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Abstract. Let U(P,Q) denote the Lucas sequence satisfying the recursion relation

Un+2 = PUn+1 −QUn,

where U0 = 0, U1 = 1, and P and Q are integers. Let z(n), called the rank of appearance
of n in U(P,Q), denote the least positive integer m such that Um ≡ 0 (mod n). We find all
fixed points n for the rank of appearance such that z(n) = n. We also show that z(n) ≤ 2n
when z(n) exists. This paper improves results considered by Diego Marques regarding the
Fibonacci sequence.

1. Introduction

Consider the Lucas sequence (U) = U(P,Q) which satisfies the second order recursion
relation

Un+2 = PUn+1 −QUn (1.1)

with initial terms U0 = 0, U1 = 1, where P and Q are integers and D = P 2 − 4Q is the
discriminant of U(P,Q). We let V (P,Q) denote the companion Lucas sequence which satisfies
the same recursion relation (1.1) as U(P,Q) and has initial terms V0 = 2 and V1 = P .
Associated with U(P,Q) and V (P,Q) is the characteristic polynomial

f(x) = x2 − Px+Q (1.2)

with characteristic roots α and β. By the Binet formulas,

Un =
αn − βn

α− β
if D 6= 0. (1.3)

Moreover,
Un = nαn−1 if D = 0, (1.4)

where α is an integer if D = 0, and

Vn = αn + βn. (1.5)

It is known (see [3, pp. 344–345]), that if gcd(n,Q) = 1, then U(P,Q) is purely periodic
modulo n. Since U0 = 0, it follows that there exists a least positive integer m such that Um ≡ 0
(mod n) when gcd(n,Q) = 1. This integer m, which is denoted by z(n), is called the rank of
appearance of n in U(P,Q).

Marques [6] discussed when z(n) = n for the Fibonacci sequence U(1,−1). He also gave
an upper bound of (n − 1)2 for z(n). In this paper, we generalize some of these results from
the Fibonacci sequence to the general Lucas sequence U(P,Q). In particular, we determine
all instances in which n | z(n). We show this can happen only when z(n) = n, and n is a fixed
point of the function z, or when z(n) = 2n. We accomplish this by showing that 2n is an
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upper bound for z(n) when z(n) exists, improving the bound given in [6] for the Fibonacci
sequence. We further exhibit infinitely many Lucas sequences U(P,Q) for which Un 6= 0 for
n ≥ 1 and z(n) ≤ n for all n ≥ 1 when z(n) is defined. In particular, we find infinitely
many Lucas sequences U(P,Q) for which Un 6= 0 for n ≥ 1 and z(n) < n/2 for all n > 4. In
addition, we show that if D = 1, then there are no integers n > 1 such that either z(n) | n
or n | z(n). Moreover, when Q = 0 or Un = 0 for some n ≥ 1, we demonstrate that either
z(n) ≤ 1 + dlog2 ne when z(n) exists or z(n) ≤ 6 for all n ≥ 1.

We note that there are some incorrect statements in [6] in some of the proofs and results.
We provide some corrections for this paper at the end of our article. A key tool in the
determination of positive integers n for which z(n) = n will be Theorem 1.1 due to Chris
Smyth [8] in which he gives necessary and sufficient conditions for ascertaining when n | Un.
Before presenting this theorem, we need a few definitions. We let S be the set of all n such
that n | Un(P,Q). For n ∈ S, define PS,n to be the set of primes p such that np ∈ S. An
element n ∈ S is said to be basic if there is no prime p such n/p is in S.

Theorem 1.1.

(a) For n ∈ S, the set PS,n is the set of primes dividing DUn.
(b) Every element of S can be written in the form bp1 · · · pr for some r ≥ 0, where b ∈ S

is basic and, for i = 1, . . . , r, the positive integers bp1 · · · pi−1 are also in S, and pi is in
PS,bp1···pi−1

.
(c) The basic elements of S are:

(i) 1 and 6 if P ≡ 3 (mod 6), Q ≡ ±1 (mod 6),
(ii) 1 and 12 if P ≡ ±1 (mod 6), Q ≡ −1 (mod 6),
(iii) 1 only, otherwise.

We note that the primes pi in part (b) of Theorem 1.1 need not be distinct.
Throughout this paper, p will denote a prime. We say that p is a special prime with respect

to the Lucas sequence U(P,Q) if p | P and p | Q. Note that p | D if p is a special prime.
We also define p to be an irregular prime with respect to U(P,Q) if p | Q but p - P ;

otherwise, p is called regular. We note that if p | D, then p is a regular prime. We shall see
later in Proposition 3.1 (xiii) that z(n) does not exist if and only if n has an irregular prime
divisor. The prime p is a primitive prime divisor of Un if p | Un but p - Um for 0 < m < n.

The Lucas sequence U(P,Q) is called degenerate if PQ = 0 or if α/β is a root of unity.
Since α and β are the zeros of a quadratic polynomial with integer coefficients, it follows that
α/β can be an nth root of unity only if n ∈ {1, 2, 3, 4, 6}. It follows from (1.3) and (1.4) that
Un can equal 0 for n ≥ 1 only if (U) is a degenerate sequence.

For later reference, we characterize all degenerate Lucas sequences in Theorem 1.2.

Theorem 1.2. Suppose that U(P,Q) is a degenerate Lucas sequence with discriminant D and
characteristic roots α and β.

(i) If P = Q = 0, then Un = 0 for n ≥ 2, and D = 0.
(ii) If P 6= 0 and Q = 0, then Un = Pn−1 for n ≥ 1, and D = P 2.
(iii) Suppose that α/β = 1. Then D = 0 and P = 2N , Q = N2 for some nonzero integer N .

Moreover, Un = nNn−1 for n ≥ 0.
(iv) Suppose that α/β = −1. Then P = 0 and Q = N for some nonzero integer N .

Moreover, D = −4N , U2n = 0, and U2n+1 = (−Q)n for n ≥ 0.
(v) Suppose that α/β is a primitive cube root of unity. Then P = N and Q = N2 for

some nonzero integer N . Further, U3n = 0, U3n+1 = (−1)nP 3n, U3n+2 = (−1)nP 3n+1

for n ≥ 0, and D = −3N2.
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(vi) Suppose α/β is a primitive fourth root of unity. Then P = 2N and Q = 2N2 for
some nonzero integer N . Further, D = −4N2 and U4n = 0, U4n+1 = (−1)n(2N2)2n,
U4n+2 = (−1)n22n+1N4n+1, U4n+3 = (−1)n22n+1N4n+2 for n ≥ 0.

