p-ADIC STIRLING NUMBERS OF THE SECOND KIND

DONALD M. DAVIS

ABSTRACT. Let S(n, k) denote the Stirling numbers of the second kind. We prove that the
p-adic limit of S(p®a+c, p°b+d) as e — oo exists for any integers a, b, ¢, and d with 0 < b < a.
We call the limiting p-adic integer S(p™a+c¢,p™b+d). When a = b mod (p — 1) or d < 0, we

oo —
express them in terms of p-adic binomial coefficients (p ol

g ) introduced in a recent paper.

1. MAIN THEOREMS

In [4], the author defined, for integers a, b, ¢, and d, with 0 < b < a, (i:gj_’;) to be the
pea+tc

e d), and gave explicit formulas for these in terms

of rational numbers and p-adic integers which, if p or n is even, could be considered to be

Up((p™°n)!) := lim U,((p°n)!). Here and throughout, v,(—) denotes the exponent of p in an
e

p-adic integer which is the p-adic limit of (

integer or rational number and U,(n) = n/ p*»(™) denotes the unit factor in n. Here we do the
same for Stirling numbers S(n, k) of the second kind; i.e., we prove that the p-adic limit of
S(pfa+c,pb+d) exists if 0 < b < a, and call it S(p™a+ ¢, p>*b+d). If a =bmod (p—1) or
d < 0, we express these explicitly in terms of certain (p j;i‘gl) together with certain Stirling-like
rational numbers.

For nonnegative integers n and k, the Stirling number S(n, k) of the second kind is the
number of ways to partition a set of n objects into k nonempty subsets. (See, e.g., [2, p. 204].)
The formula which is most useful to us is

S(n, k) = %g(—n’f—i (f) in.

Our interest in them was initially due to an occurrence in algebraic topology, related to
homotopy groups of the special unitary groups [5].

We now list our four main theorems, which will be proved in Sections 2 and 4. Let Z,
denote the p-adic integers with the usual metric.

Theorem 1.1. Let p be a prime, and a, b, ¢, and d integers with 0 < a < b. Then the p-adic
limit of S(p®a + ¢, p°b + d) exists in Z,. We denote the limit as S(p™¥a + ¢,p™b+ d).

It will be assumed throughout that 0 < b < a. Note that if ¢ and/or d are negative, then
for some small values of e, S(pa + ¢, p°b + d) might have a negative argument, and hence not
be defined. However, the p-adic limit only cares about large values of e, and for sufficiently
large e, both arguments of S(p®a + ¢, pb + d) will be positive.

Theorem 1.2. If p is any prime and 0 < b < a, then S(p>=a,p>°b) =0 if a £ bmod (p — 1),

while
poopa_—lb -
S(p™a,p™b) = < pp(a_b) ) if a=bmod (p—1).
pOO

p—1
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These p-adic binomial coefficients are as introduced in [4].
Let |s(n, k)| denote the unsigned Stirling numbers of the first kind.

Theorem 1.3. If0 < b < a, then
0, d=0, c¢#0;
S(p=a+c,p*b+d) =10, d<0, ¢>0;
|s(ld], e[S (p™a, p>b), ¢<0, d<O0.
In particular, if @ Z b mod (p — 1), then S(p>*a + ¢,p*°b + d) = 0 whenever d < 0.

For any prime number p, integer n, and nonnegative integer k, define the partial Stirling
numbers T),(n, k) [3] by

_1)k )
T(n, k) = /:!) ) (—1)Z<lz>i". (1.1)

i#0 (p)
Theorem 1.4. Ifa=b mod (p—1) and d > 1, then

copa—b 1
S(pTa+d—1,p*b+d) :Tp(d—l,d)<p p_lb )
pOO

When a = bmod (p — 1), results for all S(p™°a + ¢,p>°b + d) with d > 0 follow from these
results and the standard formula

S(n, k) = kS(n — 1,k) + S(n — 1,k — 1). (1.2)

Explicit formulas are somewhat complicated and are relegated to Section 3.
We thank the referee for pointing out an oversight in an earlier version of the paper.

2. PROOFS WHEN ¢ =bmod (p—1) OR d <0

In this section, we prove Theorems 1.2, 1.3, and 1.4. If a = bmod (p — 1) or d < 0, Theorem
1.1 follows immediately from Theorems 1.2, 1.3, and 1.4 and their proofs. These give explicit
values for the limits when d < 0 and for at least one value of ¢ when d > 0. The existence of
the limit for other values of ¢ follows from (1.2) and induction. Examples are given in Section
3. We will prove Theorem 1.1 when a # b mod (p — 1) and d > 0 in Section 4.

