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Abstract. Using Pell equations and known solutions that involve Lucas sequences, we find
all solutions of the reciprocal pair of quadratic congruences p2 ≡ ±1 (mod q), q2 ≡ ±1
(mod p) for odd primes p, q. In particular, we show that there is exactly one solution (p, q) =
(3, 5) when the right-hand sides are −1 and 1. When the right-hand sides are both −1, there
are four known solutions, all of them pairs of Fibonacci primes, and when the right-hand sides
are both 1, there are no solutions. By partly different methods we completely characterize the
solutions of p2 ≡ ±N (mod q), q2 ≡ ±N (mod p) for N = 2 and 4, and give partial results
for N = 3 and 5. In the process we indicate how the general case can be treated.

1. Introduction

In the process of studying certain congruences for sums of reciprocals of integers and their
squares [2], we came across the pair of quadratic congruences

p2 ≡ −1 (mod q), q2 ≡ 1 (mod p), (1.1)

where p and q are odd primes. In particular, we needed to know whether, apart from the obvi-
ous solution (p, q) = (3, 5), there are any other prime solutions to this system of congruences.
We consider this question of independent interest, and it is one of the purposes of this paper
to solve a more general pair of congruences.

Theorem 1. For δ = ±1 and ε = ±1, consider the pair of congruences
{

p2 ≡ δ (mod q),

q2 ≡ ε (mod p),
(1.2)

in odd primes p and q. We have the following cases.

(a) If δ = ε = 1, then (1.2) has no solution.

(b) If δ = −1, ε = 1, then (p, q) = (3, 5) is the only solution of (1.2).
(c) If δ = ε = −1, then the only solutions of (1.2) are (p, q) = (Fn, Fn+2), n = 1, 2, . . .,

provided both Fibonacci numbers Fn, Fn+2 are prime.

In connection with part (c) we note that computational results on the primality of Fibonacci
numbers are known; see [3] or [12, p. 258]. Based on the information in this last reference,
the only pairs of Fibonacci primes up to n = 2253 000 occur when n = 5, 11, 431, and 569.
The first two correspond to the solutions (p, q) = (5, 13) and (p, q) = (89, 233), while the third
pair has 90 and 91 decimal digits, and the members of the fourth pair both have 119 digits.
If there are further solutions, then both primes will have more than 470 849 digits.
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The proof of Theorem 1 and all subsequent theorems is based on writing the pair of con-
gruences in question as a special class of Pell equations. This is done in Section 2, where we
also quote numerous explicit results on Pell equations, as well as properties of Lucas sequences
that will be required. The proof of Theorem 1 is then given in Section 3. In Section 4 we prove
the analogous result in the case where the right-hand sides of the congruences (1.2) are ±N
with N = 4, and in Section 5 we do the same for N = 2, using a different method. Finally,
in Section 6, we give partial results for the cases N = 5 and N = 3. We close the paper with
some remarks on further generalizations.

2. Pell Equations and Lucas Sequences

The main idea in the proof of Theorem 1 and of all the subsequent theorems is an easy
transformation of the given pairs of quadratic congruences into a single Pell-type equation.
We begin with a more general pair than (1.2), namely

p2 ≡ δN (mod q), q2 ≡ εN (mod p), (2.1)

with δ, ε ∈ {−1, 1} and N a fixed positive integer. The problem now is to find solutions to
(2.1) in odd primes p, q with gcd(pq,N) = 1. We multiply the two congruences and obtain

(p2 − δN)(q2 − εN) ≡ 0 (mod pq).

If we expand the left-hand side and divide by −δN , we get q2 + δεp2 − εN ≡ 0 (mod pq), or

q2 + δεp2 = εN + kpq, (2.2)

for some integer k. Since p and q are assumed to be odd, we see that k must have the same
parity as N . Multiplying both sides of (2.2) by 4 and completing the square, we get

(2q − kp)2 − (k2 − 4δε)p2 = 4εN. (2.3)

When N is even then k is even, say k = 2k̃, and (2.3) reduces to

(q − k̃p)2 − (k̃2 − δε)p2 = εN. (2.4)

It is well-known that the solutions of such Pell-type equations are closely related to second-
order linear recurrences; see, e.g., [9, p. 351 ff.]. In the case of Theorem 1 and of Theorem 2
below, the Lucas sequences {Un(P,Q)}, {Vn(P,Q)} are particularly important. For integer
parameters P and Q, these pairs of sequences are defined by

U0(P,Q) = 0, U1(P,Q) = 1, V0(P,Q) = 2, V1(P,Q) = P, (2.5)

and for n ≥ 2,

Un(P,Q) = P · Un−1(P,Q)−Q · Un−2(P,Q), (2.6)

Vn(P,Q) = P · Vn−1(P,Q)−Q · Vn−2(P,Q). (2.7)

