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Abstract. Let F(a, b) denote the set of all second-order recurrences w(a, b) satisfying the
recursion relation

wn+2 = awn+1 + bwn,

where the discriminant D = a2 + 4b and a, b, w0, and w1 are all integers. Let u(a, b) denote
the recurrence with initial terms u0 = 0 and u1 = 1. We say that the prime p is a divisor of
w(a, b) if p | wn for some integer n ≥ 0. Let z(p) denote the least positive integer n such that
un ≡ 0 (mod p). Then z(p) | p − (D/p), where (D/p) denotes the Legendre symbol. Define
the index i(p) as

i(p) =
p− (D/p)

z(p)
.

When i(p) = 1 or 2, we will find easy criteria to determine exactly when p is a divisor of
w(a, b) based on the residue class or quadratic character of w2

1 −aw1w0− bw2
0 modulo p. This

generalizes results of Vandervelde when a = b = 1.

1. Introduction

Let F(a, b) denote the set of all second-order recurrences w(a, b) satisfying the linear recur-
sion relation

wn+2 = awn+1 + bwn, (1.1)

with discriminant D = a2 +4b, where the parameters a and b and the initial terms w0 and w1

are all integers. We distinguish two particular recurrences, the Lucas sequence (u) = u(a, b),
and the companion Lucas sequence (v) = v(a, b) in F(a, b) which have initial terms u0 = 0,
u1 = 1 and v0 = 2, v1 = a, respectively. We say that the prime p is a divisor of w(a, b) if
p | wn for some n ≥ 0. In this paper, we will seek easy criteria to determine if p is a divisor of
the recurrence (1.1).

It is known that if p - b (see [3, pp. 344–345]), then w(a, b) is purely periodic modulo p.
For the Lucas sequence u(a, b) we define the function z(p) = z(a, b; p) to be the least positive
integer n such that un ≡ 0 (mod p). Since u(a, b) is purely periodic modulo p when p - b and
since u0 = 0, we see that z(a, b; p) always exists when p - b. We have the following theorem
concerning z(p).

Theorem 1.1. Let u(a, b) be a Lucas sequence and p be an odd prime such that p - b.

(i) un ≡ 0 (mod p) if and only if z(p) | n.
(ii) z(p) | p− (D/p), where (D/p) denotes the Legendre symbol and (D/p) = 0 when p | D.

(iii) If (D/p) = 0, then z(p) = p.
(iv) If p - D, then z(p) | (p− (D/p))/2 if and only if (−b/p) = 1.

Proof. Parts (i)–(iii) are proved in [6, pp. 422–424] and [1, pp. 314–317]. Part (iv) is proved
in [6, p. 441] and [1, pp. 318–320]. �
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By virtue of Theorem 1.1, given any recurrence w(a, b) in F(a, b), we can define the index
i(p) of the prime p to be

i(p) =
p− (D/p)

z(p)
.

Note that if p | D and p - b, then i(p) = 1. In the next section, given the recurrence
(w) = w(a, b), we will define the norm N(w) of (w) to be

w2
1 − aw1w0 − bw2

0. (1.2)

Proposition 1.2 and Theorems 1.3 and 1.4 below provide simple necessary and sufficient
conditions to determine when p is a divisor of the recurrence w(a, b) based solely on the initial
terms w0, w1, and parameters a, b. In particular, Theorems 1.3 and 1.4 will make use of
N(w) = w2

1 − aw1w0 − bw2
0.

Proposition 1.2, which is well-known and can be proved by inspection and the use of induc-
tion, treats the cases in which p | 2ab · gcd(w0, w1).

Proposition 1.2. Let w(a, b) be a recurrence and p be a prime.

(i) If p | gcd(w0, w1), then p is a divisor of (w) and p | wn for all n ≥ 0.
(ii) If p | gcd(a, b), then p is a divisor of (w) and p | wn for all n ≥ 2.
(iii) If p | b and p - a, then p is a divisor of (w) if and only if p | w0w1. If p | w1, then

p | wn for all n ≥ 1. If p | w0 and p - w1, then p - wn for n ≥ 1.
(iv) If p | a and p - b, then p is a divisor of (w) if and only if p | w0w1. If p | w0 and p - w1,

then p | wn if and only if n ≡ 0 (mod 2). If p | w1 and p - w0, then p | wn if and only

if n ≡ 1 (mod 2).
(v) If p = 2, then p is a divisor of (w) if and only if 2 | gcd(a, b) or 2 | w0w1 or 2 - ab.

