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Abstract. We say that the positive integer k is d-composite if, when you append the digit
d, any number of times on the right of k, the resulting integer is composite. Clearly, every
positive integer is d-composite when d ∈ {2, 4, 5, 6, 8}. In addition, if gcd(k, d) > 1, then k is
d-composite. The first author has shown that, for any given fixed digit d ∈ {1, 3, 7, 9}, there
exist infinitely many positive integers k with gcd(k, d) = 1 that are d-composite. He also
showed that 37 is the smallest 1-composite integer and that the pair (37, 38) is the smallest
pair of consecutive 1-composite integers. In this article, we prove similar results for special
types of integers such as perfect powers, Sierpiński numbers, Riesel numbers, and Fibonacci
numbers. For example, among our results, we show that the smallest Fibonacci number Fn,
such that both Fn and F 2

n are 1-composite, is F21 = 10946.

1. Introduction

In [18], the first author proved that for any given fixed digit d ∈ {1, 3, 5, 7}, there exist
infinitely many positive integers k, such that gcd(k, d) = 1 and every integer in the sequence

kd, kdd, kddd, kdddd, kddddd, . . . ,

is composite. We refer here to such positive integers k as d-composite. The first author
also shows in [18] that k = 37 is the smallest 1-composite integer, and that (37, 38) is the
smallest pair of consecutive 1-composite integers. More recently, Grantham, Jarnicki, Rick-
ert and Wagon [13] have shown that there exist infinitely many positive integers that are
pandigital-composite; that is, integers k such that gcd(k, d) = 1 and yield only composites
when repeatedly appending any digit d. In this article, we present similar results when further
restrictions are placed on the positive integers. In particular, we prove the following.

Theorem 1.1. Given any fixed positive integer r 6≡ 0, 12, 18, 24 (mod 36), there exist infin-
itely many Fibonacci numbers Fn such that F r

n is 1-composite.

Theorem 1.2.

(1) The smallest perfect square that is 1-composite is 652.
(2) There are infinitely many positive integers k such that both k2 and (k + 1)2 are 1-

composite. The smallest such pair is (652, 662).
(3) The smallest perfect cube that is 1-composite is 263.
(4) There are infinitely many positive integers k such that k2 + 1 is 1-composite. The

smallest such value of k is k = 44.
(5) There exist infinitely many positive integers n such that both Fn and F 2

n are 1-composite.
The smallest such value of n is n = 21.

Theorem 1.3. There exist infinitely many positive integers k such that k2 is simultaneously
Riesel, Sierpiński, and pandigital-composite.
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Remark 1.4. According to a private communication, Bloome, Ferguson, Kozek, and Noor-
man have recently found infinitely many positive integers k that are simultaneously Riesel,
Sierpiński, and pandigital-composite.

Although Theorem 1.1 and Theorem 1.2 deal only with 1-composite integers, analogous
results can be established in many cases for the d-composite situation when d ∈ {3, 7, 9}.
We give an example of such a result in Section 6. We have treated the pandigital-composite
situation separately in Theorem 1.3.

2. Preliminaries

The following concept, due to Erdős [7], is crucial to the proofs of our results.

Definition 2.1. A covering of the integers is a system of congruences x ≡ ai (mod mi) such
that every integer satisfies at least one of the congruences. A covering is said to be a finite
covering if the covering contains only finitely many congruences.

Remark 2.2. Since all coverings in this paper are finite coverings, we omit the word “finite”.

Quite often when a covering is used to solve a problem, there is a set of prime numbers
associated with the covering. In the situations occurring in this article, for each congruence
n ≡ zi (mod mi) in the covering, there exists a corresponding prime pi, such that either
10mi ≡ 1 (mod pi) or 2mi ≡ 1 (mod pi) or 2mi ≡ −1 (mod pi), and pj 6= pi for all j 6= i.
Because of this correspondence, we indicate the covering using a set C of ordered triples
(zi,mi, pi). We abuse the definition of a covering slightly by referring to the set C as a
“covering”.

