
THREE ANALOGUES OF STERN’S DIATOMIC SEQUENCE

SAM NORTHSHIELD

Abstract. We present three analogues of Sterns diatomic sequence by altering various def-
initions of that sequence: the first involves replacing addition by another binary operation,
the second by replacing a pair of complementary sequences by another, the third by replacing
the binary representation of an integer by its Zeckendorf representation.

1. Introduction

Stern’s diatomic sequence a1 = 1, a2n = an, a2n+1 = an + an+1 is a particularly well studied
sequence (see, e.g., [1], [8], [9] and references therein, as well as [13]). The first section
is devoted to showing that this sequence is interesting. In particular, we shall look at the
following properties.

• n 7→ an+1/an is a bijection between the positive natural numbers and the positive
rational numbers,
• n/2k 7→ an/an+2k extends to a continuous strictly increasing function on [0, 1] known

as “Conway’s box function” (it’s inverse is ?(x), Minkowski’s question-mark function),
• It shares a number of similarities to the Fibonacci sequence; in particular, it has a

Binet type formula.

The remaining three sections are devoted to three analogues of Stern’s sequence:

• We replace addition by another binary operation; in particular, we define b1 = 0, b2n =
bn, b2n+1 = bn ⊕ bn+1 where x ⊕ y = x + y +

√
4xy + 1. This sequence is related

to Stern’s sequence and arises from certain sphere packings. It has apparently not
appeared before in the literature.
• We replace the complementary indexing sequences {2n} and {2n+ 1} by another pair

of complementary sequences; in particular, let R1 = 1, Rα(n) = Rn, Rβ(n) = Rn+Rn+1

where α(n) = bnφ − 1/φ2c, β(n) = bnφ2 + φc form a specific pair of complementary
Beatty sequences. This sequence has been extensively studied as Rn is the number of
ways n can be represented as a sum of distinct Fibonacci numbers.
• The known Binet type formula for Stern’s sequence [9] is written in terms of the

sequence s2(n) (:= the number of terms in the binary expansion of n). We replace
s2(n)by sF (n)(:= the number of terms in the Zeckendorf representation of n). This new
sequence, apparently not studied before, is an integer sequence with several interesting
(and several conjectural) properties.
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2. Stern’s Diatomic Sequence

Consider the following “diatomic array” [1] formed as a variant of Pascal’s triangle; each
entry is either the value directly above or else the sum of the two above it.

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
. . . . . . . . . . . . . . . . .

The word “diatomic” is used here since every entry of the diatomic array gets its value from
either one or two entries above and gives that value to three entries below, hence has “valence”
4 or 5 (hence the diatomic array models a kind of crystalline alloy of two elements).

Ignoring the right most column and reading the numbers as in a book, we get Stern’s
diatomic sequence:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, ...

The sequence is thus defined by the recurrence

a1 = 1, a2n = an, a2n+1 = an + an+1. (1)

We define a0 to be 0 (the value consistent with a2·0+1 = a0 + a1).
Perhaps the most celebrated property of this sequence is that every positive rational number

is represented exactly once as an+1/an. See, for example, [4] or [9]. We rephrase this fact as
a theorem.

Theorem 2.1. Every ordered pair of relatively prime positive integers appears exactly once in
the sequence {(an, an+1)}.

Proof. For an ordered pair, consider the process of subtracting the smallest from largest (stop
if equal). For example, (4, 5) 7→ (4, 1) and (7, 3) 7→ (4, 3). By the definition of Stern’s sequence,

(a2n, a2n+1), (a2n+1, a2n+2) 7−→ (an, an+1).

Every relatively prime pair appears (if not, then there is an ordered pair not on the list with
lowest sum. Apply the process; the result has lower sum and so is (an, an+1) for some n and so
the original pair is either (a2n, a2n+1) or (a2n+1, a2n+2)). Every relatively prime pair appears
exactly once since, if not, then there exist m < n with (am, am+1) = (an, an+1) and such that
m is as small as possible. Applying the process to both implies bm/2c = bn/2c and thus
am = am+1 = am+2 which is impossible. �

One can then rewrite any sum over relatively prime pairs in terms of Stern’s sequence. As
an example, we rephrase the Riemann hypothesis. First note that n 7−→ a2n/a2n+1 is an
explicit bijection from Z+ to Q ∩ (0, 1). Then the Riemann hypothesis is equivalent to∑

a2n+1<x

e2πia2n/a2n+1 = O(x1/2+ε).

Briefly why this is so: the Möbius function can be written as µ(n) :=
∑

1≤k≤n,gcd(n,k)=1 e
2πik/n

and so the left hand side is really just Merten’s function M(x) :=
∑

n<x µ(n). The connection
between Merten’s function and the Riemann hypothesis is well-known; see for example [5].
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Minkowski’s question mark function was introduced in 1904 as an example of a “singular
function” (it is strictly increasing yet its derivative exists and equals 0 almost everywhere). It
is defined in terms of continued fractions:

?(x) = 2

∞∑
n=1

(−1)n+1

2a1+a2+...+an

where x = 1/(a1+1/(a2+1/(a3+ ...))). By Lagrange’s theorem that states that the continued
fraction representation of a quadratic surd must eventually repeat, it is clear that ?(x) takes
quadratic surds to rational numbers.