(vii) Suppose α/β is a primitive sixth root of unity. Then P = 3N and Q = 3N2 for some
nonzero integer N . Furthermore, D = −3N2 and U6n = 0, U6n+1 = (−1)n(33N6)n,
U6n+2 = (−1)n33n+1N6n+1, U6n+3 = (−1)n2·33n+1N6n+2, U6n+4 = (−1)n33n+2N6n+3,
U6n+5 = (−1)n33n+2N6n+4 for n ≥ 0.

Proof. Parts (i) and (ii) follow by inspection. For parts (iii)–(vii), the forms for P and Q are
given by Ward [10, p. 613]. The terms Un are given by Theorem 9 of [9]. �

2. Main Results

Now we will survey our main results. The proofs not given in this section will be presented
in Section 4.

Theorem 2.1. Consider the Lucas sequence U(P,Q). Let b be a basic element of U(P,Q)
and let d = gcd(P,Q). Let R ≥ 1 denote an integer such that each prime divisor of R also
divides D. Then z(n) = n if and only if exactly one of the following holds:

(i) gcd(n, d) = 1 and n = bR, where 4 - R if 4 | P and 9 - R if P 2 ≡ Q (mod 9),
(ii) 2 | gcd(n, d) and n = 2,
(iii) P ≡ Q ≡ 2 (mod 4) and n = 4.

The following corollary is stated as Theorem 1.1 in [6] and was conjectured by Benoit Cloitre
according to [6, p. 346].

Corollary 2.2. Consider the Fibonacci sequence {Fn} = U(1,−1). Then z(n) = n if and
only if n = 5k or 12 · 5k for some k ≥ 0.

Corollary 2.2 immediately follows from Theorems 1.1 and 2.1 upon noting that P ≡ 1
(mod 6), Q ≡ −1 (mod 6), d = 1, and D = 5.

Theorem 2.3 gives a best upper bound for z(n) when z(n) exists.

Theorem 2.3. Consider the Lucas sequence U(P,Q) and let d = gcd(P,Q). Let R ≥ 1 denote
an integer such that each prime divisor of R divides D. Then z(n) does not exist if and only
if n has an irregular prime divisor, and z(n) ≤ 2n, otherwise. Moreover, z(n) = 2n if and
only if P ≡ ±1 (mod 6), Q ≡ −1 (mod 6), gcd(n, d) = 1, and n = 6R. Further, n | z(n) only
if z(n) = n or z(n) = 2n.

Corollary 2.4. Consider the Lucas sequence U(P,Q). If z(n) exists and z(n) < 2n, then
z(n) ≤ 12

7 n.

Theorem 2.5 below sharpens Theorem 2.3 by exhibiting infinitely many Lucas sequences
U(P,Q) for which Un 6= 0 for n ≥ 1, Q 6= 0, and z(n) ≤ n for n ≥ 1 when z(n) exists. In
part (v) of Theorem 2.5, we find infinitely many such Lucas sequences for which we have the
better upper bound of z(n) < n/2 for all n > 4. We define the radical of n for n ≥ 1, denoted
by rad(n), to be the product of the distinct primes dividing n. By convention, rad(1) = 1.

Theorem 2.5. Let U(P,Q) be a Lucas sequence and let d = gcd(P,Q).

(i) Suppose that Q = P 2−r2

4 for some r ≥ 1 and P 6= 0 such that P ≡ r (mod 2) and

P 6= ±r. Then U(P,Q) is nondegenerate, D = r2, and z(n) ≤ n if n has no irregular
prime divisors. In particular, if P is odd, then z(n) does not exist if 2 | n. Moreover,
if r = 1, then z(n) < n if n has no irregular prime divisors.
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(ii) Suppose that Q = r2 for some r ≥ 1 and that P 6= 0, ±r, or ±2r. We further suppose
that if r is odd, then 2 | P . Then U(P,Q) is nondegenerate, D = P 2 − 4r2, and
z(n) ≤ n whenever z(n) exists.

(iii) Suppose that P = 2N and Q = N2 for some nonzero integer N . Then D = 0,
Un = nNn−1, and z(n) ≤ n for all n ≥ 1. Moreover, z(n) = n if gcd(n,N) = 1.

(iv) Suppose that P = d1P1 and Q = d21Q
2
1, where Q1 ≥ 1, gcd(P1, Q1) = 1, d1 6= 0, 12 | d1,

P1 6= 0, (P1, Q1) 6= (±1, 1) or (±2, 1), and rad(P1Q1(P
2
1 − 4Q2

1)) | d1. Then U(P,Q)
is nondegenerate, Q = (d1Q1)

2, D = d21(P
2
1 − 4Q2

1),

rad(P ) = rad(Q) = rad(D), (2.1)

and z(n) exists for n ≥ 1. Moreover, z(n) ≤ 3
5n for n ≥ 4. In addition, z(n) ≤ n for

n ≥ 1 and z(n) ≤ 2
3n for n ≥ 3.

(v) Suppose that (t,Q1, P1) is a primitive Pythagorean triple, where 4 | Q1. Let P = d2P1

and Q = d22
(Q1

2

)2
, where d2 6= 0, 4 | d2, and rad(tQ1P1) | d2. Then U(P,Q) is

nondegenerate, 60 | d2, Q =
(

d2
Q1

2

)2
,

D = P 2 − 4Q = d22(P
2
1 −Q2

1) = (d2t)
2, (2.2)

and

rad(P ) = rad(Q) = rad(D). (2.3)

Moreover, z(n) < n
2 for n > 4. In addition, z(n) ≤ n

2 for n ≥ 4 and z(n) ≤ n for
n ≥ 1.

Example 2.6. We exhibit a Lucas sequence U(P,Q) which satisfies the conditions of part (v)
of Theorem 2.5. Consider the primitive Pythagorean triple (t,Q1, P1) = (3, 4, 5). Let d2 = 60.

Then 4 | d2 and rad(3 · 4 · 5) = 30 | d2. Let P = d2P1 = 300 and Q = d22
(Q1

2

)2
= 14400. Then

D = P 2 − 4Q = 3002 − 4 · 14400 = 32400 = 1802 = (d2t)
2.

By Theorem 2.5, we see that for the Lucas sequence U(300, 14400), we have z(n) ≤ n
2 for

n ≥ 4 and z(n) < n
2 for n ≥ 5.