From here on, we assume that p is an odd prime and p - b. When i(p) = 1 or 2, we can find
easy criteria to determine exactly when p is a divisor of the general recurrence w(a, b) based
on the residue class or quadratic character of N(w) modulo p. It was found by Backstrom [1,
p. 313] that i(p) = 1 or 2 for approximately 68% of the primes p < 5000. The next Theorem
1.3 was proved in [5, pp. 729–731] and [4, pp. 176–178]. Theorem 1.4 generalizes Theorem 5.1
of [11], which was proved for the case a = b = 1.

Theorem 1.3. Consider the set F(a, b). Suppose that i(p) = 1.

(i) If (D/p) = −1, then p is a divisor of all recurrences w(a, b) in F(a, b).
(ii) If (D/p) = 1 or 0, then p is a divisor of w(a, b) if and only if p | w0 or p - N(w).

Theorem 1.4. Consider the set F(a, b). Suppose that i(p) = 2. Then p is a divisor of w(a, b)
if and only if w0 ≡ w1 ≡ 0 (mod p) or (N(w)/p) = 1.

We will prove Theorem 1.4 in Section 3.

When w(a, b) is a recurrence for which i(p) > 2, we are unable to give an easy and general
test to determine exactly when p is a divisor of w(a, b) that is based on the residue class or
quadratic character of N(w) modulo p. However, when i(p) > 2 is even, we have the following
necessary condition to determine the divisibility of w(a, b) by p that is based on the value of
(N(w)/p) and is easy to apply. The proof of Theorem 1.5 will also be given in Section 3.

Theorem 1.5. Consider the set F(a, b). Suppose that i(p) > 2 is even. If p is a divisor of

w(a, b), then either w0 ≡ w1 ≡ 0 (mod p) or (N(w)/p) = 1.
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2. Preliminaries and Auxiliary Results

Given the recursion relation (1.1), we have the associated characteristic polynomial

f(x) = x2 − ax− b (2.1)

with characteristic roots α and β and discriminant D = a2 + 4b = (α − β)2. If bD 6= 0, then
we can express wn for n ≥ 0 in the form (see [5, p. 723])

wn =
Aαn −Bβn

α− β
, (2.2)

where A = w1 − w0β and B = w1 − w0α. In particular, for the Lucas sequence u(a, b), we
have the Binet formula

un =
αn − βn

α− β
.

We define N(w), the norm of the recurrence (w) = w(a, b) by

N(w) = AB = w2
1 − (α+ β)w1w0 + αβw2

0 = w2
1 − aw1w0 − bw2

0. (2.3)

The following lemma regarding N(w) is well-known (see for example [5, p. 723]). We give
a short and easy proof of this lemma.

Lemma 2.1. Consider the set F(a, b). Suppose that bD 6= 0 and that w′(a, b) is a translation

of w(a, b) by a fixed integer j, that is, w′

n = wn+j for all n. Then

N(w′) = (−b)jN(w). (2.4)

Proof. We note that

w′

n =
A′αn −B′βn

α− β
= wn+j =

Aαn+j −Bβn+j

α− β
.

Thus,
A′ = Aαj and B′ = Bβj .

Hence,
N(w′) = A′B′ = AB(αβ)j = (−b)jAB = (−b)jN(w).

�

The recurrence w(a, b) is said to be regular modulo p if

N(w) = w2
1 − aw1w0 − bw2

0 6≡ 0 (mod p).

Notice that u(a, b) is always regular modulo p, since

N(u) = u21 − au1u0 − bu20 = 12 − a · 1 · 0− b · 02 = 1. (2.5)

We note that the trivial recurrence w(a, b) for which w0 ≡ w1 ≡ 0 (mod p) is always
irregular modulo p. We note also that the recurrence w(a, b) is regular modulo p if and only if
it does not satisfy a recurrence relation of order less than two. We have the following theorem
regarding recurrences w(a, b) that are irregular modulo p.