In particular, we see that for all n ≥ 0 we have

Un(1,−1) = Fn, Vn(1,−1) = Ln, (2.8)
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the nth Fibonacci and Lucas numbers, respectively. Among the numerous properties satisfied
by these sequences we require the “Binet formulas”

Un(P,Q) =
1√
D

((

P +
√
D

2

)n

−
(

P −
√
D

2

)n)

, (2.9)

Vn(P,Q) =

(

P +
√
D

2

)n

+

(

P −
√
D

2

)n

, (2.10)

where D := P 2 − 4Q, and the identity

Un+m(P,Q) =
1

2

(

Un(P,Q)Vm(P,Q) + Um(P,Q)Vn(P,Q)
)

(2.11)

(see, e.g., [7] or [6]). More specifically, we will need the following three well-known identities
which are special cases for m = 1, 2, and n, respectively:

Un+1(P,Q) =
1

2

(

P · Un(P,Q) + Vn(P,Q)
)

, (2.12)

Un+2(P,Q) =
1

2

(

(P 2 − 2Q) · Un(P,Q) + P · Vn(P,Q)
)

, (2.13)

U2n(P,Q) = Un(P,Q) · Vn(P,Q). (2.14)

Here we have used (2.5)–(2.7) to obtain (2.12) and (2.13). We also require the well-known fact
that the Lucas sequences {Un(P,Q)} are divisibility sequences, that is,

n | m ⇒ Un(P,Q) | Um(P,Q); (2.15)

see, e.g., [7] or [6]. Finally, later in this paper we require the following identity for Vn(P,Q):

Vn+m(P,Q) = Vn(P,Q)Vm(P,Q)−QmVn−m(P,Q). (2.16)

This last identity and (2.11) follow easily from the Binet-type formulas (2.9) and (2.10).
The point of introducing the Lucas sequences in such detail is that they serve as specific

solutions for certain classes of Pell equations, as summarized in Table 1.

Equation Restriction X Y
(2.17) X2 − (a2 − 4)Y 2 = −4 a ≥ 4 – –
(2.18) X2 − (a2 + 4)Y 2 = −4 a ≥ 1 V2j+1(a,−1) U2j+1(a,−1)
(2.19) X2 − (a2 + 4)Y 2 = 4 a ≥ 1 V2j(a,−1) U2j(a,−1)
(2.20) X2 − (a2 − 1)Y 2 = −4 a ≥ 2, a 6= 3 – –
(2.21) X2 − (a2 + 1)Y 2 = −4 a ≥ 1, a 6= 2 V2j+1(2a,−1) 2U2j+1(2a,−1)
(2.22) X2 − (a2 + 1)Y 2 = 4 a ≥ 1, a 6= 2 V2j(2a,−1) 2U2j(2a,−1)

(2.23) X2 − (a2 + 1)Y 2 = −1 a ≥ 1 1
2V2j+1(2a,−1) U2j+1(2a,−1)

(2.24) X2 − (a2 − 4)Y 2 = 1 a ≥ 3 odd 1
2V3j(a, 1)

1
2U3j(a, 1)

Table 1: Solutions (X,Y ) of certain Pell equations, j = 0, 1, 2, . . . [5].

Rows (2.17) and (2.20) in this table indicate that there are no solutions in these cases. The
table summarizes Corollaries 2.6, 2.8, 2.9, Theorems 5.4–5.6, Theorem 4.4, and Theorem 3.5
in [5].
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3. Proof of Theorem 1

While the proof of part (a) is very easy and elementary, the results quoted in Section 2 will
be needed for parts (b) and (c).

(a) The congruence p2 ≡ 1 (mod q) would imply q | (p − 1)(p + 1), and so q | p − 1 or
q | p+1, giving q < p (since p and q are odd). Similarly, the second congruence gives p < q, a
contradiction.

(b) With δ = −1 and ε = 1, (2.3) becomes

(2q − kp)2 − (k2 + 4)p2 = 4. (3.1)

As already noted in the proof of part (a), the congruence q2 ≡ 1 (mod p) implies p < q, and
from (2.2) it follows that k ≥ 1. Equation (3.1) is an equation of the form (2.19) with a = k,
with solutions p = U2j(k,−1) and 2q − kp = V2j(k,−1), i.e., by (2.12) we have

q =
1

2
(kU2j(k,−1) + V2j(k,−1)) = U2j+1(k,−1). (3.2)

Hence the solutions of (3.1) are

p = U2j(k,−1), q = U2j+1(k,−1), j = 0, 1, 2, . . . . (3.3)

By (2.15), p is composite unless U2(k,−1) = 1. But this happens only when k = 1, i.e., in
the case of the Fibonacci sequence. And indeed, we have U4(1,−1) = F4 = 3. By (2.6) it
is clear that Un(k,−1) > 1 for all n ≥ 3 and all k ≥ 1. Finally, with (2.14) we see that for
j ≥ 3, U2j(k,−1) is composite since both factors on the right of (2.14) are greater than 1 for
P = k ≥ 1 and Q = −1.

