lemma
2.1 (d)) implies, by Lemma 2.1 (a) and (b), that Ln+ε | F2n(n+1). Since gcd(Ln, Ln+1) = 1, we
have LnLn+1 | F2n(n+1) and then z(LnLn+1) | 2n(n + 1) (Lemma 2.2 (c)). In conclusion, we
have z(LnLn+1) = 2n(n+ 1). �

3.2. Proof of (ii). The proof splits in two cases according to the parity of n.

Case 1: If n is even. Then Lemma 2.1 (b) together with the fact that n(n + 2) ≡ 0
(mod 8) yield Ln+ε | Fn(n+1)(n+2), for ε ∈ {0, 1, 2}. Since the numbers Ln, Ln+1, Ln+2 are
pairwise coprime, we have LnLn+1Ln+2 | Fn(n+1)(n+2) and so

z(LnLn+1Ln+2) | n(n+ 1)(n + 2). (3.1)

Now, we use that Ln+ε | LnLn+1Ln+2, to conclude that 2(n + ε) divides z(LnLn+1Ln+2) (we
used Lemma 2.2 (b)). Also, there are distinct a, b ∈ {−1, 1} such that 2an, n+1, 2b(n+2) are
pairwise coprime (the choice of a and b depends on the class of n modulo 4). Therefore,

n(n+ 1)(n + 2) = 2a+bn(n+ 1)(n + 2) | z(LnLn+1Ln+2)

and the result follows from (3.1).

Case 2: If n is odd. Then by Lemma 2.1 (b) we have that Ln+ε | F2n(n+1)(n+2) (observe
that the factor 2 is necessary because in this case only n+1 is even) and so z(LnLn+1Ln+2) |
2n(n+1)(n+2), where we used that Ln, Ln+1, Ln+2 are pairwise coprime. On the other hand,
as in the previous case, 2(n+ε) divides z(LnLn+1Ln+2). In particular, n, 2(n+1), n+2 divides
z(LnLn+1Ln+2) yielding 2n(n+ 1)(n + 2) | z(LnLn+1Ln+2). The proof is complete. �

3.3. Proof of (iii). Since there are two odd numbers among n, n+1, n+2, n+3, we conclude
that

Ln+ε | Ln(n+1)(n+2)(n+3), for ε ∈ {0, 1, 2, 3}. (3.2)
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Case 1: If n 6≡ 0 (mod 3). Then gcd(Ln, Ln+3) = 1 and so, by Lemma 2.1 (e), the numbers
Ln, Ln+1, Ln+2, Ln+3 are pairwise coprime. Thus, (3.2) implies that

z(LnLn+1Ln+2Ln+3) | n(n+ 1)(n + 2)(n + 3).

On the other hand, Ln+ε | LnLn+1Ln+2Ln+3 and so n+ε divides z(LnLn+1Ln+2Ln+3). Note
that there exists only one pair among (n, n + 2) and (n + 1, n + 3) whose greatest common
divisor is 2 depending on the parity of n. Suppose, without loss of generality, that n is even.
Since gcd(n, n+3) = 1, we can deduce that n/2a, n+1, (n+2)/2b, n+3 are pairwise coprime,
for distinct a, b ∈ {0, 1} suitably chosen depending on the class of n modulo 4. Thus,

n(n+ 1)(n + 2)(n + 3)

2
=

n(n+ 1)(n + 2)(n + 3)

2a+b
| z(LnLn+1Ln+2Ln+3).

Therefore, we have

z(LnLn+1Ln+2Ln+3) ∈

{

n(n+ 1)(n + 2)(n + 3)

2
, n(n+ 1)(n + 2)(n + 3)

}

and it suffices to prove that

LnLn+1Ln+2Ln+3 - Fn(n+1)(n+2)(n+3)
2

, for all n ≥ 1. (3.3)

Since we are supposing that n is even, then 4 | n + δ, for some δ ∈ {0, 2}. Suppose, to
derive a contradiction, that (3.3) is false. Then Ln+δ | Fn(n+1)(n+2)(n+3)/2 and Lemma 2.1 (b)
implies that

n(n+ 1)(n + 2)(n + 3)

2(n+ δ)
=

(n+ 1)(n + 3)(n + δ + 2(−1)δ/2)

2

is even. However, this leads to an absurdity, because

ν2

(

n(n+ 1)(n + 2)(n + 3)

2(n + δ)

)

= ν2(n+ δ + 2(−1)δ/2)− 1 = 0,

where we used that n+ δ + 2(−1)δ/2 ≡ 2 (mod 4), since n+ δ ≡ 0 (mod 4).