Theorem 2.2. Consider the set F(a, b) of recurrences w(a, b) with characteristic roots α and

β. Suppose that w(a, b) is irregular modulo p. Then both α and β are in the field Zp of integers

modulo p, and (D/p) = 1 or 0. Moreover, the following hold:

(i) Either wn ≡ αnw0 (mod p) or wn ≡ βnw0 (mod p) for all n ≥ 0.
(ii) The prime p is a divisor of w(a, b) if and only if w0 ≡ 0 (mod p). In this case, (w) is

the trivial recurrence modulo p and wn ≡ 0 (mod p) for all n.
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This is proved in [2, pp. 694–695].

We now define an equivalence relation on F(a, b) modulo p. We say that w′(a, b) is equivalent
to w(a, b) modulo p if and only if w′(a, b) is a nonzero multiple of a translation of w(a, b) modulo
p, that is, w′

n ≡ Mwn+j (mod p) for all n, where M 6≡ 0 (mod p) is a fixed residue modulo p
and j is a fixed integer. It now follows easily from the definition of a regular recurrence and
from Lemma 2.1 that an equivalence class C in F(a, b) modulo p contains a regular recurrence
modulo p if and only if all recurrences in C are regular modulo p. We call an equivalence
class C in F(a, b) modulo p regular (irregular) modulo p if it contains a regular (irregular)
recurrence modulo p.

The following theorem proved in [2, p. 698] gives the number of regular and irregular
equivalence classes modulo p.

Theorem 2.3. Consider the set F(a, b).

(i) There exist exactly i(p) regular equivalence classes modulo p, each containing exactly

(p − 1)z(p) regular recurrences modulo p.
(ii) If (D/p) = −1, then there exists no nontrivial irregular equivalence class modulo p.
(iii) If (D/p) = 1, then there exist exactly two nontrivial irregular classes modulo p, each

containing p − 1 nontrivial irregular recurrences modulo p. One of these equivalence

classes contains the recurrence w(a, b) with initial terms w0 ≡ 1, w1 ≡ α (mod p), and
the other equivalence class contains the recurrence w′(a, b) with initial terms w′

0 ≡ 1,
w′

1 ≡ β (mod p).
(iv) If (D/p) = 0, then there exists exactly one nontrivial irregular equivalence class modulo

p, namely the equivalence class containing the recurrence with initial terms w0 ≡ 1,
w1 ≡ α (mod p). This equivalence class contains p− 1 nontrivial irregular recurrences

modulo p.
(v) There exists exactly one trivial equivalence class modulo p containing the unique re-

currence with initial terms w0 ≡ w1 ≡ 0 (mod p).

The next lemma shows that there is only one equivalence class in F(a, b) consisting of
recurrences that are regular modulo p and have p as a divisor.

Lemma 2.4. Consider the set F(a, b). Then the recurrence w(a, b) has p as a divisor if and

only if it is the trivial recurrence modulo p or it is regular modulo p and is equivalent to u(a, b)
modulo p.

Proof. By Theorem 2.2, an irregular recurrence w(a, b) modulo p has p as a divisor if and only
if it is the trivial recurrence modulo p. Suppose that w(a, b) is regular modulo p and has p as
a divisor. Then wi ≡ 0 (mod p) for some i. If wi+1 ≡ 0 (mod p) also, then by the recursion
relation (1.1) defining (w) and by the fact that b is invertible modulo p, it follows that wn ≡ 0
(mod p) for all n, and thus (w) is the irregular trivial recurrence modulo p. Hence, wi+1 6≡ 0
(mod p). It therefore follows that

wn ≡ wi+1un−i (mod p) for all n,

and hence w(a, b) is equivalent to u(a, b) modulo p. �

Corollary 2.5 below follows immediately from Theorem 2.3 and Lemma 2.4.

Corollary 2.5. Consider the set F(a, b). Then exactly 1
i(p) of the recurrences w(a, b) which

are regular modulo p have p as a divisor.
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The following theorem due to Catlin [4, p. 176] (see also [5, p. 729]) gives a test for p to be
a divisor of the regular recurrence w(a, b) modulo p.