In summary, p = U2j(k,−1) is prime only when j = 2 and k = 1. Since then q =
U2j+1(k,−1) = U5(1,−1) = F5 = 5 is also prime, this gives the solution (p, q) = (3, 5).
To check the cases j = 0, 1, we note that U0(k,−1) = 0, U1(k,−1) = 1, U2(k,−1) = k, and
U3(k,−1) = k2+1, which is even since k is odd. Hence these small cases do not give solutions
in odd primes. This completes the proof of (b).

(c) If δ = ε = −1, then once again from (2.2) it follows that k ≥ 1, and by the theory of
quadratic residues the two congruences in (1.2) imply p ≡ q ≡ 1 (mod 4). This, with (2.2),
implies k ≡ 3 (mod 4). Now (2.3) becomes

(2q − kp)2 − (k2 − 4)p2 = −4. (3.4)

For k ≥ 4 this is equation (2.17) which has no solutions. This leaves the case k = 3, which
gives

(2q − 3p)2 − 5p2 = −4. (3.5)

But this is equation (2.18) with a = 1, and Table 1 gives the solutions 2q− 3p = V2j+1(1,−1),
p = U2j+1(1,−1), j = 0, 1, 2, . . .. Now we use (2.13) with P = 1, Q = −1, to get

q =
1

2
(3U2j+1(1,−1) + V2j+1(1,−1)) = U2j+3(1,−1),

and so with (2.8) we see that the solutions of (3.5) are the Fibonacci numbers p = F2j+1,
q = F2j+3, which completes the proof of (c).

MAY 2013 101



THE FIBONACCI QUARTERLY

4. The Case N = 4

The caseN = 4 in the pair of congruences (2.5) can be treated in a similar way as Theorem 1.
We begin by stating the corresponding result.

Theorem 2. For δ = ±1 and ε = ±1, consider the pair of congruences
{

p2 ≡ 4δ (mod q),

q2 ≡ 4ε (mod p),
(4.1)

in odd primes p and q. We have the following cases.

(a) If δ = ε = 1, then (p, q) is a solution of (4.1) if and only if it is a pair of odd twin

primes.

(b) If δ = −1, ε = 1, then (p, q) = (3, 13) is the only solution of (4.1).
(c) If δ = ε = −1, then the only solutions of (4.1) are (p, q) = (Pn, Pn+2), n = 1, 2, . . .,

provided both Pell numbers Pn, Pn+2 are prime.

The well-known sequence of Pell numbers {Pn} is defined by P0 = 0, P1 = 1, and

Pn+1 = 2Pn + Pn−1 (n ≥ 1).

This sequence is also a special case of the Lucas sequence (2.6), with Pn = Un(2,−1), and is
therefore a divisibility sequence. This means that, as in the case of Fibonacci numbers, Pn

cannot be a prime unless n is also a prime. The only known (probable) prime Pell numbers
have index 2, 3, 5, 11, 13, 29, 41, 53, 59, 89, 97, 101, 167, 181, 191, 523, 929, 1217, 1301, 1361,
2087, 2273, 2393, 8093, 13339, 14033, 23747, 28183, 34429, 36749, 90197, with no others less
than 188 856 (see [14]). Accordingly, the only known solutions of part (c) in the Theorem are

(P3, P5) = (5, 29) and (P11, P13) = (5 741, 33 461).

For further properties of the Pell numbers, with references, see [10, A000129].

Proof of Theorem 2. (a) We proceed as in the proof of Theorem 1(a). The congruence p2 ≡ 4
(mod q) implies q | p − 2 or q | p + 2, giving q ≤ p + 2. By symmetry p ≤ q + 2, and thus
q − 2 ≤ p ≤ q + 2. This means that either p = q − 2 or p = q + 2, i.e., (p, q) is a pair of twin
primes.

For the remaining two cases we consider (2.2) with N = 4. Taking both sides modulo 4, we
see that

− if δε = −1, then k ≡ 0 (mod 4), and k̃ is even;

− if δε = 1, then k ≡ 2 (mod 4), and k̃ is odd.
(b) Considering (2.4) with δε = −1, we see that (2.21) and (2.22) in Table 1 apply, and that

for k̃ 6= 2, Y = p would be even which has to be excluded since p is an odd prime. This leaves
the case k̃ = 2, and with (2.4) we get

(q − 2p)2 − 5p2 = 4ε. (4.2)

When ε = 1, (2.19) in Table 1 gives p = U2j(1,−1) = F2j , but we have seen in the proof
of Theorem 1(b) that this is prime only when 2j = 4, with F4 = 3. Then, with (q − 2p) =
V2j(1,−1) = L2j , we would get q = L4 + 2F4 = 7 + 2 · 3 = 13. Hence, (p, q) = (3, 13) is the
only solution in this case.