Case 2: If n ≡ 0 (mod 3). As in previous items, we obtain that n+ε | z(LnLn+1Ln+2Ln+3).
Note that gcd(n, n+3) = 3 and if 9 | n, then gcd(n, (n+3)/3) = 1, while gcd(n/3, n+3) = 1
when 9 - n. In any case, for a suitable choice of a, b, c, d, e, f ∈ {0, 1}, where a 6= b and only
one among c, d, e, f is 1, we obtain that

n

2c3a
,
n+ 1

2d
,
n+ 2

2e
,
n+ 3

2f3b

are pairwise coprime. Here the sets {a, b} and {c, d, e, f} depend on the class of n modulo 4
and 9, respectively. Hence, we get

n(n+ 1)(n + 2)(n + 3)

6
=

n(n+ 1)(n + 2)(n + 3)

2c+d+e+f3a+b
| z(LnLn+1Ln+2Ln+3), (3.4)

since a+ b = c+ d+ e+ f = 1. Therefore, we deduce that

z(LnLn+1Ln+2Ln+3) ∈

{

n(n+ 1)(n + 2)(n + 3)

6
,
n(n+ 1)(n + 2)(n + 3)

3
, . . .

}

.

However, from (3.3), we obtain

z(LnLn+1Ln+2Ln+3) ∈

{

n(n+ 1)(n + 2)(n + 3)

3
,
2n(n+ 1)(n + 2)(n + 3)

3
, . . .

}

.
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Thus, it suffices to prove that LnLn+1Ln+2Ln+3 | Fn(n+1)(n+2)(n+3)/3 . We point out that
the tools applied before does not work in this case, mainly because gcd(Ln, Ln+3) = 2, for all
integers n ≡ 0 (mod 3). Hence, we shall prove that

νp(LnLn+1Ln+2Ln+3) ≤ νp

(

Fn(n+1)(n+2)(n+3)
3

)

, for all primes p and integers n.

Since 5 - Ln, we may suppose that p 6= 5.

• When p = 2, Lemma 2.4 yields that ν2(LnLn+1Ln+2Ln+3) ≤ 3. On the other hand,
n(n+ 1)(n + 2)(n + 3)/3 ≡ 0 (mod 24) (since 3 | n) and thus, by Lemma 2.3,

ν2

(

Fn(n+1)(n+2)(n+3)
3

)

= ν2

(

n(n+ 1)(n + 2)(n + 3)

3

)

+ 2 ≥ 5 > ν2(LnLn+1Ln+2Ln+3).

• When p 6= 2 and 5. First, note that only one among Ln, Ln+1, Ln+2, Ln+3 may be divisible
by p. In fact, on the contrary, there exist distinct ε1, ε2 ∈ {0, 1, 2, 3} such that

n+ ε1 ≡ n+ ε2 ≡
z(p)

2
(mod z(p)).

But this implies that z(p) | ε1− ε2 leading to an absurdity, because |ε1− ε2| ≤ 3 while z(p) ≥ 4
for all primes p > 2. Without loss of generality we can assume that p | Ln and thus, (by
Lemma 2.4)

νp(LnLn+1Ln+2Ln+3) = νp(n) + νp(Fz(p)). (3.5)

Also, n ≡ z(p)/2 (mod z(p)) implies that z(p) | 2n. Thus, z(p) | n(n + 1)(n + 2)(n + 3)/3,
because (n+ 1)(n + 2)(n + 3)/2 is even and therefore

νp

(

Fn(n+1)(n+2)(n+3)
3

)

= νp

(

n(n+ 1)(n + 2)(n + 3)

3

)

+ νp(Fz(p)). (3.6)

Now we combine (3.5) and (3.6) to obtain

νp

(

Fn(n+1)(n+2)(n+3)
3

)

− νp(LnLn+1Ln+2Ln+3) = νp(n+1) + νp(n+ 2) + νp(n+ 3)− νp(3) ≥ 0,

where we used that in the case of p = 3, νp(n+ 3) ≥ 1.
In conclusion, LnLn+1Ln+2Ln+3 | Fn(n+1)(n+2)(n+3)/3 and the proof is then complete. �
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