We rely heavily on the following two results of Chan and Manna.

Theorem 2.1. ([1, 4.2, 5.2]) Suppose n > p™b withm >3 if p = 2. Then, mod p™ ! if p = 2,
and modp™ if p is odd,

(Y, ip=2 adn=0med 2

S(n,p™b) = ((nZST;;g%§%Z:i%_1), if p is odd and n = b mod (p — 1);

0, otherwise.
Theorem 2.2. ([1, 4.3, 5.3]) Let p be any prime, and suppose n > p°b+ d. Then
S(n,pb+d) =D SEb+ (p— 1)5,p°0)S(n — pb — (p — 1)j, d) mod p°.

Jj=0
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Proof of Theorem 1.2. The result follows from Theorem 2.1. If p is odd and @ # b mod (p — 1),
then v,(S(p®a,p°b)) > e, while if a = b mod (p — 1), then

pe-tpazb _
S(pa,ph) = p_l_ mod p°.
pe—lM
p—1
If p = 2, then
2¢72(2a — b) — 1 .
2%a,2°b) = d2c .
5(2a, 2°) < 2¢-2(2a — 2b) > e

Let d,(n) denote the sum of the digits in the p-ary expansion of a positive integer n.

Proof of Theorem 1.3. The first case follows readily from Theorem 2.1. If p = 2, this says that
v(S(2°a + ¢,2°b)) > e — 1 if c is odd, while if ¢ = 2k is even, then, mod 271

. . 2¢7lag + Kk —2¢72p — 1
S(2°a + 2k, 2°) = ( pe—lg 4k 9e-1p >

If 0 < k < 2¢71, this has 2-exponent

vy = da(a — b) + da(k) — (da(2a — b) + da(k — 1)) + da(2°72b — 1) — o0
as e — oo, while if K = —¢ < 0, then
vo=e—1+dyla—b—1)—da(t —1) — (e — 2+ da(2a —b— 1) — da(£)) + da(2°7%b — 1) — oc.

The odd-primary case follows similarly.

The second case of the theorem follows from the result for ¢ = 0 just established and (1.2)
by induction. For the third case, write ¢ = —k and d = —¢ and argue by induction on k and
£, starting with the fact that the result is true if kK =0 or [ = 0. Then, mod p®,

S(pta—k—1,p°b—4—1) = S(p°a —k,p°b— L) — (p°b— £)S(p°a — k — 1,p°b — ¥)

(p°a, p°b)(|s(€, k)| + £]s(6, k + 1))

(P a, p°b)[s( + 1,k + 1),

implying the result. O

S
S

The proof of Theorem 1.4 will utilize the following two lemmas. We let lg,(z) = [log,(z)].
Lemma 2.3. If p is any prime and k and d are positive integers, then
vp(Tp((p — D)k +d — 1,d) — Tp(d — 1,d)) > v,(k) — g, (d).
Proof. We have
T,((p — 1)k +d—1,d) — Tp(d — 1,d)|
p—1
= 3 S () g+ ) (g ) @R - 1)

J

= Z_:(_l)r Z T(P—l)k—l—d—l—i—t((p—il)k) (d;l)% Z(_l)j (pjcir) (pj)i-i-t.
r=1

i>0,t>0 j

T

Il
—_ =

228 VOLUME 52, NUMBER 3



p-ADIC STIRLING NUMBERS OF THE SECOND KIND

Since ((p_il)k) = M((p_il_)]f_l), we have v, ((p_.l)k) > vp(k) — vp(i) for i > 0. Also

i i =

o (i D1V () (7)) 2 max(0, 41 = (dD),

with the first part following from [8, Theorem 1.1]. Thus it will suffice to show
lg,(d) — vp(i) + max(0,i + t — vp(d!)) > 0.
This is clearly true if 1,(i) < lg,(d), while if v,(i) > lg,(d) = ¢, then vy(d!) < v, (P —1)!) =
(41

pZ;_ll_l —¢—1and i—p(i) > pt

— ¢ — 1, implying the lemma. U

The following lemma is easily proved by induction on A.