Theorem 2.6. The prime p is a divisor of the regular recurrence w(a, b) modulo p if and only

if w0 ≡ 0 (mod p) or w1w
−1
0 ≡ ur+1u

−1
r for some r such that 1 ≤ r ≤ z(p)− 1.

Unfortunately, the test given in Theorem 2.6 is not quick to apply when p and z(p) are both
large. As stated earlier, when i(p) = 1 or 2, Theorems 1.3 and 1.4 give fast and easy tests to
determine divisibility of w(a, b) by p.

Suppose that p is a prime for which z(a, b; p) is even and (−b/p) = 1. In this case we specify
a third recurrence t(a, b) in the set F(a, b), in addition to the recurrences u(a, b) and v(a, b),
with initial terms t0 = 1 and t1 = b′, where (b′)2 ≡ −b (mod p) and 1 ≤ b′ ≤ (p − 1)/2. If
p - D, then we claim that both v(a, b) and t(a, b) are regular modulo p. We observe that

N(v) = v21 − av1v0 − bv20 = a2 − (a)(a)(2) − b(2)2 = −(a2 + 4b) = −D 6≡ 0 (mod p), (2.6)

and v(a, b) is regular modulo p.
Next we note that

N(t) = t21 − at1t0 − bt20 = (b′)2 − a(b′)(1)− b(1)2 ≡ b′(2b′ − a) (mod p). (2.7)

We now notice that

[b′(2b′ − a)][b′(2b′ + a)] = (b′)2(4(b′)2 − a2) ≡ (−b)(−4b− a2) ≡ bD (mod p). (2.8)

Since bD 6≡ 0 (mod p), we see by (2.7) and (2.8) that t(a, b) is also regular modulo p. It follows
from the results in [10, pp. 534–535] that v(a, b) and t(a, b) belong to distinct equivalence classes
modulo p when t(a, b) is defined.

Lemma 2.7. Consider the set F(a, b). Let p be a prime such that p - D. Consider the

recurrences v(a, b) and t(a, b) in F(a, b).

(i) If z(p) is odd, then v(a, b) does not have p as a divisor.

(ii) If z(p) is even and (−b/p) = 1, then t(a, b) is defined and does not have p as a divisor.

Proof. It was proved in [10, pp. 534–536] that v(a, b) is not equivalent to u(a, b) modulo p when
z(p) is odd and t(a, b) is not equivalent to u(a, b) modulo p when z(p) is even and (−b/p) = 1.
By (2.6), (2.7), and (2.8), both v(a, b) and t(a, b) are regular modulo p. It now follows from
Lemma 2.4 that neither v(a, b) nor t(a, b) has p as a divisor. �

Lemma 2.8. Consider the set F(a, b).

(i) Suppose that p | D or i(p) is even. If w′(a, b) is equivalent to w(a, b) modulo p, then
(N(w′)/p) = (N(w)/p).

(ii) If i(p) is odd, p - D, and w(a, b) is a regular recurrence modulo p, then there exists a

recurrence w′(a, b) such that w′(a, b) is equivalent to w(a, b) modulo p and (N(w′)/p) =
−(N(w)/p).

Proof.

(i) First suppose that p | D. Then a2 + 4b ≡ 0 (mod p), which implies that

a2 ≡ 4(−b) (mod p).

Since (4/p) = 1 and p - b, we have that (−b/p) = 1. Now suppose that i(p) is even.
Then p - D, since i(p) = 1 if p | D. It follows from Theorem 1.1 (i) and (iv) that

FEBRUARY 2013 7



THE FIBONACCI QUARTERLY

(−b/p) = 1 in this case also. Suppose that w′(a, b) is equivalent to w(a, b) modulo p.
Then there exist a fixed nonzero residue M modulo p and fixed integer j such that

w′

n ≡ Mwn+j (mod p)

for all n. Let w∗(a, b) be the recurrence such that w∗

n = wn+j for all n. Then by
Lemma 2.1,

N(w′) ≡ M2(w2
j+1 − awj+1wj − bw2

j ) ≡ M2N(w∗) ≡ M2(−b)jN(w) (mod p). (2.9)

Since (−b/p) = 1 and M 6≡ 0 (mod p), it follows from (2.9) that (N(w′)/p) =
(N(w)/p).

