
ON CERTAIN SERIES EXPANSIONS OF THE SINE FUNCTION:

CATALAN NUMBERS AND CONVERGENCE

PETER J. LARCOMBE, SAM T. O’NEILL, AND ERIC J. FENNESSEY

Abstract. The appearance of Catalan numbers in certain infinite series expansions of the
sine function was first reported well over a decade ago. A combination of computation and
analysis is employed as we return to this topic and examine the outstanding issue of conver-
gence for this suite of results and also for the general case expansion.

1. Introduction and Background

The well-known Catalan sequence {c0, c1, c2, c3, c4, . . .} = {1, 1, 2, 5, 14, . . .}, with (n+ 1)th
term

cn =
1

n+ 1

(

2n
n

)

, n = 0, 1, 2, . . . , (1.1)

has its origins in 18th century China through discovery by scholar Antu Ming who found
what we know as Catalan numbers occurring in some expansions of the sine function. In 2000
Larcombe gave a historical backdrop to these series and established formally the initial results
[2, Results I, II, pp. 41, 42]

sin(2α) = 2

{

sin(α)−
∞
∑

n=1

[ cn−1

22n−1

]

sin2n+1(α)

}

(1.2)

and

sin(4α) = 2

{

2sin(α)− 5sin3(α) +
∞
∑

n=1

[

8cn−1 − cn
4n

]

sin2n+3(α)

}

, (1.3)

identifying a recursive procedure to allow extension of these and giving results accordingly
for sin(6α), sin(8α) and sin(10α). Assuming a non-zero frequency n, say, consideration of the
classic differential equation 0 = y′′(z) +n2y(z) governing simple harmonic motion for y(z) led
a short time later to the general series [5, Eq. (18), p. 68]

sin(nz) = nsin(z)2F1

(

1
2 − n

2 ,
1
2 +

n
2

3
2

∣

∣

∣

∣

sin2(z)

)

, (1.4)

with the special case n = 2 (and z = α) shown to deliver (1.2) as a point of interest; the wider
role of hypergeometric function theory in these types of expansions was also discussed.

Given integer p ≥ 1, a general form of the expansion for sin(2pα), in odd powers of sin(α),
was proposed [2] in view of the particular results developed therein. This was picked up and
analyzed by Xinrong [7] whose starting point was a standardized form

sin(2pα) = 2

{

p
∑

n=1

α(p)
n sin2n−1(α) +

∞
∑

n=1

hp(cn−1, . . . , cn+p−2)

22(n+p)−3
sin2(n+p)−1(α)

}

(1.5)
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(of which (1.2) and (1.3) are special cases with α
(1)
1 = 1, h1(cn−1) = −cn−1 and α

(2)
1 = 2,

α
(2)
2 = −5, h2(cn−1, cn) = 2(8cn−1 − cn)). He confirmed that—beyond an initial p stand-alone

terms with individual numerical coefficients—the functional coefficient hp(cn−1, . . . , cn+p−2) of
each remaining term in the expansion indeed had the key interesting feature that it comprised a
linear combination of the p Catalan elements cn−1, . . . , cn+p−2 (Larcombe [3, Eq. (13), p. 212]
lists h3(cn−1, cn, cn+1) = −(256cn−1 − 64cn + 3cn+1), h4(cn−1, cn, cn+1, cn+2) = 4(1024cn−1 −
384cn+40cn+1−cn+2) and h5(cn−1, cn, cn+1, cn+2, cn+3) = −(65536cn−1−32768cn+5376cn+1−
320cn+2 + 5cn+3)). Writing

hp(cn−1, . . . , cn+p−2) = β
(p)
0 cn−1 + β

(p)
1 cn + · · ·+ β

(p)
p−1cn+p−2, (1.6)

he applied umbral calculus to yield its general coefficient as

β(p)
n = [xn]{Hp(x)}, n = 0, . . . , p− 1, (1.7)

where (note the sign factor omitted in [7, Theorem 1.2, p. 158])

Hp(x) = (−1)p
(2 +

√
4− x)2p − (2 −

√
4− x)2p

8
√
4− x

(1.8)

is, for p ≥ 1, a degree p − 1 polynomial in x which acts as an (ordinary) generating function

for the finite p-sequence {β(p)
0 , . . . , β

(p)
p−1} of coefficients. A preprint of [7], sent to the author

P. J. L. in early 2001 as a private communication from Xinrong, allowed this observation to

be carried forward with an intermediate and final closed form for β
(p)
n formulated thus [3,

Lemmas 1, 2, pp. 213, 216]:

β(p)
n = (−1)n+p22(p−n)−3

p−1
∑

i=n

(

i
n

)(

2p
2i+ 1

)

= (−1)n+p16p−(n+1)

(

2p − (n+ 1)
n

)

. (1.9)

With β
(p)
n determined, the function (linear sum) hp(cn−1, . . . , cn+p−2) =

∑p−1
i=0 β

(p)
i cn+i−1 of

(1.6) can be converted to hypergeometric form and duly evaluated [3, Theorem, p. 218] as

hp(cn−1) = (−1)pp(n+ p)
[2(n + 2p− 1)]!n!