Corollary 2.7. Consider the Lucas sequence U(P,Q) and suppose that D = 1. The n - Un
for all n > 1. Moreover, if n > 1 and z(n) exists, then z(n) - n and n - z(n).

Theorem 2.8 shows that when U(P,Q) is degenerate and it is not the case that D = 0
and PQ 6= 0, then we obtain significantly smaller upper bounds for z(n) when z(n) exists
than those given in Theorems 2.3 and 2.5. Specifically, we show that for these cases, either
z(n) ≤ 1 + dlog2 ne when z(n) exists or z(n) ≤ 6 for all n ≥ 1.

Theorem 2.8. Let U(P,Q) be a degenerate sequence for which it is not the case that D = 0
and PQ 6= 0. Let α and β be the characteristic roots of U(P,Q). Then the following hold:

(i) Suppose that P = Q = 0. Then Un = 0 for n ≥ 2 and z(n) = 2 for n ≥ 2.
(ii) Suppose that P 6= 0 and Q = 0. Then Un = Pn−1 for n ≥ 1. Let P have the prime

power factorization

P =

s
∏

i=1

q`ii ,
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where q1 < q2 < · · · < qs are distinct primes. Then z(n) exists if and only if rad(n) | P .
Suppose that z(n) exists and

n =

s
∏

i=1

qmi

i ,

where mi ≥ 0 for i = 1, . . . , s. Then

z(n) = max
1≤i≤s

(⌈

mi

`i

⌉

+ 1

)

≤ 1 + dlog2 ne. (2.4)

(iii) Suppose that α/β = −1. Then P = 0 and Q = N for some nonzero integer N .
Moreover, U2 = 0 and z(n) = 2 for n ≥ 2.

(iv) Suppose that α/β is a primitive cube root of unity. Then P = N and Q = N2 for some
nonzero integer N . Moreover, U3 = 0 and z(n) ≤ 3 for n ≥ 1.

(v) Suppose that α/β is a primitive fourth root of unity. Then P = 2N and Q = 2N2 for
some nonzero integer N . Moreover, U4 = 0 and z(n) ≤ 4 for n ≥ 1.

(vi) Suppose that α/β is a primitive sixth root of unity. Then P = 3N and Q = 3N2 for
some nonzero integer N . Moreover, z(n) ≤ 6 for n ≥ 1.

Proof. Parts (i) and (iii)–(vi) follow immediately from parts (i) and (iv)–(vii) of Theorem 1.2.
We now prove part (ii). By part (ii) of Theorem 1.2, Un = Pn−1 for n ≥ 1. It is now clear that
z(n) exists if and only if rad(n) | P . Suppose that z(n) exists. We note that n | Uk = P k−1 if
and only if

`i(k − 1) ≥ mi for i = 1, . . . , s, (2.5)

or equivalently,

k − 1 ≥

⌈

mi

`i

⌉

for i = 1, . . . , s. (2.6)

By definition, z(n) is the least k such that (2.6) is satisfied. It is now easily seen that (2.4)
holds. �

3. Auxiliary Results

The following known results will be needed for the proof of the main results from Section 2
that are not already proved.

Proposition 3.1. Consider the Lucas sequence U(P,Q) and companion Lucas sequence V (P,Q).
Let d = gcd(P,Q). Then the following hold:

(i) U2n = UnVn.
(ii) If m | n, then Um | Un.
(iii) Let p be a special prime and let q = pk, where k ≥ 1. Then

pk | Un (3.1)

for all n ≥ 2k. In particular,

z(pk) ≤ 2k ≤
2

p
pk ≤ pk. (3.2)

If q = 23, then

z(q) ≤ 4 ≤
q

2
. (3.3)
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If p ≥ 5, or both p = 3 and k ≥ 2, or both p = 2 and k ≥ 4, then

z(q) ≤
4

9
q. (3.4)

(iv) Suppose that p - 2Q. Then

z(p) | p− (D/p), (3.5)

where (D/p) is the Legendre symbol and (D/p) = 0 if p | D.
(v) Suppose that p - 2QD. Then

z(p) | (p − (D/p))/2 (3.6)

if and only if (Q/p) = 1.
(vi) If P ≡ Q ≡ 1 (mod 2), then z(2) = 3.
(vii) Suppose that p - Q and p | D. Then z(p) = p. Moreover, z(p) = z(p2) if and only if

p = 2 and 4 | P or it is the case that p = 3 and P 2 ≡ Q (mod 9).
(viii) Suppose that p - Q. Then z(p) exists. Let c ≥ 1 be the largest integer such that

z(p) = z(pc). If pc 6= 2 and k ≥ 1, then

z(pk) = pmax(k−c,0)z(p). (3.7)

If pc = 2, let e ≥ 2 be the largest integer such that z(22) = z(2e). Then for k ≥ 2, we
have

z(pk) = pmax(k−e,0)+1z(p). (3.8)

Furthermore, e = 2 if P ≡ 2 (mod 4) and e ≥ 3 if P ≡ Q ≡ 1 (mod 2). In particular,
if p | D and z(p) 6= z(p2), then z(pk) = pk for k ≥ 1.

(ix) If z(n) | m, then n | Um.
(x) If gcd(n,Q) = 1 and n | Um, then z(n) | m.
(xi) If gcd(m,n) = 1 and both z(m) and z(n) exist, then z(mn) exists and

z(mn) ≤ lcm(z(m), z(n)) ≤ z(m)z(n). (3.9)

(xii) Suppose that gcd(m,n) = gcd(mn,Q) = 1. If z(m) and z(n) both exist, then z(mn)
exists and

z(mn) = lcm(z(m), z(n)) ≤ z(m)z(n). (3.10)

(xiii) The integer z(n) exists if and only if each prime divisor of n is regular.

Proof. Parts (i) and (ii) follow from the Binet formulas (1.3)–(1.5) and are also proved in [2,
pp. 32–33].