In this article we focus on appending digits to certain special integers κ. We define sn to
be the integer resulting from appending the digit d to the integer κ exactly n times. Thus,

sn := 10nκ+ d
(

10n−1 + 10n−2 + · · ·+ 10 + 1
)

= 10nκ+ d

(

10n − 1

9

)

. (2.1)

The special integers κ of interest here are perfect powers, Fibonacci numbers, Sierpiński num-
bers, Riesel numbers and integers that are contained in various intersections of these sets. To
avoid trivial situations, we require that d ∈ {1, 3, 7, 9} and that gcd(κ, d) = 1.

The sequence of Fibonacci numbers {Fn} is defined by the recursion F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for all integers n ≥ 2. A Riesel number is an odd positive integer k such
that k · 2n − 1 is composite for all integers n ≥ 1, while a Sierpiński number is an odd positive
integer k such that k · 2n + 1 is composite for all integers n ≥ 1. In 1956, Riesel [22] proved
that there are infinitely many Riesel numbers, and in 1960, Sierpiński [23] proved that there
are infinitely many Sierpiński numbers. Since then, other authors have examined extensions
and variations of these ideas [1, 2, 3, 4, 5, 6, 9, 12, 10, 11, 14, 15, 16]. Coverings are used quite
extensively in these investigations, but the concept of periodicity also plays a major role.

It is well-known that the Fibonacci sequence is periodic modulo any integer m ≥ 2 [8, 21, 26].
Because of this periodicity, there must be a least positive integer r such that Fr ≡ 0 (mod m).
We call this value of r the rank of apparition of m in {Fn} (also known as the restricted period
of the Fibonacci sequence modulo m). We let P(m) denote the period of {Fn} modulo m, and
R(m) denote the rank of apparition of m. The following two theorems, due to Vinson [25],
are useful in the calculation of P(m).
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Theorem 2.3. Let m be a positive integer, and let m =
∏t

i=1 p
ai
i be the canonical factorization

of m into distinct prime powers. Then

P(m) = lcm (P(pai)) .

In this paper, we only need to calculate P(m) for square-free values of m. By Theorem 2.3,
this reduces our calculations down to the calculation of P(p), where p is a prime. Unfortunately,
there is no known formula for P(p), simply in terms of the prime p. The best tool we have for
calculating P(p) is the following.

Theorem 2.4. Let p be a prime. If p = 2, then P(2) = R(2) = 3. If p is odd, then

P(p) =







R(p) if R(p) ≡ 2 (mod 4)
2R(p) if R(p) ≡ 0 (mod 4)
4R(p) if R(p) ≡ 1 (mod 2).

Remark 2.5. Any prime p such that FR(p) ≡ 0 (mod p) is known as a primitive (prime)
divisor of FR(p).

Computations in this paper were performed using Maple, MAGMA, Pari/GP and Primo.

3. The Proof of Theorem 1.1

To establish Theorem 1.1, we use a procedure similar to one used in [12]. Suppose that
C = {(zi,mi, pi)} is a covering, where pi is odd for all i. Recall that 10mi ≡ 1 (mod pi),
and that no prime pi is repeated. Then 10n ≡ 10zi (mod pi) when n ≡ zi (mod mi). Define
LC := lcmi {pi − 1}. Note that LC is independent of the list of residues in C. Using (2.1) with
κ = F r

ν , we wish to determine the values of r for which there exist infinitely many Fibonacci
numbers Fν such that

10nF r
ν +

10n − 1

9
is composite for all integers n ≥ 1. We begin with an analysis of the following somewhat
simpler problem, and then “layer” on the Fibonacci restriction. We first determine the values
of r for which there exist infinitely many positive integers k such that

sn := 10nkr +
10n − 1

9
is composite for all integers n ≥ 1. The general strategy is to use C in our search for values of
k such that sn ≡ 0 (mod pi) for each i, and then piece together the results using the Chinese
Remainder Theorem. Because of the periodicity, it is clear that we only need to check values
of r with 0 ≤ r ≤ LC − 1. We use (2.1) and proceed as follows. Let r be a fixed integer with
0 ≤ r ≤ LC − 1. Then, for each i with pi 6= 3, we calculate the values kr, with 0 ≤ k ≤ pi − 1,
to determine whether there is a k such that

kr ≡ −
1− 10−zi

9
(mod pi). (3.1)

If pi = 3, then we cannot use (3.1) since 9 is not invertible modulo 3. To avoid this com-
plication, when pi = 3 we require that mi be chosen so that mi ≡ 0 (mod 3). Then n ≡ zi
(mod mi) implies that n ≡ zi (mod 3). Then we can use the first formula in (2.1) to deduce
that k ≡ −zi (mod 3). If, for each i, we are able to find a solution βi for k, then we can use the
Chinese Remainder Theorem to solve the resulting system of congruences k ≡ βi (mod pi).