(n+ 2p − 1)![2(n + p)]!
cn−1. (1.10)

The structure of (1.10) reflects the potential repeated use (in a ‘cascading’ manner) of the
simple recurrence (n+2)cn+1 = 2(2n+1)cn, relating neighboring Catalan numbers, to reduce
the dependency of hp on p Catalan numbers to just one, namely, cn−1. While it is impossible to
execute this procedure and arrive at (1.10) other than for a few low values of p, hypergeometric
conversion and evaluation of hp (1.6) yields it entirely naturally.

The appearance of the Catalan numbers in the general expansion (1.5) is, to say the least,
somewhat surprising, and is but one more instance of the ubiquity of the Catalan sequence.
Remarking for completeness that Chinese historian J. Luo was the first to announce Ming’s
awareness of Catalan numbers in 1988 [6] (see also [1]), and that Remark 6 of [4] offers
some little-known biographical information on Ming himself, this concludes the historical and
technical background to our presentation.

2. Results

The convergence interval |z| < π/2 for all even n instances of (1.4) emerges naturally from
the methodology adopted in [5], and this interval was shown to apply (w.r.t. α) in (1.2), (1.3)
and those other expansions given originally in [2]. Numeric confirmation, and a more detailed
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treatment of the issue of convergence within this class of series, together form the remit of the
paper.

2.1. Convergence over (−π
2 ,

π
2 ). Write the r.h.s. series of (1.5) as Rp(α). Noting that

(1.5) holds trivially at α = 0 (Rp(0) = 0), the parity of the sine function (being an odd
one) guarantees that convergence of Rp(α) over the α interval (0, π2 ) is matched exactly over
(−π

2 , 0), and so convergence occurs over the full open interval (−π
2 ,

π
2 ).

2.2. Endpoints Convergence. Here we examine convergence at the interval endpoints α =
±π

2 , where (1.5) reads

0 =

p
∑

n=1

α(p)
n +

∞
∑

n=1

hp(cn−1, . . . , cn+p−2)

22(n+p)−3
= E(p), (2.1)

say, in both sign cases. It is this equation we now wish to show holds in order to establish
convergence, which of course requires the correct convergence of the infinite sum within E(p);

we write ap(n) = hp(cn−1, . . . , cn+p−2)/2
2(n+p)−3 (n ≥ 1), and thus consider

∑

∞

n=1 ap(n).
We adopt the form (1.10) of hp for convenience, denoting hp(cn−1) by hp(n). With ap(n) =

hp(n)/2
2(n+p)−3, this gives

ap(n+ 1)

ap(n)
=

1

4

hp(n+ 1)

hp(n)
=

1

2

(2n− 1)(2n + 4p − 1)

(n+ p)(2n + 2p+ 1)
(2.2)

after some algebra, hence limn→∞{|ap(n + 1)/ap(n)|} = limn→∞{ap(n + 1)/ap(n)} = 1 and
the Ratio Test is inconclusive in terms of convergence.1 Similarly, the Limit (or nth term)
Test renders convergence unresolved since it is known [3, Eq. (37), p. 219] that

hp(n) ∼
(−1)p4n+p−2p√

π

1

n
√
n

(2.3)

for large n � p ≥ 1, so that ap(n) ∼ (−1)pp/2n
√
πn = O(1/n

√
n) and limn→∞{ap(n)} = 0.

A different approach, however, proves more successful. Define an infinite sequence of terms
{b1(n), b2(n), b3(n), . . .}, where, for p ≥ 1, bp(n) = (−1)pp/2n

√
πn (that is, the large n form

of ap(n)). Clearly, limn→∞{|ap(n)/bp(n)|} = limn→∞{ap(n)/bp(n)} = 1 so that the series
∑

∞

n=1 ap(n) and
∑

∞

n=1 bp(n) either both converge or diverge (Limit Comparison Test); in other

words,
∑

∞

n=1 ap(n) converges if and only if
∑

∞

n=1 1/n
√
n converges. Noting that n−3/2 > 0

for n ≥ 1, put g(x) = x−3/2. Evidently, g(x) is a decreasing and continuous function on the
interval [1,∞), and since