(iii) We note that (3.1) follows by induction. The inequalities in (3.2) follow immediately
from (3.1). Now suppose that q = 23. Then by part (i),

U4 = U2V2 = P (P 2 − 2Q) ≡ 0 (mod 8)

and z(23) ≤ 4, and (3.3) is established. We now show that (3.4) holds. If p ≥ 5, or p = 3 and
k ≥ 2, or p = 2 and k ≥ 5, it follows easily from (3.2) that (3.4) is satisfied with equality in
(3.4) if and only if p = 3 and k = 2. Now suppose that p = 2 and k = 4. Then

U6 = U3V3 = (P 2 −Q)P (P 2 − 3Q). (3.11)

If Q ≡ 0 (mod 4), then U6 ≡ 0 (mod 32), and

z(24) ≤ 6 ≤
3

8
q. (3.12)

296 VOLUME 51, NUMBER 4



FIXED UPPER BOUNDS FOR THE RANK OF APPEARANCE IN LUCAS SEQUENCES

Next assume that Q ≡ 2 (mod 4). We show that U4 ≡ 0 (mod 16), which would then imply
that

z(24) ≤ 4 ≤
1

4
q. (3.13)

First suppose that P ≡ 0 (mod 4). Then

U4 = U2V2 = P (P 2 − 2Q) ≡ 0 (mod 16). (3.14)

We now consider the case in which P ≡ 2 (mod 4). Then P 2 ≡ 2Q ≡ 4 (mod 8). Thus, (3.14)
is again satisfied. Part (iii) is now established.

Parts (iv) and (v) are proved in [5, pp. 423 and 441].
(vi) This follows by inspection upon noting that U1 = 1, U2 = P , and U3 = P 2 −Q.
(vii) It is proved in [5, pp. 423–424], that if p - Q and p | D, then z(p) = p, while if

p ≥ 5, then z(p) 6= p2. Now suppose that p = 2. Then z(2) = 2. Since U2 = P , we see that
z(2) = z(22) if and only if P ≡ 0 (mod 4). Next suppose that p = 3. Then z(3) = 3. Noting
that U3 = P 2 −Q, we see that z(3) = z(32) if and only if P 2 ≡ Q (mod 9).

(viii) By our earlier observation, if p - Q, then U(P,Q) is purely periodic modulo p and
z(p) exists. By Theorem X of [2], both of the equalities (3.7) and (3.8) are satisfied. We now
suppose that p = 2 and P ≡ 2 (mod 4), Q ≡ 1 (mod 2). Then z(2) = 2. Thus,

U4 = U2V2 = P (P 2 − 2Q) ≡ 4 (mod 8),

and e = 2 in this case. If P ≡ Q ≡ 1 (mod 2) and p = 2, then z(2) = 3. Then

U6 = U3V3 = (P 2 −Q)P (P 2 − 3Q) ≡ 0 (mod 8),

since P 2 ≡ 1 (mod 4) and one of the terms P 2 − Q or P 2 − 3Q is congruent to 2 (mod 4),
while the other term is congruent to 0 (mod 4). Hence, e ≥ 3 in this case. The last assertion
follows from part (vii) and from (3.7) and (3.8).

(ix) This follows from part (ii).
(x) This is proved in [2, pp. 35 and 38].
(xi) Suppose that z(m) and z(n) both exist. Let L = lcm(z(m), z(n)). Then by part (ix),

m | UL and n | UL. Thus, mn | UL, and the inequalities in (3.9) immediately follow.
(xii) Suppose that z(m) and z(n) both exist. As in the proof of part (xi), let L =

lcm(z(m), z(n)). Noting that gcd(m,n) = 1, it now follows from parts (ix) and (x) that
L is the least positive integer such that mn | UL. Thus, (3.10) is satisfied.

(xiii) Let p be an irregular prime. It was shown in Theorem I of [2] and is easily proved
by induction that z(p) does not exist. It now follows that if n has an irregular prime divisor,
then z(n) does not exist.

Now suppose that each prime divisor of n is regular. Let n = Tm, where T ≥ 1, m ≥ 1, each
prime divisor of T is special, and each prime divisor of m is non-special. Then gcd(m,Q) = 1.
By our earlier observation, U(P,Q) is purely periodic modulo m and z(m) exists. By part
(iii), if p is a special prime and pk || T (where pk || T if pk | T and pk+1 - T ), then z(pk) exists.
It now follows from part (xi) that z(n) = z(Tm) exists. �

Proposition 3.2. Let b be a basic element of U(P,Q). Then the following hold:

(i) gcd(b,D) = 1,
(ii) z(b) = b.

Proof. It is clear that if b = 1, then both (i) and (ii) hold. We now suppose that b > 1. We
first consider the case in which P ≡ 3 (mod 6), Q ≡ ±1 (mod 6), and b = 6. Then

D = P 2 − 4Q ≡ ±1 (mod 6).
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Hence, gcd(b,D) = gcd(6,D) = 1. Further, we see by inspection that z(2) = 3 and z(3) = 2,
since U1 = 1, U2 = P ≡ 3 (mod 6), and U3 = P 2 − Q ≡ ±2 (mod 6). Thus, by Proposition
3.1 (xii),

z(b) = lcm(z(2), z(3)) = lcm(3, 2) = 6 = b.

We now consider the remaining case in which P ≡ ±1 (mod 6), Q ≡ −1 (mod 6), and
b = 12. Then

D = P 2 − 4Q ≡ 5 (mod 6).

Therefore, gcd(b,D) = gcd(12,D) = 1. By examination, we first find that z(2) = 3 and
z(3) = 4, since U2 = P ≡ ±1 (mod 6), U3 = P 2 −Q ≡ 2 (mod 6), and U4 = P (P 2 − 2Q) ≡ 3
(mod 6). Then by Proposition 3.1 (viii) and (xii), we see that whether z(4) = z(2) = 3 or
z(4) = 2z(2) = 6, we have

z(b) = z(12) = lcm(z(4), z(3)) = lcm(z(4), 4) = 12 = b.

�

4. Proof of the Main Results

Proof of Theorem 2.1. We prove parts (i)–(iii) together. First suppose that condition (i) holds.
If p | D and p | Q, then p | P , which implies that p | d. Hence, gcd(R,Q) = 1. If R > 1, let the

prime factorization of R be given by
∏s
i=1 p

ki
i . By Proposition 3.2 (i), gcd(b,R) = 1. It follows

from Proposition 3.2 (ii) and Proposition 3.1 (vii) and (viii) that z(b) = b and z
(

pkii
)

= pkii
for i = 1, 2, . . . , s. We now see by Proposition 3.1 (xii) that z(n) = n.

If 2 | gcd(n, d), then it is clear that z(2) = 2, since U2(P,Q) = P . Now suppose that
P ≡ Q ≡ 2 (mod 4). We observe that U1 = 1, U2 = P ≡ 2 (mod 4), U3 = P 2 − Q ≡ 2
(mod 4), and U4 = P (P 2− 2Q) ≡ 0 (mod 4). Hence, conditions (i)–(iii) are sufficient for z(n)
to be equal to n.