(ii) Now suppose that 2 - i(p) and p - D. Then (−b/p) = −1 by Theorem 1.1 (i) and (iv).
Let w(a, b) be a regular recurrence modulo p and define w′(a, b) by w′

n = wn+1 for all
n. Then w′(a, b) is equivalent to w(a, b) modulo p. By Lemma 2.1, we see that

N(w′) = −bN(w).

Hence, (N(w′)/p) = −(N(w)/p).

�

The proof of Lemma 2.8(i) generalizes an argument given in [8, p. 276] for the case in which
b = 1.

Lemma 2.9. Let

F (x, y) = Rx2 + Sxy + Ty2

be a binary quadratic form with discriminant D = S2 − 4RT , where R,S, and T are integers.

Assume that p - D. Then, given any integer m there exist integers x0, y0 such that F (x0, y0) ≡
m (mod p).

Proof. First suppose that R ≡ T ≡ 0 (mod p). Then S 6≡ 0 (mod p), since D 6≡ 0 (mod p).
Let x0 ≡ S−1m and y0 ≡ 1 (mod p). Then

F (x0, y0) ≡ Sx0y0 ≡ m (mod p).

We now assume that R 6≡ 0 (mod p) or T 6≡ 0 (mod p). Without loss of generality, we can
assume that R 6≡ 0 (mod p). By completing the square, we obtain (see [9, p. 151])

4RF (x, y) = X2 −Dy2 = G(X,Y ), (2.10)

where X = 2Rx+ Sy, Y = y. Note that
(

X
Y

)

=

(

2R S
0 1

)(

x
y

)

=: U

(

x
y

)

. (2.11)

Since det(U) = 2R, we see that the upper triangular matrix U is invertible over Zp. Thus,
as (x, y) takes on all values in Zp × Zp, so does the set of ordered pairs (X,Y ). Moreover,
since 4R is also invertible modulo p, we see from (2.10) that F (x, y) attains all values modulo
p if and only if G(X,Y ) does also.

Let m0 be an arbitrary integer. It suffices to show that there exist X0, Y0 such that
G(X0, Y0) ≡ m0 (mod p). We now observe that there are (p + 1)/2 distinct values of X2

modulo p (including 0). There are also (p+1)/2 distinct values of m0+DY 2 (mod p). Hence,
by the pigeonhole principle, there exist residues X0, Y0 modulo p such that

X2
0 ≡ m0 +DY 2

0 (mod p).
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Thus,

G(X0, Y0) = X2
0 −DY 2

0 ≡ m0 (mod p).

�

We need the following technical lemma.

Lemma 2.10. Let a2+4 be a prime, where a is a positive odd integer. Consider the quadratic

algebraic number field Q(
√
a2 + 4). Then its fundamental unit is

ε =
a+

√
a2 + 4

2
.

Suppose that p ≡ 1 (mod 8) and (a2 + 4/p) = 1. Then (−1/p) = 1 and both i =
√
−1 and√

a2 + 4 can be considered elements of Zp. Moreover, (ε/p) = (−2− ai/p).

Proof. Since the Pell equation

x2 − (a2 + 4)y2 = −4

has the solution x = a and y = 1, it is clear that

ε =
a+

√
a2 + 4

2
.

It was proved in [7, pp. 44–45] that

(ε/p) = (a+ 2i/p).

We note that (i/p) = 1, since p ≡ 1 (mod 8). Then

(ε/p) = (a+ 2i/p) = (i/p)(a + 2i/p) = (−2 + ai/p).

Moreover,

(−2 + ai/p)(−2− ai/p) = (a2 + 4/p) = 1.

Hence,

(−2 + ai/p) = (−2− ai/p) = (ε/p).

�

3. Proofs of the Main Theorems

To illustrate the idea of equivalence modulo p, we give a proof of Theorem 1.3.

Proof of Theorem 1.3. First suppose that w(a, b) is irregular modulo p. If (w) is the trivial
recurrence modulo p, then clearly p is a divisor of (w). By Theorem 2.2 (ii), an irregular
recurrence (w) is the trivial recurrence modulo p if and only if w0 ≡ 0 (mod p). By Theorem
2.2 (i), if (w) is not the trivial recurrence modulo p, then p is not a divisor of (w).