Now we add the Fibonacci layer, which can be done in one of two ways. The first way
is to find the set of Fibonacci numbers Fνi ≡ k (mod pi) for each i, if any exist. Then, if
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such numbers exist for all i, determine if the intersection of all these sets is nonempty to find
a solution to the entire problem. This method was employed in [19]. We prefer a second
approach. Let ρ =

∏

pi∈C
pi. We search for a Fibonacci number Fν such that Fν ≡ k (mod ρ).

If such a Fibonacci number Fν exists, it must be that 0 ≤ ν < lcmpi∈C (P(pi)) by Theorem
2.3. Using a computer to carry out this search is relatively painless as long as C is not too
large. We illustrate this technique with an example.

Example 3.1. Let r = 2 and suppose we want to find a Fibonacci number Fν such that F 2
ν

is 1-composite. That is, we want

10nF 2
ν +

10n − 1

9
to be composite for all integers n ≥ 1. Let

C = {(zi,mi, pi)} = {(1, 2, 11), (2, 3, 3), (4, 6, 7), (0, 6, 13)} .

It is easy to check that C is a covering. Solving each congruence

k2 ≡











−
1− 10−zi

9
(mod pi) if pi 6= 3

−zi (mod pi) if pi = 3

for k gives the following sets of solutions:

• {1, 10} modulo 11
• {1, 2} modulo 3
• {2, 5} modulo 7
• {0} modulo 13.

Hence, there are 8 possible sets of residues for k. They are

{[1, 2, 5, 0], [1, 1, 5, 0], [1, 2, 2, 0], [10, 1, 2, 0], [1, 1, 2, 0], [10, 1, 5, 0], [10, 2, 2, 0], [10, 2, 5, 0]}.

Consider first the possibility [1, 2, 5, 0]. Here ρ = 11 · 3 · 7 · 13 = 3003, and so using the Chinese
Remainder Theorem to solve for k gives k = 1937 (mod 3003). Since the periods of the primes
11, 3, 7 and 13 are, respectively, 10, 8, 16 and 28, we have that

P (ρ) = lcm (10, 8, 16, 28) = 560.

We now search for a Fibonacci number Fν such that

Fν ≡ 1937 (mod 3003). (3.2)

If such a Fibonacci number Fν exists, it must be that 0 ≤ ν < 560 by Theorem 2.3. Using a
computer to conduct this search yields the solutions F21, F91, F469 and F539. Thus, F

2
21, F

2
91,

F 2
469 and F 2

539 are 1-composite.

Remark 3.2. Although it is known that there can be at most 4 solutions to (3.2) [20, 24],
there is no known way to predict exactly how many solutions there will be. In other words, it
is unknown how to determine, a priori, the frequency of a particular residue modulo a prime
p in a period of the Fibonacci sequence modulo p.

For a given value of r, when we find such a Fibonacci number, we say that we have captured
this value of r. This process can be repeated for every list of residues for which a covering exists,
either keeping the same list of primes, or rearranging the list of primes if the new arrangement
still satisfies the conditions that 10mi ≡ 1 (mod pi), and that no prime pi is repeated. In
addition, this process can be repeated for coverings with different lists of moduli. To combine
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all of these results in a sensible manner, one must take care since the values of r captured
using one list of moduli must be “meshed” with the values of r captured using a different list
of moduli. This can be done by examining values of r (mod L), where L = lcmCLC, for all
coverings C under consideration. Then the density of the set of captured values of r will be the
cardinality of the union of these various sets divided by L. We call this density a 1-composite
Fibonacci r-density, and we denote it as rF (1). Ideally, we would like to achieve rF (1) = 1.
However, we have only been able to achieve rF (1) = 8/9.