We now show that z(n) 6= n if any of conditions (i), (ii), or (iii) are not satisfied. Suppose
that n has a prime factor q such that q - bD. Notice that we allow both the possibilities that
gcd(n, d) = 1 and gcd(n, d) > 1. By way of contradiction, we assume that z(n) = n. Then
z(n) | n. Moreover, by Proposition 3.1 (xiii), n has no irregular prime divisors. It now follows
from Theorem 1.1 and Proposition 3.1 (ii) that we can express n as n = mp, where m | Um,
p is a prime such that p - bD, and mp | Ump. Then gcd(p, d) = 1. Moreover, by Proposition

3.1 (xiii), gcd(p,Q) = 1. Suppose that pk || n. Then

m = pk−1m1, (4.1)

where gcd(m1, p) = 1. By Proposition 3.1 (x),

z(pk) | mp. (4.2)

It follows from Proposition 3.1 (iv) and (viii) that

z(pk) = piz(p), (4.3)

where i ≤ k − 1 and gcd(z(p), p) = 1. Since gcd(z(p), p) = 1, it follows from (4.1), (4.2), and
(4.3) that z(pk) | m. Thus, by Proposition 3.1 (ix), pk | Um. From m1 | m and m | Um, we
observe that m1 | Um. Since gcd(m1, p) = 1, we see that

n = mp = pkm1 | Um,

and

z(n) ≤ m < n,
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which is a contradiction.
Next we suppose that n = bR and one of the conditions (i), (ii), or (iii) does not hold. As

stated earlier, z(b) = b. By Proposition 3.2 (i), gcd(b,D) = 1. Let

n = b
t

∏

i=1

q`ii , (4.4)

where the qi’s are distinct primes and q1q2 · · · qt | D. Then by Proposition 3.1 (iii), (vii), and

(viii), z
(

q`ii
)

≤ q`ii for i = 1, 2, . . . , t.
Moreover, by Proposition 3.1 (xi),

z(n) ≤ lcm
(

z(b), z
(

q`11
)

, . . . , z
(

q`tt
))

≤ z(b)

t
∏

i=1

z
(

q`ii
)

≤ b

t
∏

i=1

q`ii . (4.5)

Hence, z(n) < n if we can find a prime qi, i ∈ {1, . . . , t}, such that z
(

q`ii
)

< q`ii . Without loss

of generality, we denote this prime power by q`11 if such a prime power exists.
First suppose that gcd(n, d) = 1 and either it is the case that q1 = 2, `1 ≥ 2, and P ≡ 0

(mod 4), or q1 = 3, `1 ≥ 2, and P 2 ≡ Q (mod 9). Then by Proposition 3.1 (vii) and (viii), we
see that

z
(

q`11
)

≤ q`1−1
1 < q`11 .

We suppose from here on in the proof that q1 is a special prime. Suppose that q`11 is not
equal to 2 or 4. Then by Proposition 3.1 (iii),

z
(

q`11
)

≤
2

3
q`11 .

The only remaining cases to consider are the ones for which q`11 = 2 and n > 2, or q`11 = 4

and it is not the case that both P ≡ Q ≡ 2 (mod 4) and n = 4. We note that z
(

q`11
)

= q`11 in
some of these cases, so we will have to modify our argument somewhat.

Suppose that q1 = 2, `1 = 1, and n > 2. Then

n = 2b

t
∏

i=2

q`ii .

Since n/2 ≥ 2, we see by Proposition 3.1 (iii) that 2 | Un/2. Since b | Ub and q`ii | U
q
`i
i

for

i ∈ {2, . . . , t} by Proposition 3.2 (ii) and Proposition 3.1 (iii), (vii), and (viii), we find by
Proposition 3.1 (ii) that (n/2) | Un/2. Noting that gcd(2, n/2) = 1, we obtain that

z(n) ≤ n/2 < n.

Finally, suppose that q`11 = 4 and it is not the case that n = 4 and P ≡ Q ≡ 2 (mod 4).

First suppose that q`11 = 4, n ≥ 4, and either P ≡ 0 (mod 4) or both P ≡ 2 (mod 4) and
Q ≡ 0 (mod 4). If P ≡ 0 (mod 4), then U2 = P ≡ 0 (mod 4) and z(4) = 2, implying that
z(n) < n. If P ≡ 2 (mod 4) and Q ≡ 0 (mod 4), then U3 = P 2 − Q ≡ 0 (mod 4), and
z(4) = 3. Again, we have that z(n) < n. Now suppose that P ≡ Q ≡ 2 (mod 4) and n > 4.
Then n/4 ≥ 2. Hence, n/2 ≥ 4, and 4 | Un/2 by Proposition 3.1 (iii). Since gcd(n/4, 4) = 1,
we see that

(n/4) | Un/4 | Un/2,

and thus, n | Un/2. Hence, z(n) ≤ n/2 < n. The proof is now complete. �
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Proof of Theorem 2.3. By Proposition 3.1 (xiii), z(n) does not exist if and only if n has an
irregular prime divisor. We assume from here on that n has no irregular prime divisor. If
R > 1, let the prime power factorization of R be given by

R =

s
∏

i=1

pkii . (4.6)

Let

n = 2k0
s
∏

i=1

pkii

t
∏

j=1

q
`j
j , (4.7)

where s ≥ 0, t ≥ 0, k0 > 0 if and only if both 2 | n and 2 - D, and the qj’s are primes such
that qj - 2D for j = 1, . . . , t. We suppose that p1 < p2 < · · · < ps and q1 < q2 < · · · < qt. By
convention, if s = 0 or t = 0, we set the associated product equal to 1. We set εj = (D/qj)
for j = 1, . . . , t. We define the function ψ by

ψ(n,D) = 3min(k0,1)2max(k0−1,0)
(

s
∏

i=1

pkii

)

(

21−t−δ
t
∏

j=1

(qj − εj)q
`j−1
j

)

, (4.8)

where δ = 1 if either t = 0 or it is the case that t ≥ 1 and either k0 ≥ 2 or 2 | D, and δ = 0
otherwise.