The function

f :
k

2n
7−→ ak

a2n+k

extends to a continuous strictly increasing function on [0, 1]. This function is known as “Con-
way’s box function” and its inverse is Minkowski’s question mark function ?(x). See [9] for a

0

0

1

1

0

0

1

1

Figure 1. The graphs of y = f(x) and its inverse y =?(x).

proof.
The functions f(x) and ?(x) extends to homeomorphisms (or, equivalently, are restrictions

of homeomorphisms) between two fractals.

Figure 2. Sierpinski gasket and an Apollonian circle packing
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Stern’s sequence is related to the Fibonacci sequence in a number of ways. For example,
the Fibonacci sequence is a subsequence:

1 1

1 2 1

1 3 2 3 1

1 4 3 5 2 5 3 4 1

1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
. . . . . . . . . . . . . . . . .

It is easy to see that
aJ(n) = Fn (2)

where J(n) := (2n − (−1)n)/3 is the Jacobsthal sequence [12, A001405].
A new result by Coons and Tyler [3] identifies and proves the asymptotic upper bound:

lim sup
n→∞

an
(3n)log2 φ

=
1√
5
.

The constants involved in this formula are perhaps not so surprising since, by formula (2), it
is clear that

lim
n→∞

aJ(n)/((3J(n))log2 φ) = 1/
√

5.

Stern’s sequence has a few remarkable similarities to the Fibonacci sequence (see [9] and
[10]). For example, Stern’s sequence satisfies a modified Fibonacci recurrence:

an+1 = an + an−1 − 2(an−1 mod an).

Next, certain diagonal sums across Pascal’s triangle yield the Fibonacci sequence while the
corresponding sums across Pascal’s triangle modulo 2 yield Stern’s sequence:

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1
· · · · · ·

,

1
1 1

1 0 1

1 1 1 1

1 0 0 0 1
· · · · · ·

Fn+1 =
∑

2i+j=n

(
i+ j

i

)
, an+1 =

∑
2i+j=n

[(
i+ j

i

)
mod 2

]
Recall Binet’s formula

Fn+1 =
φn+1 − φn+1

φ− φ
=

n∑
k=0

φkφ
n−k

. (3)

Stern’s sequence satisfies a similar formula:

an+1 =

n∑
k=0

σs2(k)σs2(n−k)

where σ := (1 +
√
−3)/2 is a sixth root of unity and s2(n) is the number of ones in the binary

expansion of n [12, A000120]:

n 0 1 2 3 4 5 6 7 8...
s2(n) 0 1 1 2 1 2 2 3 1...
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Why this is true: If G(x) :=
∑
σs2(n)xn and F (x) is the generating function for {an+1}, then

G(x) = (1 + σx)G(x2) and F (x) = (1 + x + x2)F (x2). For real x, since (1 + σx)(1 + σx) =
1 + x+ x2, |G(x)|2 = F (x) and the result follows by equating coefficients.

3. Replacing addition by another operation

Definition 3.1. For non-negative real numbers a, b, let

a⊕ b = a+ b+
√

4ab+ 1

a	 b = a+ b−
√

4ab+ 1
.

Proposition 3.2. If a, b, c, d > 0 and |ad− bc| = 1 then (ac)⊕ (bd) = (a+ b)(c+ d).

Proof. If (ad− bc)2 = 1, then
(ad+ bc)2 = 1 + 4abcd

and thus
(ac)⊕ (bd) = ac+ bd+

√
4abcd+ 1 = ac+ bd+ ad+ bc.

�

Remark 3.3. By the Fibonacci identity

Fn−1Fn+1 = F 2
n + (−1)n,

it follows that

(Fn−1Fn)⊕ (FnFn+1) = (Fn−1 + Fn)(Fn + Fn+1) = Fn+1Fn+2.

and so the sequence xn := FnFn+1 satisfies the modified Fibonacci recurrence

xn+1 = xn ⊕ xn−1.

Here we define the first new sequence.

Definition 3.4. Let b1 = 0, and for n ≥ 1,

b2n = bn

b2n+1 = bn ⊕ bn+1.

The sequence begins

0, 0, 1, 0, 2, 1, 2, 0, 3, 2, 6, 1, 6, 2, 3, 0, 4, 3, 10, 2, 15, 6, 12, 1, 12, 6, 15, ...

It is not immediately clear that this sequence must always be integral. One way to show
this is to express each bk as a product of elements of Stern’s sequence (Theorem 3.6, below).
First we must prove a lemma.

Lemma 3.5. For m,n ≥ 0, if m+ n = 2j − 1 then am+1an+1 − aman = 1.