Now suppose that (w) is regular modulo p. Since i(p) = 1, we see by Theorem 2.3 (i) that
there is only one regular equivalence class modulo p. Since u(a, b) is regular modulo p by (2.5),
it follows that (w) is equivalent to (u) modulo p. Hence, p is a divisor of (w) by Lemma 2.4.
If (D/p) = −1, then there are no nontrivial irregular recurrences modulo p by Theorem 2.3
(ii). Parts (i) and (ii) of Theorem 1.3 now follow. �

Proof of Theorem 1.4. We first note that p - D, since i(p) = 1 if p | D by Theorem 1.1 (iii).
By Lemma 2.4, p is a divisor of w(a, b) if and only if (w) is the trivial recurrence modulo p
or w(a, b) is regular modulo p and is in the same equivalence class as u(a, b) modulo p. By
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Lemma 2.8 (i) and (2.5), if the regular recurrence w(a, b) is equivalent to u(a, b) modulo p and
thus has p as a divisor, then

(N(w)/p) = (N(u)/p) = (1/p) = 1.

Consider the binary quadratic form

F (x, y) = x2 − axy − by2.

Notice that for F (x, y), the discriminant D = a2 + 4b 6≡ 0 (mod p). Let d be a quadratic
nonresidue modulo p. By Lemma 2.9, there exist integers w0, w1 such that if w(a, b) has initial
terms w0, w1, then

F (w1, w0) = w2
1 − aw1w0 − bw2

0 = N(w) ≡ d (mod p),

and hence,

(N(w)/p) = (d/p) = −1.

Therefore, w(a, b) is regular modulo p, but is not equivalent to u(a, b) modulo p, and conse-
quently does not have p as a divisor. Since i(p) = 2 and thus F(a, b) has only two equivalence
classes of regular recurrences modulo p, it follows that p is a divisor of the regular recurrence
(w) if and only if (N(w)/p) = 1. �

Proof of Theorem 1.5. Since i(p) > 2, it follows from Theorem 1.1 (iii) that p - D. We now see
by Lemma 2.4 that p is a divisor of w(a, b) if and only if (w) is the trivial recurrence modulo
p or (w) is regular modulo p and equivalent to u(a, b) modulo p. It now follows from (2.5) and
Lemma 2.8 (i) that if the regular recurrence w(a, b) is equivalent to u(a, b) modulo p, then

(N(w)/p) = (N(u)/p) = 1.

�

Remark 3.1. We note by the argument given in the proof of Theorem 1.4 that if i(p) > 2 is
even, then there indeed exists a regular recurrence w(a, b) modulo p for which (N(w)/p) = −1.
For this recurrence, the test presented in Theorem 1.5 successfully determines that p is not a
divisor of w(a, b).

In Example 3.2, Proposition 3.3, and Example 3.4, we will use the explicit recurrences v(a, b)
and t(a, b) to show that the necessary condition given in Theorem 1.5 is not sufficient.

Example 3.2. Consider the companion Lucas sequence v(a, b) and suppose that p - D, 4 | i(p),
and z(p) is odd. By (2.6) and Lemma 2.7(i), v(a, b) is regular modulo p and p is not a divisor
of (v). We will show however that (N(w)/p) = 1.

Note that

N(v) = v21 − av1v0 − bv20 = a2 − (a)(a)(2) − b(22) = −a2 − 4b = −D.

First suppose that p ≡ 1 (mod 4). Since 4 | i(p), it follows that (D/p) = 1. Hence,

(N(v)/p) = (−D/p) = (−1/p)(D/p) = 1 · 1 = 1.

Now suppose that p = 3 (mod 4). Noting that 4 | i(p), we see that (D/p) = −1. Then

(N(v)/p) = (−D/p) = (−1/p)(D/p) = (−1)(−1) = 1.

For the companion Lucas sequence v(1,−2), we have D = −7 and observe that z(p) = 17
and i(p) = 16 when p = 271. Further, z(p) = 19 and i(p) = 24 when p = 457. Then

(N(v)/271) = (7/271) = −(271/7) = −(5/7) = 1
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and

(N(v)/457) = (7/457) = (457/7) = (2/7) = 1.