By Proposition 3.1 (xi),

z(n) ≤ lcm
(

z
(

2k0
)

, z
(

pk11
)

, . . . z
(

pkss
)

, z
(

q`11
)

, . . . , z
(

q`tt
))

. (4.9)

We note that 2 | D if and only if 2 | P . Thus, 2 is a regular prime that does not divide D if
and only if P ≡ Q ≡ 1 (mod 2). By Proposition 3.1 (vi), z(2) = 3 in this case. By Proposition
3.1 (viii), if k0 ≥ 1, then

z
(

2k0
)

| 3 · 2k0−1. (4.10)

Moreover, by Proposition 3.1 (iv) and (viii),

z
(

q
`j
j

)

| (qj − (D/qj))q
`j−1
j , (4.11)

for j = 1, 2, . . . , t. If pi | D and pi - d, then

z
(

pkii
)

| pkii (4.12)

by Proposition 3.1 (vii) and (viii), where 1 ≤ i ≤ s. If pi | D and pi | d, then

z
(

pkii
)

≤ pkii . (4.13)

by Proposition 3.1 (iii). Moreover, 2 | qj − εj for j = 1, 2, . . . , t. Furthermore, 2 | 2max(k0−1,0)

if k0 ≥ 2. It thus follows from Proposition 3.1 (xi) that

z(n) ≤ lcm
(

z
(

2k0
)

, z
(

pk11
)

, . . . , z
(

pkss
)

, z
(

q`11
)

, . . . , z
(

q`tt
))

≤ ψ(n,D). (4.14)

We now show that ψ(n,D)
n ≤ 2, which implies by (4.14) that z(n) ≤ 2n. First suppose that

k0 = 0. Then by (4.14) and Proposition 3.1 (iv), (vii), and (viii), we have that
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z(n)

n
≤
ψ(n,D)

n

≤
pk11
pk11

pk22
pk22

· · ·
pkss

pkss

(q1 + 1)q`1−1
1

q`11

(q2 + 1)q`2−1
2

2q`22
· · ·

(qt + 1)q`t−1
t

2q`tt

≤
(3 + 1)3`1−1

3`1
(q2 + 1)q`2−1

2

2q`22
· · ·

(qt + 1)q`t−1
t

2q`tt
≤

4 · 3`1−1

3`1
=

4

3
< 2, (4.15)

since qj ≥ 5 for j = 2, . . . , t, and thus in this case,

(qj + 1)q
`j−1
j

2q
`j
j

=
qj + 1

2qj
=

1

2
+

1

2qj
≤

3

5
< 1.

Now suppose that k0 ≥ 1 and either every odd prime divisor of n divides D or both q1 ≥ 3
and ε1 = 1. Then,

z(n)

n
≤
ψ(n,D)

n
=

3 · 2k0−1

2k0

(

s
∏

i=1

pkii
pkii

)

=
3

2
if k0 ≥ 1 and t = 0, (4.16)

and

z(n)

n
≤
ψ(n,D)

n
=

3 · 2k0−1

2k0

(

s
∏

i=1

pkii
pkii

)(q1 − 1)q`1−1
1

q`11

t
∏

j=2

(qj + 1)q
`j−1
j

2q
`j
j

<
3

2
· 1 · 1 =

3

2
(4.17)

if k0 ≥ 1, t ≥ 1, q1 ≥ 3, and ε1 = 1.
Next we suppose that k0 ≥ 1, q1 ≥ 5, and ε1 = −1. Then

z(n)

n
≤
ψ(n,D)

n
=

3 · 2k0−1

2k0

(

s
∏

i=1

pkii
pkii

)(q1 + 1)q`1−1
1

q`11

t
∏

j=2

(qj + 1)q
`j−1
j

2q
`j
j

≤
3

2
· 1 ·

q1 + 1

q1
. (4.18)

If q1 = 5, then q1 + 1 = 6, and 3 | gcd(3 · 2k0−1, 6). Hence, it follows from (4.18) that in this
case,

z(n)

n
≤

1

n
lcm

(

z
(

2k0
)

, z
(

pk11
)

, . . . , z
(

pkss
)

, z
(

q`11
)

, . . . , z
(

q`tt
))

≤
ψ(n,D)

3n
≤

1

3
·
3

2
· 1 ·

6

5
=

3

5
.

(4.19)
If q1 > 5, then by (4.18),

z(n)

n
≤

3

2
·
7 + 1

7
=

12

7
. (4.20)

From here on, we assume that k0 ≥ 1, q1 = 3, and ε1 = −1. Then pi ≥ 5 for i = 1, 2, . . . , s.
Suppose that pi is a special prime for some i such that 1 ≤ i ≤ s. Then

zi
(

pkii
)

pkii
≤

2

5
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by inequality (3.2) in the statement of Proposition 3.1 (iii). Hence, by Proposition 3.1 (iii),
(iv), (vi), (vii), and (viii),

z(n)

n
≤

1

n
lcm

(

z
(

2k0
)

, z
(

pk11
)

, . . . , z
(

pkss
)

, z
(

q`11
)

, . . . , z
(

q`tt
))

≤
3 · 2k0−1

2k0

(

s
∏

i=1

z(pkii )

pkii

) (3 + 1)3`1−1

3`1

t
∏

j=2

(qj + 1)q
`j−1
j

2q
`j
j

≤
3

2
·
2

5
·
4

3
=

4

5
. (4.21)

Next suppose that k0 ≥ 2. Then δ = 1, since t ≥ 1, and thus

z(n)

n
≤
ψ(n,D)

n
≤

3 · 2k0−1

2k0

(

s
∏

i=1

pkii
pkii

) (3 + 1)3`1−1

2 · 3`1

t
∏

j=2

(qj + 1)q
`j−1
j

2q
`j
j

≤
3

2
· 1 ·

2

3
= 1. (4.22)

Now we consider the case in which k0 = 1, q1 = 3, ε1 = −1, `1 ≥ 2, and gcd(n, d) = 1.

Then 3 · 2k0−1 = 3, (q1 − ε1)q
`1−1
1 = 4 · 3`1−1, and 3 divides both 3 · 2k0−1 and (q1 − ε1)q

`1−1
1 .