To conclude the proof of part (b), we note that when ε = −1 in (4.2), we have the situation
of (2.18) in Table 1, which gives p = F2j+1 and q − 2p = L2j+1, j = 0, 1, 2, . . .. Hence,

102 VOLUME 51, NUMBER 2



PAIRS OF RECIPROCAL QUADRATIC CONGRUENCES INVOLVING PRIMES

q = L2j+1 + 2F2j+1, an expression that can be simplified. Indeed, by (2.15) we have 2Fn+2 =
3Fn + Ln, and thus, for n ≥ 0,

Ln + 2Fn = 2Fn+2 − Fn = (Fn+3 − Fn+1) + Fn+2 − Fn = Fn+3,

and therefore q = F2j+4. As we have seen, for j ≥ 1 this is never prime. For j = 0 we have
p = F1 = 1, which is not prime. Therefore in this case there is no solution, and part (b) is
complete.

(c) When δ = ε = −1, then (2.4) leads to

(q − k̃p)2 − (k̃2 − 1)p2 = −4, (4.3)

and by row (2.20) in Table 1, recalling that k̃ is odd, we see that (4.3) has no solution unless

possibly for k̃ = 1 or 3. When k̃ = 1, (4.3) clearly has no solution, while k̃ = 3 leads to
(

q − 3p

2

)2

− 2p2 = −1.

This is covered by (2.23) in Table 1, with a = 1, which gives p = U2j+1(2,−1) and q − 3p =
V2j+1(2,−1). Then

q = 3U2j+1(2,−1) + V2j+1(2,−1) = U2j+3(2,−1),

which follows immediately from (2.13). This proves part (c), and the proof of Theorem 2 is
complete. �

5. The Case N = 2

A result similar to Theorems 1 and 2 can be obtained in the case where N = 2 in (2.1). It
turns out that in this case the explicit results in [5] no longer apply, and therefore we begin by
briefly recalling some fundamentals of the well-known connections between Pell equations and
continued fractions. For further details with proofs, see [4] or [11], or see [13] for a summary.

Let D be a non-square positive integer. Then the simple continued fraction expansion of√
D becomes periodic after the first term, and has the form

√
D = [a0, a1, . . . , ar, 2a0]. (5.1)

In general, given the continued fraction [b0, b1, b2, . . .], we define the sequences {Pn}, {Qn} by

P0 = 0, P1 = b0, Q0 = 1, Q1 = D − b20, (5.2)

Pn = bn−1Qn−1 + Pn−1, Qn =
D − P 2

n

Qn−1
. (5.3)

The main connection to Pell-type equations is now as follows.

Lemma 1. Let D > 1 be a non-square integer. Then the equation

x2 −Dy2 = C,

with |C| <
√
D, has solutions if and only if C is one of the integers (−1)kQk for some

1 ≤ k ≤ r, where r is as in (5.1), and Qk is as in (5.2), computed with bj = aj , j = 0, 1, . . . , r.

To state the desired analogue to Theorems 1 and 2, we need to introduce two second-order
recurrence sequences. Let

R0 = 1, R1 = 1, Rn = 2Rn−1 +Rn−2 (n ≥ 2); (5.4)

S0 = 1, S1 = 1, Sn = 4Sn−1 − Sn−2 (n ≥ 2). (5.5)
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These are sequences A001333 and A001835, respectively, in [10]. Although they are of the
form (2.6), (2.7), they are not Lucas sequences since (2.5) is not satisfied.

Theorem 3. For δ = ±1 and ε = ±1, consider the pair of congruences
{

p2 ≡ 2δ (mod q),

q2 ≡ 2ε (mod p),
(5.6)

in odd primes p and q. We have the following cases.

(a) If δ = ε = 1, then (5.6) has no solution.

(b) If δ = −1, ε = 1, then (p, q) = (R2n±1, R2n), n = 1, 2, . . ., are the only solutions of

(5.6), provided that both R2n−1, R2n or R2n+1, R2n are prime.

(c) If δ = ε = −1, then the only solutions of (5.6) are (p, q) = (Sn, Sn+1), n = 1, 2, . . .,
provided both numbers Sn, Sn+1 are prime.

Computations show that the only n ≤ 40 000 for which the Rn are probable primes (or
known primes for smaller n) are n = 2, 3, 4, 5, 7, 8, 16, 19, 29, 47, 59, 163, 257, 421, 937, 947,
1493, 1901, 6689, 8087, 9679, and 28753. Accordingly, the only solutions of part (b) known to
us occur for the index pairs (3, 2), (3, 4), (5, 4), and (7, 8), namely

(p, q) = (7, 3), (7, 17), (41, 17), and (239, 577).

Similarly, the n ≤ 25 000 for which the Sn are probable primes (or known primes for smaller
n) are n = 2, 3, 4, 6, 7, 10, 12, 19, 23, 75, 114, 139, 156, 159, 246, 324, 360, 474, 520, 597, 750,
934, 967, 2296, 3564, 5637, 6796, 8412, 9271, 13974, and 17176. Since the only consecutive
integers (n, n+ 1) in this list occur for n = 2, 3, and 6, the only solutions known to us are

(p, q) = (3, 11), (11, 41), and (571, 2131).