∫

∞

1 g(x) dx has a finite value of 2 then
∑

∞

n=1 1/n
√
n converges by

virtue of the Integral Test; hence, our sum
∑

∞

n=1 ap(n) also converges, and we conclude as
follows. We rewrite E(p) (2.1) in the form

E(p) =

p
∑

n=1

α(p)
n +

∞
∑

n=1

ap(n) =

p
∑

n=1

e(p)n +

∞
∑

n=p+1

e(p)n =

∞
∑

n=1

e(p)n , (2.4)

as a single sum series (where e
(p)
n = α

(p)
n , n = 1, . . . , p). Now, since

∑

∞

n=1 ap(n) converges so
does E(p), and it remains to show that E(p) converges to zero which we are able to do without
difficulty by appealing to Abel’s Theorem (stated for completeness).

1The finite sum hp(cn−1, . . . , cn+p−2), as seen empirically from the explicit known cases for p = 1, . . . , 5,
delivers terms that are all positive or all negative depending on the parity of p; the appropriate sign is evident
from the contracted univariate form hp(cn−1) = hp(n) (1.10). Thus, for fixed p ≥ 1 then

∑
∞

n=1
ap(n) is a single

sign series with term ratio |ap(n+ 1)/ap(n)| = ap(n+ 1)/ap(n) > 0 (positivity is also confirmed by (2.2)).
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Theorem 2.1. (Abel’s Theorem) Let real r > 0 and suppose
∑

∞

n=0 dnr
n converges. Define,

on the open interval (−r, r) for x, a function f(x) =
∑

∞

n=0 dnx
n. Then

lim
x→r

{f(x)} =

∞
∑

n=0

dnr
n.

If we define a function f(x) =
∑

∞

n=1 e
(p)
n x2n−1 (where x = sin(α)) on the open interval (−1, 1)

for x, then on this interval we must have f(x) = sin(2psin−1(x)) by construction. Applying
Abel’s Theorem duly gives E(p) = limx→1{f(x)} = limx→1{sin(2psin−1(x))} = 0, as required.

2.3. Convergence over a Cycle. The series expansion Rp(α) of (1.5) has been shown to
hold at α = ±π

2 , and the convergence interval for it can now be stated as [−π
2 ,

π
2 ]. Based on

this, we are able to make observations about convergence over a complete cycles interval [0, 2π]
during which, having period π/p, the function sin(2pα) completes 2p cycles with p/2 cycles
over each of the four sub-intervals [0, π2 ], [

π
2 , π], [π,

3π
2 ] and [3π2 , 2π]. Computations indicate that

Rp(α) converges correctly to sin(2pα) over (0, π2 ) and (3π2 , 2π), while over (π2 , π) and (π, 3π2 )
convergence is to −sin(2pα) which is, perhaps, counter-intuitive; Figure 1 illustrates this for
values of p = 1, 3.

Figure 1. Plots of R1(α) and R3(α) versus α over (0, 2π).

The observations are readily explained, however, as an immediate consequence of the parity of

the sine function, for defining a function fp(α) =
∑

∞

i=0 γ
(p)
i sin2i+1(α) it is elementary to show

that

fp(α+ kπ) =

{

fp(α) k (even) = 0,±2,±4, . . .
−fp(α) k (odd) = ±1,±3,±5, . . . .

(2.5)

Since it is known that there exists constants γ
(p)
0 , γ

(p)
1 , γ

(p)
2 , . . . , such that fp(α) = Rp(α), we

see precisely why Rp(α) converges correctly over (0, π2 ) and (3π2 , 2π) and, excepting α = π and
other zeros of sin(2pα) (all occurring at the 2p−1 multiples p+1, p+2, . . . , 2p, . . . , 3p−2, 3p−1
of π/2p), incorrectly over (π2 ,

3π
2 ).
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2.4. Convergence Rate. Note that, in view of (2.5), the original left-hand interval endpoint
of consideration α = −π

2 of Section 2.1 now translates to α = −π
2 + 2π = 3π

2 which, along
with α = π

2 , are those particular points where convergence of Rp(α) is more difficult to
achieve computationally; Figure 2 shows an iteration count for the cases p = 1, 2 where this
phenomenon is visibly evident. Away from the points α = π

2 ,
3π
2 a high level of accuracy can

be reached, ‘convergence’ of a series Rp(α) declared when successive values arising from the
addition of a series term differ in magnitude by less than a tolerance of 10−10 (see also Section
4).

Figure 2. Plots of Computational Convergence Effort for R1(α) and R2(α)
versus α over [0, 2π].

3. An Expansion by Euler

In [4] a global expansion (said to be due to Euler)

sin(mα) = msin(α)−
[

m(m2 − 12)

3!