We now see that in this case,

z(n) ≤ lcm
(

z
(

2k0
)

, z
(

pk11
)

, . . . , z
(

pkss
)

, z
(

q`11
)

, . . . , z
(

q`tt
))

|
ψ(n,D)

3
. (4.23)

Hence,

z(n)

n
≤
ψ(n,D)

3n
=

1 · 3

3 · 2

(

s
∏

i=1

pkii
pkii

)(3 + 1)3`1−1

3`1

t
∏

j=2

(qj + 1)q
`j−1
j

2q
`j
j

≤
1

3
·
3

2
· 1 ·

4

3
=

2

3
. (4.24)

Next we suppose that gcd(n, d) = 1, k0 = 1, q1 = 3, ε1 = −1, `1 = 1, and t ≥ 2. Then

z(n)

n
≤
ψ(n,D)

n
≤

3

2

(

s
∏

i=1

pkii
pkii

)(3 + 1)30

3

t
∏

j=2

(qj + 1)q
`j−1
j

2q
`j
j

≤
3

2
· 1 ·

4

3

(5 + 1)5`j−1

2 · 5`j
=

6

5
. (4.25)

The only remaining case is that in which gcd(n, d) = 1, k0 = 1, q1 = 3, ε1 = −1, `1 = 1,
and t = 1. Then

n = 2 ·
(

s
∏

i=1

pkii

)

· 3. (4.26)

We note that pi ≥ 5 and pi is not a special prime for i = 1, . . . , s. It thus follows from

Proposition 3.1 (vii) and (viii) that z(pkii ) = pkii for i ∈ {1, . . . , s}. By Proposition 3.1 (vi),
z(2) = 3. Since 3 - D, we see from Proposition 3.1 (iv) that

z(3) | 3− (D/3) = 4.

Hence, z(3) = 2 or z(3) = 4, since U1 = 1. Since each prime divisor of n is regular and
non-special, it follows that gcd(n,Q) = 1. Then by Proposition 3.1 (xii),

z(n) = lcm
(

z(2), z(3), z
(

pk11
)

, . . . , z
(

pkss
))

. (4.27)

If z(3) = 2, then by (4.27),

z(n) = lcm
(

3, 2, pk11 , . . . , p
ks
s

)

= 6pk11 p
k2
2 · · · pkss = n. (4.28)

If z(3) = 4, then again by (4.27), we have

z(n) = lcm
(

3, 4, pk11 , . . . , p
ks
s

)

= 12pk11 p
k2
2 · · · pkss = 2n (4.29)
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as desired. Thus, z(n) ≤ 2n whenever z(n) exists and z(n) = 2n if and only if gcd(n, d) = 1,
k0 = 1, q1 = 3, ε1 = −1, `1 = 1, t = 1, z(2) = 3, and z(3) = 4. It now follows that if z(n)
exists, then n | z(n) if and only if z(n) = n or z(n) = 2n.

We now determine exactly when z(2) = 3 and z(3) = 4. By Proposition 3.1 (vi) and our
earlier discussion, z(2) = 3 if and only if P ≡ Q ≡ 1 (mod 2). Since U2 = P , U3 = P 2−Q, and
U4 = U2V2 = P (P 2 − 2Q), we see that z(3) = 2 if P ≡ 0 (mod 3). Thus, P ≡ ±1 (mod 3). If
(P,Q) ≡ (±1, 0) (mod 3), then 3 is an irregular prime, and z(3) does not exist. Thus, Q ≡ ±1
(mod 3). If Q ≡ 1 (mod 3), then U3 ≡ 3 and z(3) = 3. If (P,Q) ≡ (±1,−1) (mod 3), then
U4 ≡ 0 (mod 3) and z(3) = 4. It now follows from the Chinese Remainder Theorem that
z(2) = 3 and z(3) = 4 if and only if P ≡ ±1 (mod 6) and Q ≡ −1 (mod 6). Thus, z(n) = 2n
if and only if P ≡ ±1 (mod 6), Q ≡ −1 (mod 6), gcd(n, d) = 1, and n = 6R. �

Proof of Corollary 2.4. This follows from the inequalities and equalities (4.15)–(4.25) and
(4.28)–(4.29) given in the proof of Theorem 2.3. �

Remark 4.1. The function ψ(n,D) used in the proof of Theorem 2.3 is a generalization of
the function ψ(n,D) introduced on page 629 of [1] that was defined when gcd(n, 2D) = 1.

Proof of Theorem 2.5. We first show that the Lucas sequences considered in parts (i)–(ii)
and (iv)–(v) are nondegenerate. By Theorem 1.2, the Lucas sequence U(P,Q) is degenerate
if and only if PQD = 0 or Un = 0 for n = 2, 3, 4, or 6. Noting that U2 = P , U3 = P 2 − Q,
U4 = U2V2 = P (P 2 − 2Q), and U6 = U3V3 = (P 2 −Q)P (P 2 − 3Q), we see that U2U3U4U6 = 0
if and only if P (P 2−Q)(P 2−2Q)(P 2−3Q) = 0. By inspection, we see that none of the Lucas
sequences discussed in parts (i)–(ii) and (iv)–(v) are degenerate.

We note that part (iii) follows immediately from Theorem 1.2 (iii). We now prove parts (i)
and (ii). It follows from our earlier comments and from Proposition 3.1 (iii), (vii), and (viii)
that if p | D, then z(pk) exists and z(pk) ≤ pk for k ≥ 1. We now note that it suffices to show
that z(q) < q when q is a prime such that q - D and z(q) exists. If z(q) < q, it then follows
from (3.7) and (3.8) that z(q`) < q` for ` ≥ 1. By Proposition 3.1 (xi), parts (i) and (ii) will
then follow.

We now suppose that the hypotheses of part (i) hold. We observe that

D = P 2 − 4Q = r2.

Suppose that p - D and z(p) exists. If p = 2 and 2 | P , then 2 | D. Moreover, if p = 2 and P
is odd, then P 2 ≡ r2 ≡ 1 (mod 8), and 2 | Q. Then 2 is an irregular prime in this case. We
can thus assume that p > 2. Further, p - r, since p - D. Then by Proposition 3.1 (iv),

z(p) | p− (D/p) = p− (r2/p) = p− 1. (4.30)

Thus, z(p) < p. Moreover, if D = 1, then no prime divides D, and it follows from (4.30) and
Proposition 3.1 (xi) that z(n) < n when n > 1 has no irregular prime divisors. Therefore, part
(i) is established.