To begin the proof of Theorem 3, we use (2.4) with N = 2, and for simplicity we write k in

place of k̃. Then we have

(q − kp)2 − (k2 − δε)p2 = 2ε. (5.7)

We now deal with the three parts of Theorem 3, and first assume that δ = ε. We can then
apply Lemma 1 with D = k2 − 1 and C = 2ε. The condition |C| <

√
D is then equivalent to

k2 > 5, or k ≥ 3 (positive by (2.2) since δε = 1).
Next, it is easily obtained that

√

k2 − 1 = [k − 1, 1, 2k − 2];

see also [11, p. 99]. Hence by (5.2) we have

Q1 = D − a20 = k2 − 1− (k − 1)2 = 2(k − 1).

For k ≥ 3 we can never have −Q1 = 2ε, so there are no solutions to (5.7) in this case. This
leaves k = 1 or 2, not covered by Lemma 1.

When δ = ε = 1 then, since p2 ≡ q2 ≡ 1 (mod 8), (2.2) shows that k in that identity is
divisible by 8, which forces 4 | k in (5.7), that is, k ≥ 4. Hence (5.7) has no solutions in this
case, which proves part (a) of the theorem.

In the case δ = ε = −1 we have no such restriction on k. However, when k = 1, then (5.7)
reduces to (q − p)2 = −2, which clearly has no solutions. Finally, the case k = 2 leads to the
Pell-type equation

(q − 2p)2 − 3p2 = −2. (5.8)
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To deal with this equation we introduce, in addition to the sequence {Sn}, three related
sequences that all satisfy the same recurrence relation, but with different initial values (see
Table 2). The characteristic equation associated with this recurrence relation is x2−4x+1 = 0,

which has roots α := 2+
√
3 and α = 2−

√
3. Using standard methods, a Binet-type formula of

the form Aαn+Bαn, for algebraic numbers A,B, can be derived for each of the four sequences.
They are shown in the last column of Table 2.

n 0 1 2 3 4 OEIS [10] Binet

Sn 1 5 19 71 265 A001834 1+
√
3

2 αn + 1−
√
3

2 αn

Sn 1 3 11 41 153 A001835 3+
√
3

6 αn + 3−
√
3

6 αn

xn 2 7 26 97 362 A001075 2+
√
3

2 αn + 2−
√
3

2 αn

yn 1 4 15 56 209 A001353 3+2
√
3

6 αn + 3−2
√
3

6 αn

Table 2: Four sequences satisfying un = 4un−1 − un−2.

Using the Binet-type formulas, the following identities can be verified by straightforward
computations:

x2n − 3y2n = 1, (5.9)

S
2
n − 3S2

n = −2, (5.10)

S
2
n + 1 = x2n, (5.11)

SnSn = y2n, (5.12)

Sn = Sn+1 − 2Sn. (5.13)

The fact that (xn, yn), n = 0, 1, 2, . . ., are solutions to (5.9) also follows from the continued
fraction method (see, e.g., [4, 9, 11]), which furthermore shows that these are all possible
solutions of the Pell equation x2 − 3y2 = 1. While this method does not guarantee that
(Sn, Sn), n = 0, 1, 2, . . ., are all the solutions of the Pell-type equation X2 − 3Y 2 = −2, this is
still the case, as we will now show.

Lemma 2. The only positive solutions of the equation

X2 − 3Y 2 = −2 (5.14)

are (X,Y ) = (Sn, Sn), n = 0, 1, 2, . . ., with Sn and Sn as defined in Table 2.

For the proof of this lemma we need a result on the terms of the sequence {xn}. We use
the standard notation pa||n to mean that pa, but not pa+1, divides n.

Lemma 3.

(a) For any n ≥ 0 we have x4n+1 ≡ 3 (mod 4).

(b) If α ≥ 2 and 2α||n, then 22α+1||xn−1 − 1.

In summary, if n is odd, then the highest power of 2 dividing xn − 1 has an odd exponent.

Proof.

(a) The recurrence relation for the xn, taken modulo 4, reduces to xn ≡ −xn−2 (mod 4),
and thus xn ≡ xn−4 (mod 4) for all n ≥ 4. Since x1 = 7 ≡ 3 (mod 4), this proves part (a).
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(b) It will be convenient to deal with the closely related sequence

V0 = 2, Vn = 2xn−1 (n ≥ 1). (5.15)

Then Vn = Vn(4, 1), as defined in (2.5) and (2.7). We first claim that

V2n ≡ 22n+2 + 2 (mod 22n+3) (n ≥ 2). (5.16)

We prove this by induction, based on the quadratic recurrence

V2n+1 = V 2
2n − 2, (5.17)

which follows immediately from (2.16) with 2n in place of both n and m. Now

V4 = 2x3 = 194 = 66 + 128 ≡ 26 + 2 (mod 27),

so (5.16) holds for n = 2. Now suppose that (5.16) holds for some n ≥ 2, and rewrite it as

V2n = k · 22n+3 + 22n+2 + 2.