Lemma 2.4. If A and B are positive integers, then

hS
—

(4B = (4457,

Il
=)

i

Now we can prove Theorem 1.4. We first prove it when p = 2, and then indicate the minor

changes required when p is odd. Using Theorem 2.2 at the first step and Theorem 2.1 at the
second, we have

S(2°a+d —1,2°b+ d)

= > S(,2°0)S(2°a +d — 1 — i,d) mod 2°

i=2¢b
2¢~1lg—1  oe—2p
= > < 2 bl 1>S(2ea+d—1—2j,d) mod 2°71
' 7 —2¢1b
j=2¢"1p
2¢=1(a—b)—1 e—27
- ¥ <’“+2kb 1>S(2e(a—b)+d—1—2k~,d)
k=0
2¢~1(a—b) _9
B 2¢72(2a — b) — 1 — 4
= ) < ne—2p . 1 >5(2€+d—1,d)
(=1
2¢~1(a—b) _9
- 2°7%(2a —b) —1—¢ )2tHd-1
= ; < pe2p 1 )(T2(2€+d—1d d'Z< )2; ).

We have vy (26722(332:)11 Z) f(a,b) +e—wa(f), where f(a,b) = v (23(1__17571) +uva(a—0b)—1.

By [5, Theorem 1.5],
v 3 (5) (2)PF41) 2 20+ § - 1. (2.1)
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Thus, using Lemma 2.3 at the first step and Lemma 2.4 at the second, we obtain
S(2a+d—1,2°+d)
2¢=1(a—b)—1

e—2
=Td-1,d) Y (k +277h - 1) mod gmin(e-Le+f(ab)-lg(d)
k=0 k
27N a—b) +2°7% — 1

Letting e — oo yields the claim of Theorem 1.4. In the congruence, we have also used that
vo(To(d — 1,d)) > 0. In fact, by (2.1) and S(d — 1,d) = 0, we have vo(To(d — 1,d)) > & — 1.
See Table 2 for some explicit values of To(d — 1,d).
We now present the minor modifications required when p is odd and @ = b mod (p — 1). Let
a=b+ (p—1)t. Then
S(pfa+d—1,p°b +d)
pet—1
= > S@Eb+ (p—1)5,p0)S(p(a—b) — (p—1)j+d—1,d)
§j=0

pet—1

e~lp4+j—1 ‘
= (p - >5(pe(p—1)t—(p—1)3+d—1,d)
— J
7=0
pet e e—1
t b—0¢—1
_ (p +p_1 >S((p—1)£—|—d—1,d)
pe=ib—1
=1
pet—1 e—1 .
S D M (R
i=0 J
pit+plh—1
- (P,

3. MORE FORMULAS AND NUMERICAL VALUES

In Theorem 1.3, we gave a simple formula for S(p>a + ¢,p>°b + d) when d < 0. For d > 0,
all values can be written explicitly using (1.2) and the initial values given in Theorem 1.4,
provided a = bmod (p — 1).

First assume ¢ > d — 1. For i > 1, define Stirling-like numbers S;(c, d) satisfying that for
d < i or ¢ < d—1 the only nonzero value is S;(i — 1,7) = 1 and satisfying the analogue of (1.2)
when ¢ > d. Note that Sy(c,d) = S(e,d) if (¢, d) & {(0,0),(0,1)}. The following result is easily
obtained. Here we use that the binomial coefficient in Theorem 1.4 equals 1% “T_I’S (p*a, p™°b).

Proposition 3.1. Assume a=bmod (p—1). Ford>1, ¢ >d— 1, we have

d
S(p™a+¢,p™b+d) = S(p>a,p™b)(S(c,d) + > _ Si(e,d)T(i — 1,1) 7 %52).
i=1

The reader may obtain a better feeling for these numbers from the table of values of S(p>~a+
¢, p°b +d)/S(p™a,p>b) in Table 1, in which T; denotes T, (i — 1, z')p%laT_b.
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TABLE 1. S(p™a+ ¢,p°b+ d)/S(p™a,p™b) when a = bmod (p — 1)

d
1 2 3 4 5
0] m
1 1+T T,
c 2|14T 14T 420 Ty
31417 3+3T\+4Ty 1+T) +2T, T,
3Ty
Al14Ty T+7T +8Ty 6467} 1+ T, + 27, Ts
+10Ty + 975 +3T5 + 4T
511477 15+ 15T, 25+ 25T, 10+ 107} + 18Ty 1+ T) + 2T,
+16T% 38Ty + 27Ty +21T5+ 16Ty +3T3 + 4T,
5T

The first few values of To(d — 1,d) and T3(d — 1,d) are given in Table 2.

TABLE 2. Some values of T5(d — 1,d) and T3(d — 1,d)

d 1 2 3 4 5 6 7 8
Ty(d—1,d) |1 -1 2 -4 12 104 4308 56008
3 9 27 81 4779 15309

Id-1d)|1 0 -5 5 7 —x " ~ 5

For ¢ < d—1, we use (1.2) to work backwards from S(p>a+ d — 1,p>°b+ d), obtaining the
following proposition.