Proof. We prove this by induction on j. If m+n = 1, then am+1an+1−aman = a1a2−a0a1 = 1
and the result holds for j = 1. Suppose now that the result holds for a fixed j and that
m + n = 2j+1 − 1. Without loss of generality, m = 2k + 1 and n = 2l for some k, l ≥ 0 (and
so k + l = 2j − 1). Then

am+1an+1 − aman = a2k+2a2l+1 − a2k+1a2l

= ak+1(al + a2l+1)− (ak + ak+1)al = ak+1al+1 − akal = 1
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and the result follows. �

Theorem 3.6. If 2j ≤ k ≤ 2j+1, then

bk = a2j+1−kak−2j .

Proof. If k = 2j then, because a0 = 0, bk = 0 = a2j+1−kak−2j = a2j−kak−2j−1 .
Let xk := a2j+1−kak−2j where k ∈ (2j , 2j+1). Then 2k, 2k + 1 ∈ (2j+1, 2j+2) and thus

x2k = a2j+1−2ka2k−2j = a2j−kak−2j−1 = xk

and, by lemma 3.5 and proposition 3.2,

x2k+1 = a2j+1−(2k+1)a2k+1−2j

= a2(2j−k−1)+1a2(k−2j−1)+1

= (a2j−k−1 + a2j−k) · (ak−2j−1 + ak+1−2j−1)

= (a2j−k−1ak+1−2j−1)⊕ (a2j−kak−2j−1) = xk+1 ⊕ xk

.

Hence bk = xk for all k, and the result follows. �

Corollary 3.7. bn ∈ N.

As seen in section 2, Stern’s diatomic sequence leads to a construction of Conway’s box
function f(x), the inverse of Minkowski’s question-mark function. The sequence {bk} gives
rise to a similar function that turns out to be closely related to f(x).

Definition 3.8. For k, n ∈ N, k ≤ 2n, let

g

(
k

2n

)
:=

bk
b2n+k

.

Theorem 3.9. The function g(x) extends to a continuous function on [0, 1] that satisfies, for
x ∈ (2−j−1, 2−j),

g(x) = f(2j+1x− 1)[1− jf(2x)]

where f(x) is Conway’s box function.

Proof. Let x = k/2n. Then 2n−j−1 ≤ k ≤ 2n−j for some j ≥ 0. Since 2n ≤ 2n + k ≤ 2n+1, it
follows from Theorem 3.6 that

bk = a2n−j−kak−2n−j−1 and b2n+k = a2n−kak.

By [9, formulas (2) and (3)],
a2n−k = jak + a2n−j−k

and thus

g(x) = g

(
k

2n

)
=

bk
b2n+k

=
a2n−j−kak−2n−j−1

a2n−kak

=
(a2n−k − jak)ak−2n−j−1

a2n−kak
=
ak−2n−j−1

ak

(
1− jak

a2n−k

)
= f

(
k

2n−j−1
− 1

)[
1− jf

(
k

2n−1

)]
= f(2j+1x− 1)[1− jf(2x)].

The extension of g(x) to a continuous function on [0, 1] follows from the facts that f extends
to a continuous function on [0, 1] and f(2−j) = 1/(j + 1). �

The restriction of g(x) to [1/2, 1] is just a scaled version of f(x):
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Figure 3. Singular function associated with {bn}

Corollary 3.10. g(x) = f(2x− 1) for x ∈ [1/2, 1].

Recall that every positive rational number appears exactly once in the set {ak+1/ak : k ∈ N}.
We prove an analogue for the sequence {bk}. We use the expression “A = �” to mean that
A = n2 for some integer n.

Theorem 3.11. Every element of {(a, b) ∈ N2 : 4ab + 1 = �} appears exactly once in the
sequence {(bk, bk+1) : k ∈ N}.

Proof. Consider the following analogue of the (slow) Euclidean algorithm.

M⊕ : (a, b) 7−→


(a, a	 b) if a < b,

(a	 b, b) if b < a,

stop if a = b.

Suppose (a, b) ∈ N2, with 4ab+ 1 = �. If a	 b < 0 then it is easy to see that (a− b)2 < 1
and thus a = b. In this case, since 4a2 + 1 6= � unless a = 0, the only possibility is a = b = 0.
Hence, M⊕((a, b)) ∈ N2 and, if this algorithm terminates at all, it must terminate at (0, 0).

With (a, b) ∈ N2, with 4ab+ 1 = �, let k :=
√

4ab+ 1. If 0 < a < b, then a2 < ak and thus

a(a	 b) = a(a+ b− k) = a2 + ab− ak < ab.

In general, the product of numbers in M⊕((a, b)) is strictly less than the product ab and
thus the algorithm will eventually reach, without loss of generality, (0, b). If b = 0 then the
algorithm stops. On the other hand, if b > 0, it is easy to see that M⊕((0, b)) = (0, b− 1), and
thus the algorithm will terminate at (0, 0).