Using (5.17) we then get

V2n+1 =
(

(2k + 1)22n+2 + 2
)2 − 2

= 22(n+1)+2 + 2 + 2k · 22(n+1)+2 + (2k + 1)224n+4

≡ 22(n+1)+2 + 2 (mod 22(n+1)+3),

which proves (5.16) by induction.
As a next step we show that for all n ≥ 1,

Vk2n+1 ≡ 2 (mod 22n+3), k = 1, 2, . . . . (5.18)

We prove this by induction on k. We set this up by using (2.16) with k2n+1 and 2n+1 in place
of n and m, respectively, which gives

V(k+1)2n+1 = Vk2n+1V2n+1 − V(k−1)2n+1 , (5.19)

and we also note that by (5.16) we have

V2n+1 ≡ 2 (mod 22n+3), V2·2n+1 = V2n+2 ≡ 2 (mod 22n+3),

which establishes (5.18) for k = 1 and 2. Now suppose that (5.18) holds up to some k. Then
by (5.19) we have

V(k+1)2n+1 ≡ 2 · 2− 2 ≡ 2 (mod 22n+3),

which proves (5.18). Finally, we use (2.16) once again, with k · 2n+1 and 2n in place of n and
m, respectively. This gives, with (5.18),

V(2k+1)2n = Vk2n+1V2n − V(2k−1)2n ≡ 2V2n − V(2k−1)2n (mod 22n+3).

This serves as an induction step in the proof of the congruence

V(k+1)2n+1 ≡ 2n+2 + 2 (mod 22n+3), (5.20)

valid for all integers n ≥ 2 and k ≥ 0. To complete the proof of part (b) of Lemma 3, we
divide both sides of (5.20) by 2 and use (5.15). �

We remark in passing that the sequence V2n , n = 0, 1, . . ., which was an important tool in
the above proof, also plays an essential role in the Lucas-Lehmer test for primality of Mersenne
numbers; see, e.g., [10, A003010] or [1].
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Proof of Lemma 2. By (5.10), the pairs (Sn, Sn) are indeed solutions, and we show there are
no others by proceeding as follows. We have

(2X2 + 2)2 − 12X2Y 2 = 4X4 + 8X2 + 4− 4X2(X2 + 2) = 4

for X and Y satisfying (5.14). That is,

(X2 + 1)2 − 3(XY )2 = 1. (5.21)

With (5.11) and (5.12) we now see that the solutions in (5.10) lead to all solutions in (5.9) for
even n. It remains to show that no solution (X,Y ) of (5.14) can lead to an odd-index solution
in (5.9). Indeed, any such solution would lead to (5.21). However, by Lemma 3 no odd-index
xn can be of the form X2 + 1; this completes the proof of Lemma 2. �

We have now completed the proof of part (c) of Theorem 3. To prove part (b), we note
that with δ = 1 and ε = −1, the equation (5.7) becomes

(q − kp)2 − (k2 + 1)p2 = −2. (5.22)

It is easily obtained that
√
k2 + 1 = [k, 2k] (see also [11, p. 99]). Then with (5.2) and (5.3) we

find immediately that P0 = 0, Pn = k for n ≥ 1, and Qn = 1 for n ≥ 0. Hence, by Lemma 1,
the are no solutions to (5.22) for |k| ≥ 2. This leaves the cases k = ±1, that is,

(q ± p)2 − 2p2 = −2, i.e., 4
(

q±p
2

)2 − 2p2 = −2.

Dividing both sides of this last equation by −2, we arrive at the Pell equation

p2 − 2
(

q±p
2

)2
= 1. (5.23)

It is known (and can be derived by way of the continued fraction method) that the equation
X2 − 2Y 2 = 1 has as its only solutions (X,Y ) = (R2n, R

∗
2n), n = 0, 1, . . ., where Rn is defined

by (5.4) and R∗
n satisfies the same recurrence relations but has initial values R∗

0 = 0, R∗
1 = 1.

Using standard methods, we obtain the Binet-type formulas

Rn =
1

2

(

(1 +
√
2)n + (1−

√
2)n
)

, R∗
n =

1

2
√
2

(

(1 +
√
2)n − (1−

√
2)n
)

.

These formulas immediately imply the identities

R2n+1 −R2n = 2R∗
2n, R2n−1 +R2n = 2R∗

2n.

These, combined with (5.23), complete part (b) of Theorem 3, and we are done.

6. The Cases N = 5 and N = 3

The previous section indicates how the general case (2.1) can be treated by solving the
Pell-type equation (2.3) or (2.4). In general it will be difficult to characterize all solutions
for a given N . In this section we will first discuss the case N = 5 since the Lucas numbers
Ln, already mentioned earlier in this paper, are exclusively involved. Following this we state,
without proof, the corresponding result for N = 3.