Proposition 3.2. Suppose a = bmod (p—1). Fork>1,d >0, let Y(k,d) = S(p™a+d —
k,p>b+ d). Then Y (1,d) is as in Theorem 1.4 for d > 1, Y(k,0) = 0 for k > 1, and, for
k>2,d>1,

Y(k,d) = (Y(k—1,d) =Y (k—1,d—1))/d.

We illustrate these values in Table 3, where again 7; denotes T),(i — 1, i)%%.
Note that since S(d —1,d) = 0 and T,(n, k) — S(n, k) is a sum like that in (1.1) taken over

i = 0 mod p, we deduce that T),(d — 1,d) = 0 if 1 < d < p, which simplifies these results
slightly.
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TABLE 3. S(p™a+ ¢,p°b+d)/S(p™a,p™b) when a = bmod (p — 1)

d
1 2 3 4
—2| TN %T2 — %Tl %T?) 648 o2+ 28156 Ty 1024 To2a 14 — SZSﬂlA T3 + 2(%%6 15 - 3441556 Ty
—1|T %T2 B %Tl 2_17T3 108 5 1 + Tl 2_56T4 B 6197152 13 + 1171258 Ty — 288 w1
c 0|y 51—y 15— 3T+ %Tl ailu — 25T + 15T — 51T
1 T 3T5 — 1Ty LT, — @Ts + LT
2 T 1Ty — 1Ty

4. THE CASE a # bmod (p — 1)

In this section, we complete the proof of Theorem 1.1 when a # b mod (p — 1) by proving
the following case.

Theorem 4.1. Suppose 0 < b < a and d > 1. Then the p-adic limit of S(p°*la — (a —
b), p°Tb + d) exists as e — .

Then lim S(p*™ta + ¢, p“F b + d) exists for all integers ¢ by induction using (1.2).
Let R,(e) = (p°*t —1)/(p — 1). The proof of Theorem 4.1 begins with, mod p®,
S o (a—0).p b+ d)

Rp(e)(a—b)
S(pe-i-lb + (p . 1)j,pe+lb)5((pe+l — 1)(a — b) — (p - 1)j7 d)

j=0
Ry(e)(a—b) e X d
_ P peh+ 45 —1 (—1)d Z(_l)l d Z,(pe+1_1)(a_b)_(p_1)j
D J d 4 i
7=0 =0
d Rp(e)(a—b) , . .
=Sk () TS (P I D et nen g0y,
, d'\ i , J
=0 7=0
We show that for each ¢, the limit as e — oo of
Rp(e)(a—b) , . .
3 (P b+j- 1>Z~<pe+1—1><a—b>—(p—1>j (4.1)
° J
7=0

exists in Z,. This will complete the proof of the theorem.
If i # 0 mod p, write =1 = Ap + 1, using Fermat’s Little Theorem. Then (4.1) becomes

Rp(ez)([f—b)(Ap)e Rp(%ib_b) (peb - 1> (Rp(e)(ag— b) — j>

£=0 j=0 J
Rp(e)(a—b) e
— PZ (Ap)é<p b+Rp(e)(a_b)>
prd peb + ¢
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by [7, p.9(3c)]. Lemma 4.3 says that for each ¢, there exists a p-adic integer

<¢b+RA@m—bv.

=1
=t v peb + £

e—00

Then Z(Ap)ZZg is a p-adic integer, which is the limit of (4.1) as e — oc.

£=0
If i =0, since 0° = 1 in (4.1) and the equations preceding it, (4.1) becomes
(peb + Ry(e)(a —b) — 1> _ p°b (peb + Ry(e)(a — b))
peb—1 p¢b + Ry(e)(a — b) b ’

Since by the proof of Lemma 4.3 v ( peb+R§£Z)_(‘1l_b)_l) —
0 in Zj, due to the p°b factor.
We complete the proof of Theorem 4.1 in the following lemma, which shows that the p-adic

limit of (4.1) is 0 when ¢ = 0 mod p and i > 0.

P eb+Rp£Z)(a_b)) is eventually constant, (
P

Lemma 4.2. If0 < j < Ry(e)(a —b), then

b1\ ., .
vp<p / )+<p+1—1><a—b>—<p—1>yze—logp<a—b+p>

for e sufficiently large.