]

sin3(α)

+

[

m(m2 − 12)(m2 − 32)

5!

]

sin5(α)

−
[

m(m2 − 12)(m2 − 32)(m2 − 52)

7!

]

sin7(α) + · · ·

=
∞
∑

n=0

S(m)
n sin2n+1(α), (3.1)

was put forward (avoiding the split sum format of (1.5)), based on which the general (func-
tional) coefficient is, for m (even) ≥ 2, n ≥ 0, expressible in terms of Gamma functions [4,
Lemma 2, p. 9] and in a form analogous to hp(cn−1) (1.10) [4, Theorem 2, p. 11]; the Section
2.2 convergence of sin(mα) at α = ±π/2 could, of course, equally have been established using

properties of S
(m)
n .

It is not known to the authors how Euler formulated his expansion (his methods of the day
were sometimes mathematically extemporaneous), and the striking feature of (3.1)—which
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shows immediately why, for m (odd) ≥ 1, expansions are finite—is that it gives no hint of the
potential role of Catalan numbers in r.h.s. coefficients for m even. For completeness, and as a
point of interest to the general readership, we provide a pleasing derivation outline of Euler’s
expansion in an Appendix.

We finish with some remarks on computational aspects of the work presented, the large
scale calculations incurred having at times caused convergence issues which we feel are worth
a mention.

4. Computations

The graphs above were produced using the (interpreted) language Python (v. 2.7) in con-
junction with the graphing library Matplotlib (v. 1.2.1) using a 64-bit (8 GB) operating system
driven by an Intel Core i7 CPU; convergence was set as described above. While this set up was
sufficient for the most part, it proved inadequate for those calculations performed very close
to the points α = π

2 ,
3π
2 , since without relaxing the tolerance upwards an unrealistic amount of

series terms are required in order to obtain results as these threshold points are approached.
Under such circumstances individual terms also become almost impossible to evaluate due
to the magnitude of the Catalan numbers, causing numeric intractability and unacceptable
convergence rates (as an example, in the sin(2α) expansion with a value of α = 1.57 rads
(π/2 = 1.5708) then using, for instance, s = O(105) terms Catalan numbers cs appear in
calculations and series values of sin(2α) differ from the true value by as much as 10−4 still).

Near to these points of interest it is clear that a so-called unbounded data type is needed
to correctly hold the approximation in memory and achieve convergence to a high degree of
accuracy. Python—being an interpreted language—struggles to provide the computational
speed/memory required around these points. An alternative approach would be to use a
compiled language, such as C++ or Java, which would certainly be much faster and allow for
better approximations to be made here.

5. Summary

This paper completes an investigation into series expansions first motivated by the appear-
ance of Catalan numbers in a historical context. Drawing on previous work, convergence of
the expansion for sin(2pα) has been examined analytically in the general case and computa-
tionally for low values of p. A corresponding expansion associated with Euler has also been
discussed and formulated.

Appendix

Here we give a first principles method to obtain the expansion of Euler (3.1). Write f(α) =
sin(mα) as f(α) = sin(msin−1[sin(α)]). Setting x = x(α) = sin(α) then f(α) = f(x(α)) =
sin(msin−1[x(α)]). We seek a series form of f(x) = sin(msin−1(x)) in odd powers of x.

Differentiating w.r.t. x we find that f ′(x) = m(1− x2)−1/2cos(msin−1(x)), and in turn

f ′′(x) = mx(1− x2)−3/2cos(msin−1(x)) −m2(1− x2)−1sin(msin−1(x))

= x(1− x2)−1f ′(x)−m2(1− x2)−1f(x). (A.1)

In other words,

f ′′(x)− P (x)f ′(x) +Q(x)f(x) = 0, (A.2)
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where P (x) = x/(1 − x2), Q(x) = m2/(1 − x2). Since the denominators of P (x), Q(x) are
non-zero at x = 0 these functional coefficients are analytic there. Thus, x = 0 is an ordinary
point of the differential equation

(1− x2)f ′′(x)− xf ′(x) +m2f(x) = 0, (A.3)

about which we can seek, with justification, a power series solution f(x) =
∑

∞

n=0 unx
n.

Omitting the details (which we leave as a straightforward reader exercise), this series form
of solution, when substituted into (A.3), eventually yields a single recurrence relation

un+2 = − (m2 − n2)

(n+ 1)(n + 2)
un, n ≥ 0. (A.4)

With u0 = f(0) = sin(msin−1(0)) = 0, then u0 = u2 = u4 = u6 = · · · = 0, as required. Noting

that u1 = f ′(0) = m(1 − 02)−1/2 = m, the recursion delivers u3, u5, u7, . . . , and so Euler’s
result in x(α) = sin(α).
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