By (2.3) with N = 5 we have

(2q − kp)2 − (k2 − 4δε)p2 = 20ε, (6.1)

and k, as observed in Section 2, having the same parity as N (here 5), is odd. If we assume
that q > p, then k is also positive.
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We assume that δ = ε, and leave the opposite case to the reader. For Lemma 1 to be
applicable in our case, we need

√
k2 − 4 > 20, or k ≥ 21. Now for odd k ≥ 5 we have

√

k2 − 4 =
[

k − 1, 1, 12 (k − 3), 2, 12 (k − 3), 1, 2k − 2
]

,

which is not difficult to verify. Lemma 1 can then be used to show that (6.1) with δ = ε has
no solutions for odd k ≥ 21.

Now consider (2.2) modulo 5 for δ = ε, i.e.,

p2 + q2 − kpq ≡ 0 (mod 5). (6.2)

If p and q are both ±1 (mod 5) or both ±2 (mod 5), then p2+ q2 ≡ ±2 (mod 5) and pq ≡ ±1
(mod 5), so that k ≡ ±2 (mod 5). This means we need only consider k = 3, 7, 13, and 17.

On the other hand, if one of p and q is ±1 (mod 5) and the other is ±2 (mod 5), then
p2 + q2 ≡ 0 (mod 5) and pq ≡ ±2 (mod 5), so that k ≡ 0 (mod 5). This forces k = 5 or 15.

(i) We begin with k = 3. Then (6.1) becomes (2q− kp)2 − 5p2 = 20ε, and upon dividing by
−5,

p2 − 5
(

2q−3p
5

)2
= −4ε. (6.3)

When ε = 1, this is (2.18) with a = 1, which gives p = L2j+1 and (2q− 3p)/5 = F2j+1. Hence,

q =
1

2
(5F2j+1 + 3L2j+1) = L2j+3,

which is easy to verify. Hence, (p, q) = (L2j+1, L2j+3) is a class of solutions, provided p and q
are both prime. When ε = −1 in (6.3), we use (2.19), and just as above we obtain the solutions
(p, q) = (L2j , L2j+2). While the Lucas numbers {Ln} do not form a divisibility sequence, we
do have 3 | L4i+2 for all i ≥ 0, with only L2 = 3 a prime. Since always one of 2j and 2j + 2
is of the form 4i+ 2, the only prime solution is the pair (p, q) = (3, 7) in the case δ = ε = −1
and k = 3.

(ii) When k = 7, then in analogy to (6.3) we get

(3p)2 − 5
(

2q−7p
5

)2
= −4ε. (6.4)

When ε = 1, then (2.18) gives 3p = L2j+1. However, no odd-index Lucas number is divisible
by 3, which can be shown by induction. When ε = −1 then, again similar to the previous
case and using (2.19), we get 3p = L2j and 3q = L2j+4. Since we know that 3 | Ln if and
only if n ≡ 2 (mod 4) (this can also be shown by induction), we get the class of solutions
(p, q) = (13L4j−2,

1
3L4j+2) for j ≥ 1, provided both p and q are prime.

(iii) When k = 13, respectively 17, then (6.1) leads to

33p2 − 5
(

2q−13p
5

)2
= −4ε, 57p2 − 5

(

2q−17p
5

)2
= −4ε,

respectively. Both cases reduce to ±3p2 ≡ ±1 (mod 5), i.e., p2 ≡ ±2 (mod 5), which has no
solution.

(iv) When k = 5, then (6.1) gives

X2 − 21p2 = 20ε, (X = 2q − 5p).

For ε = 1, this reduces to X2 ≡ 2 (mod 3), which has no solution. However, (X, p) = (1, 1)
is obviously a solution in the case ε = −1. From the theory of Pell equations it follows that
infinitely many solutions of X2−21p2 = −20 can be obtained by combining the above specific
solution with the solutions of the associated Pell equation X2 − 21p2 = 1 which are given by
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(2.24) in Table 1 with a = 5. (For details see, e.g., [8, p. 204] or [13]). We conjecture that one
of the resulting p, q is always divisible by 2 or by 3, so that this case does not contribute to
the set of solutions.

(v) Finally, when k = 15, then (6.1) gives

X2 − 221p2 = 20ε, (X = 2q − 15p).

This reduces to X2 ≡ ±6 (mod 13), which has no solution.
This completes our discussion of the case δ = ε; we leave the case δ = −ε to the reader. In

summary, we have the following result.

Theorem 4. For δ = ±1 and ε = ±1, the pair of congruences

{

p2 ≡ 5δ (mod q),

q2 ≡ 5ε (mod p),

has the following solutions in odd primes p and q.

(a) If δ = ε = 1, then (p, q) = (L2n−1, L2n+1), n = 1, 2, . . ., provided both these Lucas

numbers are prime.