Proof of Theorem 1.1. Consider the lists

M = [2, 3, 6, 6], P1 = [11, 3, 13, 37], and P2 = [11, 37, 3, 7],

where M is a list of moduli to be used to construct a covering, and P1 and P2 are lists of
corresponding primes. Note that here L = 180. There are only 12 coverings having M as the
moduli. Then, when we apply the procedure outlined above to the 12 coverings using P1, we
capture 145 r-values out of the total L. Using P2, we capture 155 r-values out of L. When
we take the union of these two sets of r-values, we get 160 total r-values out of a possible
L = 180. Thus, rF (1) = 8/9. Further inspection reveals that the missing r-values are exactly
the values of r such that r ≡ 0, 12, 18, 24 (mod 36). �

Remark 3.3. Since so few coverings are used in the proof of Theorem 1.1, and the coverings
used are quite simple, one might speculate that the missing r-values might be achieved using
more complicated coverings. Our analysis indicates that this is not the case–even before
introducing the Fibonacci restriction. For example, we have not been able to show that there
exist infinitely many positive integers k such that k12 is 1-composite. However, we also cannot
prove that these missing r-values can never be achieved with our methods.

4. The Proof of Theorem 1.2

Some of the items in Theorem 1.2 follow immediately from a careful analysis of the specific
details of the proof of Theorem 1.1. In any case, only minor tweaking and variations of the
general methods described in Section 3 (for example, changing the moduli) are required for
the proofs. We give below the basic details of the proof of each item.

For example, to establish item (1), we use the single covering

C = {(1, 2, 11), (2, 3, 3), (0, 6, 13), (4, 6, 7)} .

We let κ = k2 in (2.1). Then, for each pi in C, we solve the congruence sn ≡ 0 (mod pi) for
k2 to get:

k2 ≡ 1 (mod 11)
k2 ≡ 1 (mod 3)
k2 ≡ 0 (mod 13)
k2 ≡ 4 (mod 7).

(4.1)

Note that each residue in (4.1) is a square modulo the corresponding prime pi. So, we take a
square root in each case:

k ≡ 10 (mod 11)
k ≡ 2 (mod 3)
k ≡ 0 (mod 13)
k ≡ 2 (mod 7).

(4.2)
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Then we apply the Chinese Remainder Theorem to (4.2) to get infinitely many solutions k ≡ 65
(mod 3003). Hence, k2 = 652 is 1-composite. To verify that it is the smallest 1-composite
square, we use Pari/GP or Primo to certify that a prime is reached in each sequence {sn}

∞
n=1

for each κ = k2 < 652.
To establish item (2), we use the covering

C = {(0, 2, 11), (0, 3, 3), (5, 6, 13), (1, 6, 7)} .

The list of square roots we use here is [0, 0, 1, 3]. Using the Chinese Remainder Theorem, this
list produces the arithmetic progression k ≡ 66 (mod 3003). Combining this with item (1)
yields the result.

For item (3), we use the covering

C = {(1, 3, 3), (2, 3, 37), (3, 6, 7), (0, 6, 13)} ,

and proceed as in the proof of item (1).
Item (4) follows from using the covering

C = {(1, 2, 11), (1, 3, 3), (0, 6, 13), (2, 6, 7)} . (4.3)

The values of k modulo the corresponding primes that yield k ≡ 44 (mod 3003), using the
Chinese Remainder Theorem, are [0, 2, 5, 2].

For item (5), we use the covering (4.3), which produces the arithmetic progression k ≡ 1937
(mod 3003) of 1-composite integers. Observe that F21 is in this progression. Then, from
Example 3.1, we have that F 2

21 is also 1-composite using the same primes, and the result
follows.

5. The Proof of Theorem 1.3

For each d ∈ {1, 3, 7, 9}, we first construct a covering Cd = {(zi,mi, pi)} to find d-composite
squares. We require that this collection of coverings satisfies the following properties:

• 10mi ≡ 1 (mod pi) for all i,
• no prime pi is repeated in any individual covering,
• the system of congruences

σ ≡

{

−d (1− 10−zi) 9−1 (mod pi) if pi 6= 3
−dzi (mod pi) if pi = 3

(5.1)

is consistent, and
• each residue in each congruence in (5.1) is a square modulo pi.