Let Bn := (bn, bn+1). By the definition of the sequence {bk}, it’s easy to see that for n > 1,

M⊕ : B2n, B2n+1 7−→ Bn

and, moreover, if M⊕ : (a, b) 7→ Bn, then either (a, b) = B2n or (a, b) = B2n+1.
If (a, b) ∈ N2, with 4ab+ 1 = � is not of the form Bn for some n, then all of its successors

under M⊕, including (0, 0), are not either – a contradiction. Hence every (a, b) ∈ N2, with
4ab+ 1 = � is of the form Bn for some n.

The pair (0, 0) appears only once and, in general, no pair appears more than once in {Bn}
for, otherwise, there exists a smallest n > 1 such that Bn = Bm for some m > n. Applying M⊕
to both Bm and Bn forces bn/2c = bm/2c and therefore m = n+ 1. Thus bn = bn+1 = bn+2,
a contradiction. �
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A generalization of ⊕ is as follows: For a given number N , define

x⊕
N
y := x+ y +

√
4xy +N.

Remark 3.12. a, b, a⊕
N
b solve

2(x2 + y2 + z2)− (x+ y + z)2 = N.

Defining 	
N

in the obvious manner,

(a⊕
N
b)	

N
b = a.

Every non-zero complex number z can be represented uniquely as reiθ for some positive r
and some θ ∈ [0, 2π) and so we define

√
z :=

√
reiθ/2. Hence ⊕

N
and 	

N
are well defined for

complex N .

We may then generalize {bk}.

Definition 3.13. Given a (complex) number A, let c1 = c2 = A and, for n ≥ 1,

c2n = cn

c2n+1 = cn ⊕
N
cn+1.

It turns out that such a sequence can be expressed as a linear combination of the sequences
{a2k} and {bk}. We first need a lemma.

Lemma 3.14. For k ≥ 1,

a2kbk+1 + a2k+1bk + 1 = akak+1

√
4bkbk+1 + 1.

Proof. Let sk :=
√

4bkbk+1 + 1. Note that

b2k+1 = bk + bk+1 + sk.

Then
s22k = 4b2kb2k+1 + 1 = 4bk(bk + bk+1 + sk) + 1

= 4b2k + s2k + 4bksk = (2bk + sk)
2

and so

s2k = 2bk + sk.

Similarly,

s22k+1 = 4b2k+1b2k+2 + 1 = 4bk+1(bk + bk+1 + sk) + 1

= 4b2k+1 + s2k + 4bk+1sk = (2bk+1 + sk)
2

and so

s2k+1 = 2bk+1 + sk.

Note that

a21b2 + a22b1 + 1 = 1 = a1a2
√

4b1b2 + 1

and so the lemma holds for k = 1.
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Suppose the lemma holds for a particular k. We show it works for 2k and 2k + 1 and thus,
by induction, the lemma will be shown.

a22kb2k+1a
2
2k+1b2k + 1 = a2k(bk + bk+1 + sk) + (ak + ak+1)

2bk + 1

= a2kbk + a2kbk+1 + a2ksk + a2kbk + 2akak+1bk + a2k+1bk + 1

= a2k(2bk + sk) + 2akak+1bk + a2kbk+1 + a2k+1bk + 1

= a2k(2bk + sk) + 2akak+1bk + aka+ k + 1sk

= ak(ak + ak+1)(2bk + sk) = a2ka2k+1s2k

and thus the lemma works for 2k.

a22k+1b2k+2a
2
2k+2b2k+1 + 1 = (ak + ak+1)

2bk+1 + a2k+1(bk + bk+1 + sk) + 1

= a2kbk+1 + 2akak+1bk+1 + a2k+1bk+1 + a2k+1bk + a2k+1bk+1 + a2k+1sk + 1

= a2k(2bk+1 + sk) + a2kbk+1 + a2k+1bk + 1 + 2akak+1bk+1

= a2k(2bk+1 + sk) + akak+1sk + 2akak+1bk+1

= ak+1(ak + ak+1)(2bk+1 + sk) = a2k+2a2k+1s2k+1

and thus the lemma works for 2k + 1. �

Theorem 3.15. Given A,B, let ck := Aa2k + Bbk. Then {ck} has c1 = c2 = A and, for
N = 4AB +B2,

c2n = cn

c2n+1 = cn ⊕
N
cn+1.

Proof.

ckck+1 +AB = (Aa2k +Bbk)(Aa
2
k+1 +Bbk+1) +AB

= A2a2ka
2
k+1 +B2bkbk+1 +AB(a2k+1bk + a2kbk+1 + 1)

= A2a2ka
2
k+1 +B2bkbk+1 +ABakak+1

√
4bkbk+1 + 1

and so

4ckck+1 +N = 4A2a2ka
2
k+1 + 4B2bkbk+1 +B2 + 4ABakak+1

√
4bkbk+1 + 1

= (2Aakak+1 +B
√

4bkbk+1 + 1)2

and thus

ck ⊕
N
ck+1 = (Aa2k +Bbk) + (Aa2k+1 +Bbk+1) +

√
4ckck+1 +N

= Aa2k +Bbk +Aa2k+1 +Bbk+1 + 2Aakak+1 +B
√

4bkbk+1 + 1

= A(ak + ak+1)
2 +B(bk + bk+1 +

√
4bkbk+1 + 1

= Aa22k+1 +Bb2k+1 = c2k+1.