(b) If δ = −1, ε = 1, then (p, q) = (Ln, Ln+1) or (Ln+1, Ln), n = 1, 2, . . ., provided both

these Lucas numbers are prime.

(c) If δ = ε = −1, then (p, q) = (3, 7) and (p, q) = (13L4j−2,
1
3L4j+2), j = 1, 2, . . ., provided

both numbers are prime.

In contrast to Theorems 1–3 we are unable to prove that these are all possible solutions;
however, we conjecture this to be the case.

Primality of the Lucas numbers, defined in (2.8), has been as well studied as that of the
Fibonacci numbers; see [3] or [12, p. 259]. Based on the list of prime and probable prime Lucas
numbers in this last reference, which is complete up to index n = 1200 000, the only known
pairs of Lucas primes (L2n−1, L2n+1) are

(a) (11, 29), (199, 521), and (3571, 9349),
while the only known pairs of consecutive Lucas primes are

(b) (7, 11), (29, 47), and (2207, 3571).
Finally, the only known pair of primes (13L4n−2,

1
3L4n+2) is, according to our own computations,

(c) (41, 281), supplemented by the special solution (3, 7).
Rather than computing the Lucas numbers, we found it easier to compute the numbers an :=
1
3L4n+2 by way of the recurrence relation a0 = 1, a1 = 6, and an+1 = 7an − an−1. We found
that the an are primes (or probable primes) for n = 2, 3, 6, 9, 15, 21, 44, 50, 114, 146, 228,
270, 326, 329, 776, 1001, 1353, 1374, 3579, 5144, and 13133; there are no more for n ≤ 25 000.

For the sake of completeness we conclude this section by stating the corresponding result
for N = 3, without proof. For this purpose we need to introduce two further second-order
recurrence sequences: Let

A0 = 1, A1 = 2, An = 3An−1 +An−2 (n ≥ 2);

B0 = 1, B1 = 4, Bn = 5Bn−1 −Bn−2 (n ≥ 2).

These are sequences A052924 and A004253, respectively, in [10]. They are not Lucas sequences
as defined by (2.5)–(2.7).
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Theorem 5. For δ = ±1 and ε = ±1, the pair of congruences
{

p2 ≡ 3δ (mod q),

q2 ≡ 3ε (mod p),

has the following solutions in odd primes p and q.

(a) If δ = ε = 1, then there are none.

(b) If δ = −1, ε = 1, then (p, q) = (13, 43) and (p, q) = (An, An+1) or (An+1, An), n =
1, 2, . . ., provided both An, An+1 are prime.

(c) If δ = ε = −1, then (p, q) = (Bn, Bn+1), n = 1, 2, . . ., provided both numbers are prime.

The proof is similar to the one we sketched for Theorem 4. Once again we conjecture that
there are no other solutions.

Computations show that the terms An are primes (or probable primes) for n = 2, 3, 5, 6, 8,
9, 15, 17, 27, 35, 68, 87, 134, 143, 158, 275, 279, 326, 345, 440, 545, 630, 702, 813, 968, 1859,
5913, 8183, 10037, 10353, and 16127. These are all for n ≤ 35 000.

Similarly, we found that the Bn are primes (or probable primes) for n = 2, 5, 6, 8, 9, 14, 20,
21, 23, 26, 33, 44, 54, 63, 81, 116, 174, 233, 419, 464, 713, 866, 989, 1940, 2459, 2963, 3950,
and 4604. These are all for n ≤ 25 000.

Accordingly, the only known prime pairs (An, An+1) are
(7, 23), (251, 829), (9 043, 29 867),

while the only known prime pairs (Bn, Bn+1) are
(2 089, 10 009), (229 771, 1 100 899), (33 629 651 653 051, 161 129 341 280 179).

7. Some Generalizations

1. While the pair of congruences (2.1) already presents a significant generalization of the
original pair (1.2), the following more general case can also be treated with our methods.
Given the pair

p2 ≡ δM (mod q), q2 ≡ εN (mod p), (7.1)

with δ, ε ∈ {−1, 1} and M,N fixed positive integers, find solutions to (7.1) in odd primes p, q
with gcd(pq,MN) = 1. As we did in Section 2, we first transform (7.1) to

Mq2 + δεNp2 = εMN + kpq, (7.2)

and then, completing the square, we obtain

(2Mq − kp)2 − (k2 − 4δεMN)p2 = 4εM2N. (7.3)

The identity (7.2) shows that k is a multiple of d := gcd(M,N), so if M and N are not
relatively prime, then (7.3) can be reduced by dividing both sides by d2. In any case, (7.3) is
again a Pell-type equation which can be treated in a similar way as outlined in Section 6.

2. A further generalization is possible by removing the requirement that p and q be prime.
The corresponding results can be obtained in similar ways as the results in this paper; once
again, second order recurrences will usually be involved. However, all this would go beyond
the scope of the present paper.
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