The following coverings have been constructed accordingly:

C1 = {(0, 2, 11), (0, 3, 37), (1, 6, 13), (5, 6, 3)},

C3 = {(0, 2, 11), (0, 3, 37), (1, 4, 101), (7, 8, 73), (11, 24, 99990001), (0, 7, 239), (5, 7, 4649),

(11, 14, 909091), (1, 21, 43), (10, 21, 1933), (13, 21, 10838689), (23, 28, 281)},

C7 = {(0, 2, 11), (3, 6, 37), (5, 6, 3), (1, 30, 9091), (7, 30, 241),

(13, 30, 211), (19, 30, 271), (25, 30, 41)},

C9 = {(0, 2, 11), (1, 6, 7), (3, 6, 37), (5, 6, 13)}.

From these coverings we construct the set of congruences (5.1). We add the two additional con-
gruences σ ≡ 1 (mod 2) and σ ≡ 1 (mod 5) to ensure that gcd(σ, 10) = 1. With redundancies
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removed, the resulting system of congruences in σ is given below:

σ ≡ 1 (mod 2) σ ≡ 109 (mod 211)
σ ≡ 1 (mod 5) σ ≡ 0 (mod 239)
σ ≡ 1 (mod 3) σ ≡ 205 (mod 241)
σ ≡ 4 (mod 7) σ ≡ 7 (mod 271)
σ ≡ 0 (mod 11) σ ≡ 175 (mod 281)
σ ≡ 9 (mod 13) σ ≡ 917 (mod 1933)
σ ≡ 0 (mod 37) σ ≡ 33 (mod 4649)
σ ≡ 0 (mod 41) σ ≡ 6363 (mod 9091)
σ ≡ 4 (mod 43) σ ≡ 333 (mod 909091)
σ ≡ 3 (mod 73) σ ≡ 817266 (mod 10838689)
σ ≡ 30 (mod 101) σ ≡ 66659997 (mod 99990001).

(5.2)

Then, any value of σ satisfying all congruences in (5.2), is pandigital-composite. Note also
that each residue in each congruence in (5.2) is a square modulo the respective prime.

We now incorporate the Sierpiński layer. We seek a covering CR = {(zi,mi, pi)} such that

• 2mi ≡ 1 (mod pi) for all i,
• no prime pi is repeated,
• the system of congruences

σ ≡ −2−zi (mod pi) (5.3)

is consistent with the system (5.2),
• and −2−zi in each congruence in (5.3) is a square modulo pi.

The following covering CS := {(zi,mi, pi)}, which was used by Sierpiński [23], satisfies all
criteria above:

CS = {(1, 2, 3), (2, 4, 5), (4, 8, 17), (8, 16, 257), (16, 32, 65537), (32, 64, 641), (0, 64, 6700417)}.

The resulting system of congruences in σ is

σ ≡ 1 (mod 3) σ ≡ 1 (mod 65537)
σ ≡ 1 (mod 5) σ ≡ 1 (mod 641)
σ ≡ 1 (mod 17) σ ≡ −1 (mod 6700417)
σ ≡ 1 (mod 257).

(5.4)

We now incorporate the Riesel layer. We seek a covering CR = {(zi,mi, pi)} such that

• 2mi ≡ 1 (mod pi) for all i,
• no prime pi is repeated,
• the system of congruences

σ ≡ 2−zi (mod pi) (5.5)

is consistent with the systems (5.2) and (5.4),
• and 2−zi in each congruence in (5.5) is a square modulo pi.
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We have constructed the following covering CR in accordance with the conditions above. We
list the elements in CR with the moduli in increasing order:

CR = {(0, 2, 3), (1, 3, 7), (3, 5, 31), (4, 7, 127), (2, 11, 23), (0, 11, 89), (5, 15, 151), (9, 21, 337),

(16, 25, 601), (11, 25, 1801), (24, 27, 262657), (3, 33, 599479), (14, 35, 71), (24, 35, 122921),

