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Abstract. Here, we show that if E is a CM elliptic curve with CM field Q(
√
−d), then

the set of n for which the nth Fibonacci number Fn satisfies an elliptic Korselt criterion for
Q(
√
−d) (defined in the paper) is of asymptotic density zero.

1. Introduction

Let b ≥ 2 be an integer. A composite integer n is a pseudoprime to base b if the congruence
bn ≡ b (mod n) holds. There are infinitely many pseudoprimes with respect to any base b,
but they are less numerous than the primes. That is, putting πb(x) for the number of base b
pseudoprimes n ≤ x, a result of Pomerance [9] shows that the inequality

πb(x) ≤ x/L(x)1/2 where L(X) = exp (log x log log log x/ log log x)

holds for all sufficiently large x. It is conjectured that πb(x) = x/L(x)1+o(1) as x→∞.
Let {Fn}n≥0 be the sequence of Fibonacci numbers Fn+1 = Fn + Fn−1 for n ≥ 1 with

F0 = 0, F1 = 1, and {Ln}n≥0 be its companion Lucas sequence satisfying the same recurrence
with initial conditions, L0 = 2, L1 = 1. For the Fibonacci sequence {Fn}n≥1 is was shown in
[7] that the set of n ≤ x such that Fn is a prime or a base b pseudoprime is of asymptotic
density zero. More precisely, it was shown that the number of such n ≤ x is at most 5x/ log x
if x is sufficiently large.

Since elliptic curves have become very important in factoring and primality testing, several
authors have defined and proved many results on elliptic pseudoprimes. To define an elliptic
pseudoprime, let E be an elliptic curve over Q with complex multiplication by Q(

√
−d).

Here, d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. If p is a prime not dividing 6∆E , where ∆E is the
discriminant of E, and additionally (−d|p) = −1, where (a|p) denotes the Legendre symbol of
a with respect to p, then the order of the group of points on E modulo p denoted #E(Fp),
equals p+ 1. In case p - ∆E and (−d|p) = 1, we have #E(Fp) = p+ 1− ap for some nonzero
integer ap with |ap| < 2

√
p. Gordon [3], used the simple formula for #E(Fp) in the case

(−d|p) = −1 to define the following test of compositeness: Let Q be a point in E(Q) of infinite
order. Let N > 163 be a number coprime to 6 to be tested. We compute (−d|N). If it is
1 we do not test and if it is 0, then N is composite. If it is −1, then we compute [N + 1]Q
(mod N). If it is not O (the identity element of E(Q)), then N is composite while if it is O,
then we declare N to be a probable prime for Q ∈ E. So, we can define N to be a pseudoprime
for Q ∈ E if it is composite and probable prime for Q ∈ E. The counting function of elliptic
pseudoprimes for Q ∈ E has also been investigated by several authors. The record belongs to
Gordon and Pomerance [4], who showed that this function is at most exp(log x − 1

3 logL(x))
for x sufficiently large depending on Q and E. We are not aware of research done on the set
of indices n for which Fn can be an elliptic pseudoprime for Q ∈ E.
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There are composite integers n which are pseudoprimes for all bases b. They are called
Carmichael numbers and there exist infinitely many of them as shown by Alford, Granville
and Pomerance in 1994 in [1]. They are also characterized by the property that n is composite,
squarefree and p− 1 | n− 1 for all prime factors p of n. This characterization is referred to as
the Korselt criterion.

Analogously, given a fixed curve E having CM by Q(
√
−d), a composite integer n which is

an elliptic pseudoprime for all points Q of infinite order on E is called an elliptic Carmichael
number for E. Fix d ∈ D. The authors of [2] defined the following elliptic Korselt criterion
which ensures that n is an elliptic Carmichael number for any E with CM by Q(

√
−d) provided

that (N,∆E) = 1.

Theorem 1.1. (EPT) Let N be squarefree, coprime to 6, composite, with an odd number of
prime factors p all satisfying (−d|p) = −1 and p+1 | N+1. Then N is an elliptic Carmichael
number for any E with CM by Q(

√
−d) provided that (N,∆E) = 1.

We call positive integers N satisfying the first condition of Theorem 1.1 elliptic Korselt for
Q(
√
−d). In [2], it is shown that there are infinitely many elliptic Korselt numbers for Q(

√
−d)

for all d ∈ D under some believed conjectures from the distribution of prime numbers. It was
recently shown by Wright [10] that the number of elliptic Carmichael numbers up to x is

≥ exp

(
K log x

(log log log x)2

)
with some positive constant K

for all x > 100.
Here, we fix d ∈ D := {1, 2, 3, 7, 11, 19, 43, 67, 163} and look at the set of numbers

N (d) = {n : Fn is elliptic Korselt for Q(
√
−d)}.