Now suppose that the hypotheses of part (ii) are satisfied. We then see that 2 | D or 2 is
an irregular prime. We wish to show that z(p) < p whenever p - D and z(p) exists. We can
consequently assume that p is odd. Then

(Q/p) = (r2/p) = 1,

since p is a regular prime not dividing D. Then by Proposition 3.1 (v),

z(p) | (p− (D/p))/2 ≤ (p+ 1)/2 < p. (4.31)

Hence, z(p) < p, and part (ii) follows.
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We now prove parts (iv) and (v). By the hypotheses of parts (iv) and (v), it follows that in
both cases, every prime dividing QD is a special prime. Consequently, there are no irregular
primes and thus z(n) exists for all n ≥ 1. Moreover, in both cases, 2 and 3 are special primes
and

z(2) = z(3) = z(4) = z(6) = z(12) = 2, (4.32)

since 12 | P = U2. Furthermore, since 4 | P and 16 | Q in both cases, we have

U3 = P 2 −Q ≡ 0 (mod 16),

and thus,
z(8) = z(16) ≤ 3. (4.33)

It now follows from (4.32), (4.33), and Proposition 3.1 (iii) that if p is a special prime and
pk ≥ 5, then

z(pk) ≤
4

9
pk (4.34)

when either of the hypotheses of parts (iv) or (v) are satisfied.
We now suppose that the hypotheses of part (iv) hold. Suppose that p - D. Then p ≥ 5

and p is a non-special prime. Moreover, p - d1Q1, since otherwise, p would divide both P and
Q, which would imply that p | D. Then

(Q/p) = (d21Q
2
1/p) = 1.

It now follows from Proposition 3.1 (v) that

z(p) | (p− (D/p))/2 ≤
p+ 1

2
≤

3

5
p, (4.35)

since
p+ 1

p
= 1 +

1

p
≤

6

5
.

Thus, by Proposition 3.1 (viii),

z(pk) ≤
3

5
pk (4.36)

for k ≥ 1.
Let m1 ≥ 1 and m2 > 1 be any integers such that the only prime divisors of m1 are 2 or 3,

and the only prime divisors of m2 are primes greater than 3. It now follows from (4.32)–(4.36)
and Proposition 3.1 (xi) that

z(m1m2) ≤
3

5
m1m2. (4.37)

By (3.2), (3.4), (4.32), and (4.33), we see that

z(m1) = m1 if m1 ∈ {1, 2}, (4.38)

z(m1) =
2

3
m1 if m1 = 3, (4.39)

z(m1) =
1

2
m1 if m1 = 4, (4.40)

and

z(m1) ≤
4

9
m1 if m1 ≥ 6. (4.41)

Part (iv) now follows.
We finally suppose that the hypotheses of part (v) are satisfied. We first note that it is

well-known that if (t,Q1, P1) is a primitive Pythagorean triple, then either t or Q1 is divisible
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by 4 and 60 | tQ1P1. Let p be a prime such that p - D = (d2t)
2. Then p ≥ 7. Moreover, p - Q,

since any prime dividing Q is a special prime which must then divide D. Thus,

(D/p) = (Q/p) = 1.

It then follows from Proposition 3.1 (v) that

z(p) |
p− (D/p)

2
=
p− 1

2
<

1

2
p. (4.42)

Therefore, by Proposition 3.1 (viii), we have that

z(pk) <
1

2
pk (4.43)

for k ≥ 1.
As in the proof of part (iv), let m1 ≥ 1 and m2 > 1 be any integers such that the only

prime divisors of m1 are 2 or 3, and the only primes dividing m2 are those which are greater
than 3. It follows from (4.32)–(4.34), (4.42)–(4.43), and Proposition 3.1 (xi) that

z(m1m2) <
1

2
m1m2. (4.44)

We note that the equations (4.38)–(4.41) follow from the hypotheses of part (v) as well as
from the hypotheses of part (iv). Making use of (4.38)–(4.41), we see that part (v) holds. �

Proof of Corollary 2.7. It follows from Theorem 1.1 and was earlier proved in Theorem 8 (iii)
of [9] that if D = 1, then n - Un for any n > 1. If z(n) | n, then it follows from Proposition
3.1 (ix) that n | Un. Hence, z(n) - n for n > 1. It further follows from Theorem 2.5 (i) that if
z(n) exists, then z(n) < n for n > 1. �

5. Concluding Remarks

Below are some corrections for the paper [6].

1. On the bottom of page 348 and the top of page 349 in the proofs of Cases 1 and 2 of
the “only if” part of the proof of Theorem 1.1, the author assumes that if n | Fn and n > 1,
then n is of the form 12a · 5km, where a + k ≥ 1 and gcd(5 · 12,m) = 1. However, this is
incorrect as seen from Theorem 1.1 of our paper and from the sequence A023172 of [7] which
lists the initial integers n for which n | Fn. In particular, 24, 36, 48, 72, 96, 108, and 120 are
terms in the sequence A023172, and none of these terms are of the form 12a ·5km. The correct
statement is that if n | Fn and n > 1, then n is of the form 12a · 5k · 2b · 3cm, where a = 0 or 1,
a+ k ≥ 1, b ≥ 0, c ≥ 0, and gcd(5 · 12,m) = 1. This follows from Theorem 1.1 in our paper,
which is due to Chris Smyth.

2. In the proof of Case 2 on the top of page 349, the author states that if n | Fn and
n = 12a · 5km = 12a · 5kqt, where gcd(5 · 12,m) = 1 and q is a prime factor of m, then
n | F12a·5kt.

However, this is not necessarily true. R. D. Carmichael [2] proved that if n > 12, then Fn
has a primitive prime factor p, which implies that z(p) = n. Let n = 122 · qt, where q is a
prime such that z(q) = 122 = 144 and t is a prime such that z(t) = q. In fact, by the table in
[4], we can let q = 10749957121. Since q > 12, there exists such a prime t. Note that t 6= q,
since z(t) = q > 122 and z(q) = 122. Then n | Fn by Theorem 1.1 in our paper. However, then
n - F122t. Note that n | F122t only if t | F122t. Moreover, t | F122t if and only if z(t) = q | 122t.
However, q - 122 and q - t, so n does not divide F122t.
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3. Let ν5(n) denote the 5-adic valuation of n, that is ν5 = k if 5k | n, but 5k+1 - n. In
Proposition 4.3 on page 350 of [6], the author states, “Let a and b be positive integers. If
ν5(a) 6= ν5(b), then the equation z(n) = an/b has no solution in positive integers n.” This is
incorrect as shown in examples (a) and (b) below:

(a) Let n = 11. Then z(11) = 10. In this case, the equation z(n) = 10n/11 has a solution
in positive integers, namely n = 11. Note that ν5(10) = 1, while ν5(11) = 0.

(b) Let n = 3001. Then z(3001) = 25. In this case, the equation z(n) = 25n/3001 has a
solution in positive integers, namely n = 3001. Note that ν5(25) = 2, while ν5(3001) = 0.
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