Since

c2k = Aa22k +Bb2k = Aa2k +Bbk = ck,

the theorem is shown. �

Example 3.16. Let N = −3, c1 = c2 = 1, we see that A = 1, B = −1, and thus ck = a2k− bk.
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If to every local cut point P in the fractal CP appearing in figure 2 one attaches a sphere
above but tangent to the plane at that point with curvature (1/radius) equal to the sum of
the curvatures of the two circles meeting there, then one gets a 3-dimensional generalization
of Ford circles. The curvatures (similarly, the product of local cut points and corresponding
curvatures) along any circular arc are from a sequence {cn} for appropriately chosen N (see
[11] and references therein for a discussion of various types of “Ford spheres”).

Consider the sequence {bk} written in tabular form:

0
0 1
0 2 1 2
0 3 2 6 1 6 2 3
0 4 3 10 2 15 6 12 ...
. . . . . . . . .

It is apparent that every column is an arithmetic sequence and, moreover, the defining differ-
ences are respectively

0, 1, 1, 4, 1, 9, 4, 9, ...,

the squares of Stern’s diatomic sequence {a2k}. This is, in fact, true. We shall express this
result as a formula.

Theorem 3.17. For 0 ≤ k < 2j,

b2j+1+k = a2k + b2j+k.

Proof. Assume 0 ≤ k < 2j . Since 2j ≤ 2j + k < 2j+1, Theorem 3.6 implies

b2j+1+k = b2j+2j+k = a2j+1−(2j+k)a2j+k−2j = a2j−kak.

By [9, formulas (2) and (3)] ,

a2j+1−k = ak + a2j−k

and thus

b2j+2+k = a2j+1−kak = (ak + a2
j−k)ak = a2k + a2j−kak = a2k + b2j+1+k.

The result follows by induction. �

Remark 3.18. {b2k−1} appears as [12, A119272], the product of numerators and denominators
in the Stern-Brocot tree.

Remark 3.19. For a fixed (x, y), z = x⊕ y and z = x	 y are the two solutions of

2(x2 + y2 + z2)− (x+ y + z)2 = 1.

4. Fibonacci representations

A Fibonacci representation of a number n is a way of writing that number as a sum of distinct
Fibonacci numbers. One such representation is, of course, the Zeckendorf representation which
is gotten by the greedy algorithm and which is characterized by having no two consecutive
Fibonacci numbers. In general, a given n has several Fibonacci representations, the number
of such we call Rn. The sequence {Rn} is extremely well studied; see papers by Klarner [7],
Bicknell-Johnson [1, 2], and Stockmeyer [14], for example.
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A string of 0s and 1s is a finite word with alphabet {0, 1} (equivalently, an element of
{0, 1}∗). Often we denote such a word by ω. We shall think of such strings as Fibonacci
representations: we shall assign a numerical value [ω] to a string ω by the formula

[i1i2...ik] =
∑

ijFk+2−j .

For example, [0100] = [0011] = 3 and [01010011] = 21 + 8 + 2 + 1 = 32.
The generating function for {Rn} has an obvious product formulation.

Proposition 4.1. The sequence (Rn) satisfies
∞∑
n=0

Rnx
n =

∞∏
i=2

(
1 + xFi

)
where Fn denotes the nth Fibonacci number.

Next, we define the Fibonacci shift :

ρ(n) := bnφ+ 1/φc
that satisfies ρ([ω]) = [ω0] for every string ω. This shift has been studied before; for example,
it appears in [6, graffiti, p. 301].

Theorem 4.2. For ci ∈ {0, 1}, i = 2, ..., N ,

ρ

(
N∑
i=2

ciFi

)
=

N∑
i=2

ciFi+1.

Proof. By Binet’s formula (3),

φFn = Fn+1 − φ
n
.

For any choice ci ∈ {0, 1} for i = 2, ..., N , note that

−1/φ2 =
∞∑
n=1

φ
2n+1

<
N∑
i=2

ciφ
i
<
∞∑
n=1

φ
2n

= 1/φ

and therefore

0 < −
N∑
i=2

ciφ
i − φ < 1.

Hence,

ρ

(
N∑
i=2

ciFi

)
=

⌊
φ

N∑
i=2

ciFi − φ

⌋

=

N∑
i=2

ciFi+1 +

⌊
−

N∑
i=2

ciφ
i − φ

⌋
=

N∑
i=2

ciFi+1.