It is easy to prove that N (1) = ∅. Namely, since F2n+1 = F 2
n + F 2

n+1, it follows that if r ≥ 5
is an odd prime, then all prime factors of Fr are congruent to 1 modulo 4. In particular,
(−1|p) = 1 for all prime factors p of Fr. Since Fr | Fn for all r | n, then the primes p|Fr (recall
that they all satisfy (−1|p) = 1) would divide Fn but that is impossible since Fn is Korselt

and its prime factors must satisfy (−1|p) = −1. This shows that if n ∈ N (1), then n cannot
have prime factors r ≥ 5, therefore n = 2a · 3b, which is impossible since Fn must be coprime
to 6. It is likely that N (d) is finite for all d ∈ D\{1} (or even empty) but we do not know how

to prove such a strong result. Instead, we settle for a more modest goal and prove that N (d)

is of asymptotic density 0. For a subset A of the positive integers and a positive real number
x put A(x) = A ∩ [1, x].

2. The result

We prove the following result.

Theorem 2.1. For d ∈ D\{1}, we have

N (d)(x)� x(log log x)1/2

(log x)1/2
.

Proof. Let Q be the set of primes q ≡ 2, 3 (mod 5). Let x be a large positive real number
and y be some parameter depending on x to be made more precise later. Consider n ∈ N (x),
where we omit the dependence on d for simplicity. Put N = Fn. Our proof uses the fact that
N is coprime to 6 but it does not use the fact that (−d|p) = −1 for all prime factors p of N .
We distinguish several cases.
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Case 1. n ∈ N1(x) = {n ≤ x : q - n for any q ∈ Q ∩ (y, x)}.
By Brun’s sieve (see, for example, Theorem 2.3 on Page 70 in [5]), we have

#N1(x)� x
∏
p∈Q
y≤p≤x

(
1− 1

p

)
� x

(
log y

log x

)1/2

. (2.1)

From now on, we work with n ∈ N (x)\N1(x), so there exists q ∈ Q with q ≥ y such that q | n.
Since such q ≡ 2, 3 (mod 5), it follows that Fq ≡ −1 (mod q). Furthermore, let p be any
prime factor of Fq. Then p ≡ ±1 (mod q). Since Fq ≡ −1 (mod q), at least one of the prime
factors p of Fq has the property that p ≡ −1 (mod q). Thus, q | p + 1. Since p + 1 | Fn + 1,
we get that q | Fn + 1. Note that 4 - n because otherwise Fn is a multiple of F4 = 3, which is
not possible. We now use the fact that

Fn + 1 = F(n+δ)/2L(n−δ)/2,

for some δ ∈ {±1,±2} such that n ≡ δ (mod 4). Thus,

q | F(n+δ)/2L(n−δ)/2 | Fn−δFn+δ.
Hence, either q | Fn−δ or q | Fn+δ. This shows that if we put z(q) for the index of appearance
of q in the Fibonacci sequence, then n ≡ ±δ (mod z(q)).

Put R = {q : z(q) ≤ q1/3}. By a classical argument due to Hooley [6], we have

#R(t)� t2/3. (2.2)

Case 2. N2(x) = {n ∈ N1(x)\N (x) : q ∈ R}.
If n ∈ N2(x), then q | n for some q > y in R. For a fixed q, the number of such n ≤ x is

bx/qc ≤ x/q. Hence,

#N2(x) ≤
∑
y≤q≤x
q∈R

x

q
≤ x

∑
q≥y
q∈R

1

q
� x

y1/3
, (2.3)

where the last estimate follows from estimate (2.2) by the Abel summation formula.

Case 3. N3(x) = N (x)\ (N1(x) ∪N2(x)) .

If n ∈ N3(x), then we saw that there exists q ≥ y in Q\R dividing n such that n ≡ δ
(mod z(q)) for some δ ∈ {±1,±2}. Since q ≡ 2, 3 (mod 5), z(q) divides q + 1, therefore q
and z(q) are coprime. Fixing q and writing n = qm, the congruences mq ≡ δ (mod z(q)) put
m ≤ x/q into one of four possible arithmetic progressions modulo z(q). The number of such
integers for a fixed q is therefore at most 4bx/qz(q)c + 4 ≤ 4x/qz(q) + 4. Summing up the
above bound over all q ≤ x in Q\R, we get that

#N3(x) ≤ 4
∑
y≤q≤x
q 6∈R

x

qz(q)
+ 4π(x) ≤ 4x

∑
q≥y

1

q4/3
+ 4π(x)� x

y1/3
+

x

log x
. (2.4)

Comparing estimates (2.1), (2.3), (2.4), it follows that we should choose y such that

y1/3 = (log x/ log y)1/2, giving y = (2/3 + o(1))
(log x)3/2

(log log x)3/2

as x→∞. With this choice for y, we get the desired result from (2.1), (2.3) and (2.4), because

#N (x) ≤ #N1(x) + #N2(x) + #N3(x).
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3. Comments and Remarks

If d 6= 1, we used neither the condition that (−d|p) = −1 for all prime factors p of Fn, nor
the condition that Fn is squarefree and has an odd number of prime factors. It is likely that
if one can find a way to make use of these conditions, then one can give sharper (smaller)

upper bound on #N (d)(x) than that of Theorem 2.1. Finally, there are other definitions of
elliptic Carmichael numbers N which apply to elliptic curves without CM (see for example
[7]). It was shown in [7] that the set of N which are Carmichael for E in that sense is of
asymptotic density zero. It would be interesting to show that the set of n such that Fn is
elliptic Carmichael in that sense is also a set of asymptotic density zero. The methods of this
paper do not seem to shed much light on this modified problem.
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