Proof. Let ¢ = Ry(e)(a—b) —janda—b= (p—1)t+A,1 <A <p—1. The p-exponent of
the binomial coefficient becomes

dp(b—1) +e+dp((p°™ — )t + Ry(e)A — €) — dp((p°™ — 1)t + Ry(e) A+ p°b — £ —1). (4.2)

Choose s minimal so that - (p —1)—¢—1—1t>0. Then, if e > s, the p-ary expansion of
(pH — D)t + Ry(e)A — ¢ Sphts as

e=s _ 1
P(pt + A) + p2 AP T

A
p—1 p—1 £

and there is a similar splitting for the expression at the end of (4.2). We obtain that (4.2)
equals

e+ vp(b) + v ("TTR) — (A5 (p° — 1) — £ — ).

The expression in the lemma equals this plus (p — 1)¢. Since s was minimal, we have (p —

1
1)—l—t < (p—1)({+t)+p+A, and hence, Vp(p%l( 1)—£—t) <log,((p— 1)(€+t)—|—p+A)
The smallest value of (p —1)¢ —log,((p — 1)(£ +t) +p + A) occurs when £ = 0. We obtain
that the expression in the lemma is > e — log,(a — b + p). O

The following lemma was referred to above.

Lemma 4.3. If a and b are positive integers and £ > 0, then

lim p°b+ Ry(e)a
e—00 peb + /
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This is another p-adic binomial coefficient, slightly different than those of [4], which we
would call (p oo%;j;flfﬁo)a). The proof of the lemma breaks into two parts: showing that the
p-exponents are eventually constant, and showing that the unit parts approach a limit.

The proof that the p-exponent is eventually constant is very similar to the proof of Lemma
4.2. Let a = (p—1)t+A with 1 < A < p—1, and choose s minimal such that p%l(ps—l)—t—ﬁ >
0. Then the p-ary expansions split again into three parts and we obtain that for e > s, the
desired p-exponent equals v, (pt+Z+A) + v, (A(p S_l)é (P _1)_t), independent of e.

We complete the proof of Lemma 4.3 by showing that, if £ < min(R,(e — 1)a, p°b) and

p¢ > a, then
e—1 e
P+ Ry(e — Do p°b+ Ry(e)a e+ f(a,bl)—1
= o 4.

Up < pe1b 4 0 U\ pep g ) mode : (4.3)
where f(a,b,0) = min(v,(b) — 1g,(a), vp(a) — 1g,(£), vp(b) —1g,(£),1). We write the second
binomial coefficient in (4.3) as

b (PD+R(0)a)  (Ry(e)a)  (pB)! (—1)
@) Bple)a—D1 o+ 01 (po)l

We show that the unit parts of these four factors are congruent to their (e — 1)-analogue
mod petr(0)=lg(@)—1 - petvp(@)=lg,(O)=1 etrp(®) =g, (=1 and pe respectively, which will imply
the result. For the fourth factor, this was shown in [4]. For the second and third, the claim is
clear, since each of the ¢ unit factors being multiplied will be congruent to their (e—1)-analogue
modulo the specified amount.

To prove the first, we will prove

(Bple)at 1) (By(e)a + ) = (=1)® mod pe*+¥»(®)-1g,(e)-
Up<(Rp(e_1)a+1)'”(Rp(e—l)a—i—pe—lb))_( 1)’ mod pe () -lsp(@=1 - (4.5)

Since U,(j) = Up(pj), we may cancel most multiples of p in the numerator with factors in the
denominator. Using that p - Ry(e — 1) = Rp(e) — 1, we obtain that the LHS of (4.5) equals
PU,(A)/U,(B), where P is the product of the units in the numerator, A is the product of
all j = 0 mod p which satisfy

(Rp(e) — Do+ pb < j < Rp(e)a + p°b,

(1) (4.4)

and B is the product of all integers k such that
Ry(e —1a+1 <k < Ryle — a+ [2]. (4.6)

Since the mod p° values of the p-adic units in any interval of p® consecutive integers are
just a permutation of the set of positive p-adic units less than p¢, and by [6, Lemma 1] the
product of these is —1 mod p®, we obtain P = (—1)® mod p°®. Thus (4.5) reduces to showing
U,(A)/Uy(B) = 1 mod p¢7r(®)—lep(e) =1,

We have
U,(A) _ H Uy (k +p=~tb)
Up(B) Up(k) 7
taken over all k satisfying (4.6). We show that if k satisfies (4.6), then
vp(k) <lgy(a). (4.7)

Then U, (k) = U, (k + p¢'b) mod pc+7»®)~18(0)=1 " establishing the result.
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We prove (4.7) by showing that it is impossible to have 1 < a < p!, 1 <i < [%], t <e, and

Ry(e — 1)a+i =0 mod p'. (4.8)

From (4.8) we deduce o = i(p — 1) mod p’. But i(p — 1) < o, so the only way to satisfy (4.8)
would be with o = p* and i = 0, but o < p.
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