�

In terms of ρ(n), we may define {Rn} recursively. Clearly, R0 = R1 = 1. A representation
of n either ends in 0 in which case n = [ω0] where ρ([ω]) = n or else it ends in 1 in which case
n = [ω1] and so n− 1 = [ω0] = ρ([ω]). Hence, for all n ≥ 1,

Rn :=
∑

ρ(i)∈{n,n−1}

Ri.
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Note that the function ρ2(n) := ρ(ρ(n)) = bnφ2 + 1/φc is an example of a Beatty sequence
(i.e., of the form ban + bc) and so has a complementary Beatty sequence, namely T (n) :=
bnφ+ 2/φc. For example,

ρ2(n) = 0, 3, 5, 8, 11, 13, 16, 18, 21, 24, ...

and
T (n) = 1, 2, 4, 6, 7, 9, 10, 12, 14, 15, ...

The following characterization could be used as a new definition of {Rn}.

Theorem 4.3. For n ≥ 1, and T (n) := bnφ+ 2/φc,
Rρ2(n) = Rn +Rn−1

and
RT (n) = Rn.

Proof. Since φ ∈ (1, 2), ρ(n) ∈ {ρ(n + 1) − 1, ρ(n + 1) − 2}. Since 2φ > 3, (n − 1)φ + 1/φ ≤
(n+ 1)φ+ 1/φ− 3 and so ρ(n− 1) < ρ(n+ 1)− 2. Note that

T (n) = bnφ+ 2/φc = b(n+ 1)φ+ 1/φc − 1 = ρ(n+ 1)− 1

and therefore
RT (n) =

∑
ρ(i)∈{ρ(n+1)−1,ρ(n+1)−2}

Ri = Rn.

We show the first equation in the theorem by a counting argument. By the definition of
ρ(n), ρ2(n) = ρ(n) + n and so

ρ2(n+ 1)− ρ2(n) = ρ(n+ 1)− ρ(n) + 1 ∈ {2, 3}.
For a given n, if n = [ω] then ρ(ρ(n)) = [ω00] and ρ(ρ(n+ 1)) equals either [ω10] or [ω11].

Suppose ρ2(n + 1) − ρ2(n) = 2. The map ω 7→ ω00 is a bijection from representations of
n to the representations of ρ2(n) ending in 00 while the map ω 7→ ω10 is a bijection from
representations of n − 1 to the representations of ρ2(n) not ending in 00. Hence the first
equation holds.

A similar argument holds when ρ2(n+ 1)− ρ2(n) = 3. �

Remark 4.4. The sequence {Rn} is thus analogous to the alternative form of Stern’s sequence:

a2n = an, a2n−1 = an + an−1.

For every word ω := ω0ω1...ωn ∈ {0, 1}∗, we let |ω| := n + 1 denote the length of ω and
define a point in the complex plane

P (ω) :=

n∑
k=0

φ−k(2ωk − 1− i).

We form a graph G by putting an edge between P (ω) and P (ωj) for j = 0, 1, ω ∈ {0, 1}∗.
This graph is illustrated in Figure 4 below. Note further that P (ω) = P (ω′) iff |ω| = |ω′|
and [ω] = [ω′]. Hence, we may consistently assign the integer [ω] to each vertex P (ω) of the
graph. This shows that R[ω] is the number of downward paths from P (∗) to P (ω) and the
graph can be thought of as a kind of hyperbolic Pascal’s triangle. In fact, the portion between
0,01,010,0101,... and 1,10,101,1010,... is really just the “Fibonacci diatomic array” appearing
in [2].

For v a vertex of the Fibonacci representation graph, let [v] be the number of downward
paths from the top vertex to v.
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Figure 4. Fibonacci Representation Graph with words in {0, 1}∗.

Lemma 4.5. Along the nth row of the graph G, the function [v] forms an increasing sequence
of consecutive integers 0, . . . , Fn+2 − 2.

Proof. Iterates of ρ(n)+1 starting at 0 yields the sequence 0, 1, 3, 6, 11, ..., Fn+2−2, ... (provable
by induction). Hence the last value of [v] in the nth row is Fn+2 − 2. Since ρ(n+ 1)− ρ(n) ∈
{1, 2}, the lemma follows. �

A consequence is the following surprising formula:

ρ(ρ(ρ(n) + 1))) = ρ(ρ(ρ(n)) + 1) + 1.

This graph has numerous interesting properties:

• Every quadrilateral in the closure of the graph is either a square or a golden rectangle.
• All the squares (actually hexagons) are congruent in hyperbolic space with area lnφ

(and, as hexagons, each edge has length lnφ). The figure is thus an aperiodic tiling of
part of the upper half-plane H (and can be extended to all of H ) where all the tiles
are congruent!
• The points along any row, when embedded in R form part of a one-dimensional qua-

sicrystal. The lengths of the segments, appropriately scaled, form a word: φ, 1, φ, φ, 1, φ, ...,
the “Fibonacci word”.
• The vertices form a quasicrystal in H .
• The graph is the Cayley graph of the “Fibonacci monoid” 〈a, b|abb = baa〉.
• The graph can be constructed by the following recursive procedure starting with a

single vertex; from each of the latest generation of vertices, draw two edges going
southeast and southwest respectively, connect if a hexagon can be formed. Repeat.