(2, 45, 631), (32, 45, 23311), (41, 49, 4432676798593), (34, 55, 881), (49, 55, 3191),

(29, 55, 201961), (12, 63, 649657), (36, 63, 92737), (15, 66, 20857), (71, 75, 10567201),

(56, 75, 100801), (41, 77, 581283643249112959), (33, 81, 97685839), (6, 81, 71119),

(69, 81, 2593), (17, 90, 18837001), (55, 98, 4363953127297), (39, 99, 199),

(75, 99, 33057806959), (54, 99, 153649), (29, 105, 152041), (89, 105, 29191), (44, 105, 106681),

(117, 126, 77158673929), (92, 135, 271), (15, 135, 49971617830801), (42, 135, 348031),

(87, 147, 2741672362528725535068727), (101, 150, 1133836730401), (49, 154, 617),

(133, 154, 78233), (141, 162, 272010961), (3, 162, 135433),

(117, 165, 2048568835297380486760231), (139, 175, 535347624791488552837151),

(69, 175, 60816001), (104, 175, 39551), (183, 189, 207617485544258392970753527),

(120, 189, 1560007), (45, 210, 664441), (87, 210, 1564921), (126, 225, 13861369826299351),

(171, 225, 1348206751), (81, 225, 617401), (201, 225, 115201), (63, 231, 463),

(27, 231, 4982397651178256151338302204762057), (34, 245, 1471),

(209, 245, 252359902034571016856214298851708529738525821631), (231, 270, 15121),

(40, 275, 4074891477354886815033308087379995347151), (95, 275, 382027665134363932751),

(219, 297, 170886618823141738081830950807292771648313599433), (21, 297, 8950393),

(0, 315, 29728307155963706810228435378401), (90, 315, 870031), (27, 315, 983431),

(315, 330, 415365721), (57, 378, 126127), (363, 378, 309583),

(182, 385, 31055341681190444478126719755965134571151473925765532041),

(42, 385, 1971764055031), (314, 385, 55441),

(204, 405, 17645665556213400107370602081155737281406841),

(339, 405, 11096527935003481), (201, 405, 537841),

(440, 441, 7086423574853972147970086088434689),

(314, 441, 4487533753346305838985313), (146, 441, 5828257),

(381, 450, 281941472953710177758647201), (21, 450, 4714696801),

(111, 462, 70180796165277040349245703851057),

(419, 490, 50647282035796125885000330641), (120, 495, 991),

(417, 495, 334202934764737951438594746151),

(329, 495, 6084777159537635796550536863741698483921),

(209, 525, 4201), (524, 525, 7351), (384, 525, 181165951),

(174, 525, 325985508875527587669607097222667557116221139090131514801)}.
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We give below in (5.6) the list of the residues, in the same order as the elements in CR, for
the resulting system of congruences in (5.5):

[1, 4, 4, 8, 6, 1, 118, 52, 512, 175, 8, 74935, 25, 2048, 158, 8192, 256, 372, 64, 57812,

140685, 27289, 8997, 16, 20283, 68719476736, 69640886, 18891, 1503, 14119559,

68186767614, 182, 16777216, 101553, 6021, 7154, 75371, 512, 7, 46285662011189,

36281, 1152921504606846976, 566935142416, 266, 63094, 2097152, 118504,

281474976710656, 68719476736, 30982137, 31058, 64, 144933, 533857, 1302777,

12617341819044219, 998927987, 120298, 73071, 55,

2713929617037580363252374628536141, 1332, 68719476736, 14062,

1502514429815255023320462868412716121644, 148582725003323170588,

302231454903657293676544, 3015748, 1, 62776, 661245, 32768, 123646,

195076, 21443776412950837228588868509503911186712795997631910894,

355066555671, 14277, 10026620615278986666187860356375979062777437,

6162055000061295, 492419, 2, 2711915271689581866445014, 2767532,

590295810358705651712, 3230057134, 66464381596548351255816362526061,

2361183241434822606848, 451, 302231454903657293676544,

4017405310608176867539371541311177684943, 706, 2, 115894483,

325889727904223469615959700533470662792244967894995039663].