Proposition 3.3. Consider the set of recurrences F(a, 1), where D = a2 + 4 is a prime. Let

p be a prime such that p ≡ 1 (mod 4), 4 | i(p), and z(p) is even. Then the recurrence t(a, 1)
is defined. Moreover, t(a, 1) is regular modulo p and p is not a divisor of t(a, 1). Furthermore,

(D/p) = (N(t)/p) = 1.

Proof. Since p ≡ 1 (mod 4), we have (−1/p) = 1. It now follows that t(a, 1) is defined, since
z(p) is even. By (2.7), (2.8), and Lemma 2.7 (ii), t(a, 1) is regular modulo p and p is not a
divisor of t(a, 1).

Since p ≡ 1 (mod 4), 4 | i(p), and z(p) is even, we see that (D/p) = 1 and p ≡ 1 (mod 8).

Thus, we can consider i =
√
−1 and both α = (a +

√
D)/2 and β = (a−

√
D)/2 to be in Zp.

We note that

N(t) = t21 − at1t0 − t20 = i2 − a(i)(1) − 12 = −2− ai.

By Lemma 2.10,

(α/p) =
(a+

√
a2 + 4

2

/

p
)

= (−2− ai/p).

Thus, we will have (N(t)/p) = 1 if we can show that (α/p) = 1.
Let k = z(p). Then

uk ≡ 0 ≡ αk − βk

√
D

(mod p).

Noting that p - D and αβ = −1, we see that

0 ≡
(

α
β

)k − 1
√
D/βk

≡ (−α2)k − 1 (mod p).

As k is even, we find that

(−α2)k ≡ (−1)kα2k ≡ α2k ≡ 1 (mod p). (3.1)

Since 4 | i(p) and (D/p) = 1, we have k | (p − 1)/4. Let km = (p− 1)/4. Then by (3.1),

α(p−1)/2 = (α2k)m ≡ 1m ≡ 1 (mod p).

Hence, (α/p) = 1 and thus, (N(t)/p) = 1. �

Example 3.4. We observe in particular that for a ≡ 1 (mod 2) and 1 ≤ a < 40, a2 + 4 is
prime for a = 1, 3, 5, 7, 13, 15, 17, 27, 33, 35, and 37.

We now give an example in which a = 3, b = 1, and D = a2 + 4 = 13. Consider the prime
433. We note that 433 ≡ 1 (mod 4) and

(13/433) = (433/13) = (4/13) = 1.

We further observe that z(433) = 18 and i(433) = 24. We now consider the recurrence t(3, 1)
modulo 433. By Lemma 2.7 (ii), 433 is not a divisor of t(3, 1). However, by the law of quadratic
reciprocity,

(N(t)

433

)

=
(−2− 3i

433

)

=
(−2− 3 · 179

433

)

=
(−539

433

)

=
(−106

433

)

=
(−1

433

)( 2

433

)( 53

433

)

= 1 · 1 ·
(433

53

)

=
( 9

53

)

= 1.
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4. Concluding Remarks

In Theorem 2.6, we gave a necessary and sufficient test to determine if p is a divisor of the
recurrence w(a, b). However, this was not a quick test if both p and z(p) are large. In the
special cases in which i(p) = 1 or 2, Theorems 1.3 and 1.4 indeed provided easy criteria to
tell whether p is a divisor of w(a, b) or not. When i(p) > 2 is even, Theorem 1.5 also gave an
easy necessary but not sufficient test to determine if p is a divisor of w(a, b), namely if p is a
divisor of w(a, b), then either w0 ≡ w1 ≡ 0 (mod p) or (N(w)/p) = 1.

When i(p) is odd and i(p) > 1, we were unable to find even a quick and general necessary
test to determine if p is a divisor of w(a, b) based on either the residue class or quadratic
character of N(w) modulo p. The reason is that when i(p) ≥ 3 is odd, there are i(p) − 1
regular equivalence classes modulo p in F(a, b) not having p as a divisor and also that for
any regular equivalence class modulo p, there are recurrences w(a, b) and w′(a, b) for which
(N(w)/p) 6= (N(w′)/p).
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