Something new with respect to the study of {Rn} is the development of an analog of
Conway’s box function. For k < Fn−1, define

q(k, Fn) := Rk/RFn+k.

Lemma 4.6. For k = 0, ..., Fn−1 − 1,

q(T (k), Fn+1) = q(k, Fn)

and
q(ρ2(k), Fn+2) = q(k, Fn) ∗ q(k − 1, Fn)

where ∗ denotes “mediant addition”.
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Proof. Note that

T (n) = ρ(n+ 1)− 1

and so, if k ≤ Fn−1 − 1,

T (Fn + k) = Fn+1 + T (k).

Then

q(k, Fn) =
Rk

RFn+k
=

RT (k)

RT (Fn+k)

=
RT (k)

RFn+1+T (k)
= q(T (k), Fn+1)

and the first equation follows. Similarly,

q(k, Fn) ∗ q(k − 1, Fn) =
Rk

RFn+k
∗ Rk−1
RFn+k−1

=
Rk +Rk−1

RFn+k +RFn+k−1

=
Rρ2(k)

Rρ2(Fn+k)
=

Rρ2(k)

RFn+2+ρ2(k)

= q(ρ2(k), Fn+2)

and the second equation follows. �

As a consequence, if, as n→∞, k/Fn converges to x ∈ [0, 1/φ], then q(k, Fn) converges to
some value, say Q(x). The function Q : [0, 1/φ]→ [0, 1] is increasing and continuous.

Figure 5. Analogue of Conway’s box function

Note, however, it is not strictly increasing.

Lemma 4.7. For j = 0, ..., Fn−1 − 1,

RFn+2+j = RFn+j +Rj .
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Theorem 4.8. The inverse of Q satisfies, on its irrational points of continuity,

Q−1(x) =
∞∑
k=1

(−1)k+1

φ2(c1+c2+...+ck)−1

where x has continued fraction decomposition x = 1/(c1 + 1/(c2 + 1/(c3 + ...))).

Proof. Recall that RFm+k = RFm+1−k and so

1

n+ q(k, Fm)
=

RFm+1−k

Rk + nRFm+1−k
= q(Fm+1 − k, Fm+2n).

Letting k/Fm → x where x is a point of continuity of B, we see that

1

n+Q(x)
= Q

(
φ− x
φ2n

)
.

We may then rewrite:

φ−Q−1(x)

φ2n
= Q−1

(
1

n+ x

)
and the theorem follows. �

The function Q(x) extends past 1/φ but is no longer monotonic.

Figure 6. Analogue of Conway’s box function; larger domain
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Patterns can be found by looking at the “crushed array” which is found by stacking rows
of terms RFn−1, ..., RFn+1−2 sliding terms to the left on rows:

1
1 2
1 2 2
1 3 2 2 3
1 3 3 2 4 2 3 3
1 4 3 3 5 2 4 4 2 5 3 3 4
. . . . . . . . . . . . . . . . .

The kth column satisfies: xn+2 = xn + c with common difference c = Rk (R0 = 0).
Alternatively, xn+1 = xn + xn−1 − xn−2 (a “dying rabbit” sequence).

xn+1 = xn + xn−1 − xn−2

Characteristic polynomial factors x3 − x2 − x+ 1 = (x− 1)2(x+ 1) so every example is of the
form xn = a+ bn+ c(−1)n. Hence, {x2n} and {x2n+1} are arithmetic sequences.

xn+1 = xn + xn−1 − xn−3

e.g., [12, A023434] x4 − x3 − x2 + 1 = (x − 1)(x3 − x − 1), so every example is of the form
a+brn1 +crn2 +drn3 where r1 is the “plastic constant”, 1.32471795..., the smallest Pisot number,
and r2, r3 are its algebraic conjugates. Such examples are always a constant plus a Padovan
sequence yn+1 = yn−1 + yn−2. E.g., [12, A000931]

xn+1 = xn + xn−1 − xn−1,

is always a constant sequence.

5. Extending Binet’s formula

Let sF (n) be the number of terms in the Zeckendorf representation of n (e.g., sF (27) = 3).
Equivalently, sF (n) is the least number of Fibonacci numbers that sum to n. This sequence,
for n = 0, 1, ..., is [A007895] and starts

0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, ...

Using notation of the previous section, we see that sF (n) satisfies the recursion:

sF ([ω0]) = sF ([ω]), sF ([ω01]) = sF ([ω]) + 1

which translates to

sF (ρ(n)) = sF (n), sF (ρ2(n) + 1) = sF (n) + 1
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where ρ(n) is the “Fibonacci shift” defined in Section 4 (just after Proposition 4.1). The
crushed array for this sequence is

1
1
1 2
1 2 2
1 2 2 2 3
1 2 2 2 3 2 3 3
1 2 2 2 3 2 3 3 2 3 3 3 4
. . . . . . . . . . . . . . . . .

Note that columns are constant and that the limiting row is sF (n) + 1.
Replacing s2(n) by sF (n) in Binet’s formula for Stern’s sequence yields our third variant of

Stern’s sequence:

cn+1 =
n∑
k=0

σsF (k)σsF (n−k).