(5.6)

Each of the residues in (5.6) is a square modulo the corresponding prime, and the only
primes that are ever repeated in any of (5.2), (5.4) and CR, are 3, 5, 7 and 271. Note that,
in each of these cases, the congruences for σ are consistent. Thus, the systems in σ are all
consistent and, since all residues are squares modulo the corresponding prime, we can let
σ = k2 and take square roots. Choosing a particular set of these square roots, and applying
the Chinese Remainder Theorem, we get infinitely many solutions for k. Hence, any such k2

satisfies the conclusion of the theorem. For the purposes of illustration and validation, we
give a particular solution for k2 that contains 2394 digits, which is not necessarily the smallest
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possible solution:

k2 = 4302194678237332953314044560820692662007024551307440115345153292117901043190

0416163226050146484723979174551652351652102117979149819561066496619899317886761

3857534193185519386676288489565883699551299983621758813360377376743535110988993

1529776820325712014510220107123190020041284415035640760972570692850143175478892

3063687882255606949662375255267649453321627445009689281153450615483220291827714

9698181413155054303178245998353349051090305697984138703276590981647129221512136

7354809813492235283937241029801206069967910299982665955844465460275439636846696

1056825321349230220434365709386489922747993758098174851058640377876718771593365

6944645923166212785952242452108160989295066273245456694748984645710173949319024

1839985259005041266210987158450134707271268977458304674385106418471622939209955

8277971689499167948283702502257210411495677010113276749186746441931599596856689

6856015118724163403490342776306207398609078440208768955364732755214270127079439

5705668810201471785034336346660755236691218506227511278431688084285287370930504

6392396463839764129578953843753697896634666636768961947116002896209045964345805

0359258835839137346537996271376283910278017723384343015273007252255032188735687

3434149239901149088326359596114669071976731050029225039404349363855550940776902

5605535437256174486158918409081851803539076127312494240287667272339101592083321

0308235210634463437256238627248448447030160046332583627649358691602277791370057

2599498541508801239986379123891748203876642016476253725776061390184569229695963

7278097186921581128387671594531088893660173514258446475559936674638439429848283

5152105288710533547907705915719797157866879102030182556311317808176755138090550

8934217544085780088299319496338654468621828903429895611181562988450717205706597

7062624522476254561632074829414263656980962831162975156023551278979999734705250

8259542187853300672534060157988491840597911575044277563308086439929063916707522

6198723948625834224250382808714483431986877500932980386993213835899083200926366

4299141792336929978903282111568009276251875220772866635386841416607508083036920

4930612498357289855409789824460762119004492955119735551651745466716268407694783

9970005121402993876437655954168233305720559008132237920828435095660386831194466

1360012597237965674593873276544845473678969874340907298526424334925912713306827

4648532712697489981353613757305122943584677048165201519912596482928996525570248

793373376579857853398426961.

6. d-composites when d ∈ {3, 7, 9}

As mentioned in Section 1, analogous results can, in many cases, be established for d-
composite numbers when d ∈ {3, 7, 9}. Since the proofs are similar to the proofs in the
1-composite situation, we present only one such theorem.
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Theorem 6.1.

(1) There exist infinitely many Fibonacci numbers that are 3-composite. The smallest
known one is F570.

(2) There exist infinitely many Fibonacci numbers that are 7-composite. The smallest
known one is F1250.

Proof. To prove item (1), we use the covering

C = {(0, 2, 11), (0, 3, 37), (1, 6, 7), (5, 6, 13)} .

For item (2), we use the covering

C = {(0, 2, 11), (1, 3, 37), (3, 6, 13), (5, 6, 3)} .

In both cases, the techniques are similar to the techniques used in the proof of Theorem
1.2. �

Remark 6.2. Curiously, we have been unable to find a Fibonacci number that is 9-composite.
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[15] L. Jones, Variations on a theme of Sierpiński, J. Integer Seq., 10 (2007), Article 07.4.4, 15 pp.
[16] L. Jones, Polynomial variations on a theme of Sierpiński, Int. J. Number Theory, 5 (2009), 1–17.
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