The sequence starts, for n = 1, 2, ...,

1, 1, 2, 3, 2, 4, 3, 3, 6, 4, 6, 6, 4, 8, 6, 7, 10, 6, 9, 7, 5, 11, 8, ....

It is always integral since cn+1 is an algebraic integer in Z[σ] invariant under complex conju-
gation.

A crushed array for this sequence is:

1
1
2 3
2 4 3
3 6 4 6 6
4 8 6 7 10 6 9 7
5 11 8 11 13 8 14 10 9 15 9 13 11
7 15 11 15 19 12 19 14 11 21 14 19 19

The first column, xn := {cFn} apparently satisfies the Padovan recurrence: xn+2 = xn +xn−1.
Moreover, every column is apparently a “dying rabbit” sequence: xn+1 = xn + xn−1 − xn−3
or, more precisely, if xn := cFn+k + ck, then xn+2 = xn + xn−1. This is indeed the case which
we now prove.

Theorem 5.1. For k ≤ Fn−2, cFn+2+k = cFn+k + ck + cFn−1+k.

Proof. Given a string X of integers, let X denote the reverse of string X, let X+ denote the
string X with 1 added to every integer, and let X− denote the string X with 1 subtracted

from every integer (e.g., if X = 1223, then X = 3221, X+ = 2334, and X
−

= 2110). If

X := t0...tk−1, let G(X) :=
∑k−1

j=0 σ
tj . Finally, given strings X, Y , we let XY denote the

concatenation of the two strings and X − Y denote the pointwise difference (e.g., if X = 457
and Y = 123 then XY = 457123 and X − Y = 334).

Let sn := sF (n) be the number of terms in the Zeckendorf representation of n. For any
interval I, let sI denote the string si1si2 ...sik where i1 < i2 < ... < ik and {i1, i2, ..., ik} = I∩N.
Then cn = G((s[0,n) − s[0,n))) where the difference of two strings is the string of differences.
Since we will use this formula, we let ∆I = sI − sI so that cn = G(∆[0,n)).
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By the definition of s, it’s clear that s[Fn,Fn+k) = s+[0,k) if k ≤ Fn−1. Since

s[0,Fn+k) = s[0,k)s[k,Fn)s[Fn,Fn+k) = s[0,k)s[k,Fn)s
+
[0,k),

it follows that

s[0,Fn+k) = s+[0,k)s[k,Fn)s[0,k),

and thus

∆[0,Fn+k) = ∆−[0,k)∆[k,Fn)∆
+
[0,k).

Hence, because σ−1 + σ = 1,

cFn+k = σ−1ck +G(∆[k,Fn)) + σck = ck +G(∆[k,Fn)). (∗)

Assuming k ≤ Fn−2, we see that

s[0,Fn+2+k) = s[0,k)s[k,Fn)s[Fn,Fn+k)s[Fn+k,Fn+1)s[Fn+1,Fn+1+k)s[Fn+1+k,Fn+2)s[Fn+2,Fn+2+k)

= s[0,k)s[k,Fn)s
+
[0,k)s

+
[k,Fn−1)

s+[0,k)s
+
[k,Fn)

s+[0,k)

and thus

s[0,Fn+2+k) = s+[0,k)s
+
[k,Fn)

s+[0,k)s
+
[k,Fn−1)

s+[0,k)s[k,Fn)s[0,k).

Hence,

∆[0,Fn+2+k) = ∆−[0,k)∆
−
[k,Fn)

∆[0,k)∆[k,Fn−1)∆[0,k)∆
+
[k,Fn+k)

∆+
[0,k).

Applying G:

cFn+2+k = σ−1ck + σ−1G(∆[k,Fn)) + ck +G(∆[k,Fn−1)) + ck + σG(∆[k,Fn)) + σck.

Again, since σ−1 + σ = 1, and by (*), we have

cFn+2+k = 3ck +G(∆[k,Fn)) +G(∆[k,Fn−1)) = ck + cFn+k + cFn−1+k.

�

There are many patterns in the crushed array. Two such patterns can be proven by induction
based on the previous theorem.

Corollary 5.2. cFn + cFn−1+2 = cFn+1 and cFn+1 = cFn+1+2 for all n.

We have many other questions or apparent properties, all waiting for a proof (though, of
course, of varying difficulty).

• Five inequalities: cσ2(n)+1 ≥ cbnφ2c ≥ cbnφc ≥ cσ(n) ≥ cn ≥ 0.
• The minimum of each row in the crushed array is the leftmost element. (If true, then

the last inequality above, cn ≥ 0, is true).
• If cn ≥ 0 for all n, then what do these numbers count?
• The following sequences have crushed arrays with columns satisfying xn+1 = xn +
xn−1 − xn−j for given j:

{sF (n)} has j = 1,

{Rn} has j = 2,

{cn} has j = 3.

Is there a general principle at work in this progression? Is there a similarly defined
sequence with j = 4 for example?
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